diff options
| author | Aditya Naik | 2021-04-20 13:11:16 -0400 |
|---|---|---|
| committer | Aditya Naik | 2021-04-20 13:11:16 -0400 |
| commit | ae4978977d3a2ca1e9493c1152aed35078fd846e (patch) | |
| tree | 34dee1775ef3c63dd443cb0c18c2fdd1e19c1eb6 /lib/f4/stm32f4xx_hal_cryp.c | |
Cleanup and README
Diffstat (limited to 'lib/f4/stm32f4xx_hal_cryp.c')
| -rw-r--r-- | lib/f4/stm32f4xx_hal_cryp.c | 6368 |
1 files changed, 6368 insertions, 0 deletions
diff --git a/lib/f4/stm32f4xx_hal_cryp.c b/lib/f4/stm32f4xx_hal_cryp.c new file mode 100644 index 0000000..5d512eb --- /dev/null +++ b/lib/f4/stm32f4xx_hal_cryp.c @@ -0,0 +1,6368 @@ +/**
+ ******************************************************************************
+ * @file stm32f4xx_hal_cryp.c
+ * @author MCD Application Team
+ * @brief CRYP HAL module driver.
+ * This file provides firmware functions to manage the following
+ * functionalities of the Cryptography (CRYP) peripheral:
+ * + Initialization, de-initialization, set config and get config functions
+ * + DES/TDES, AES processing functions
+ * + DMA callback functions
+ * + CRYP IRQ handler management
+ * + Peripheral State functions
+ *
+ @verbatim
+ ==============================================================================
+ ##### How to use this driver #####
+ ==============================================================================
+ [..]
+ The CRYP HAL driver can be used in CRYP or TinyAES IP as follows:
+
+ (#)Initialize the CRYP low level resources by implementing the HAL_CRYP_MspInit():
+ (##) Enable the CRYP interface clock using __HAL_RCC_CRYP_CLK_ENABLE()or __HAL_RCC_AES_CLK_ENABLE for TinyAES IP
+ (##) In case of using interrupts (e.g. HAL_CRYP_Encrypt_IT())
+ (+++) Configure the CRYP interrupt priority using HAL_NVIC_SetPriority()
+ (+++) Enable the CRYP IRQ handler using HAL_NVIC_EnableIRQ()
+ (+++) In CRYP IRQ handler, call HAL_CRYP_IRQHandler()
+ (##) In case of using DMA to control data transfer (e.g. HAL_CRYP_Encrypt_DMA())
+ (+++) Enable the DMAx interface clock using __RCC_DMAx_CLK_ENABLE()
+ (+++) Configure and enable two DMA streams one for managing data transfer from
+ memory to peripheral (input stream) and another stream for managing data
+ transfer from peripheral to memory (output stream)
+ (+++) Associate the initialized DMA handle to the CRYP DMA handle
+ using __HAL_LINKDMA()
+ (+++) Configure the priority and enable the NVIC for the transfer complete
+ interrupt on the two DMA Streams. The output stream should have higher
+ priority than the input stream HAL_NVIC_SetPriority() and HAL_NVIC_EnableIRQ()
+
+ (#)Initialize the CRYP according to the specified parameters :
+ (##) The data type: 1-bit, 8-bit, 16-bit or 32-bit.
+ (##) The key size: 128, 192 or 256.
+ (##) The AlgoMode DES/ TDES Algorithm ECB/CBC or AES Algorithm ECB/CBC/CTR/GCM or CCM.
+ (##) The initialization vector (counter). It is not used in ECB mode.
+ (##) The key buffer used for encryption/decryption.
+ (##) The Header used only in AES GCM and CCM Algorithm for authentication.
+ (##) The HeaderSize The size of header buffer in word.
+ (##) The B0 block is the first authentication block used only in AES CCM mode.
+
+ (#)Three processing (encryption/decryption) functions are available:
+ (##) Polling mode: encryption and decryption APIs are blocking functions
+ i.e. they process the data and wait till the processing is finished,
+ e.g. HAL_CRYP_Encrypt & HAL_CRYP_Decrypt
+ (##) Interrupt mode: encryption and decryption APIs are not blocking functions
+ i.e. they process the data under interrupt,
+ e.g. HAL_CRYP_Encrypt_IT & HAL_CRYP_Decrypt_IT
+ (##) DMA mode: encryption and decryption APIs are not blocking functions
+ i.e. the data transfer is ensured by DMA,
+ e.g. HAL_CRYP_Encrypt_DMA & HAL_CRYP_Decrypt_DMA
+
+ (#)When the processing function is called at first time after HAL_CRYP_Init()
+ the CRYP peripheral is configured and processes the buffer in input.
+ At second call, no need to Initialize the CRYP, user have to get current configuration via
+ HAL_CRYP_GetConfig() API, then only HAL_CRYP_SetConfig() is requested to set
+ new parametres, finally user can start encryption/decryption.
+
+ (#)Call HAL_CRYP_DeInit() to deinitialize the CRYP peripheral.
+
+ [..]
+ The cryptographic processor supports following standards:
+ (#) The data encryption standard (DES) and Triple-DES (TDES) supported only by CRYP1 IP:
+ (##)64-bit data block processing
+ (##) chaining modes supported :
+ (+++) Electronic Code Book(ECB)
+ (+++) Cipher Block Chaining (CBC)
+ (##) keys length supported :64-bit, 128-bit and 192-bit.
+ (#) The advanced encryption standard (AES) supported by CRYP1 & TinyAES IP:
+ (##)128-bit data block processing
+ (##) chaining modes supported :
+ (+++) Electronic Code Book(ECB)
+ (+++) Cipher Block Chaining (CBC)
+ (+++) Counter mode (CTR)
+ (+++) Galois/counter mode (GCM/GMAC)
+ (+++) Counter with Cipher Block Chaining-Message(CCM)
+ (##) keys length Supported :
+ (+++) for CRYP1 IP: 128-bit, 192-bit and 256-bit.
+ (+++) for TinyAES IP: 128-bit and 256-bit
+
+ [..] This section describes the AES Galois/counter mode (GCM) supported by both CRYP1 IP:
+ (#) Algorithm supported :
+ (##) Galois/counter mode (GCM)
+ (##) Galois message authentication code (GMAC) :is exactly the same as
+ GCM algorithm composed only by an header.
+ (#) Four phases are performed in GCM :
+ (##) Init phase: IP prepares the GCM hash subkey (H) and do the IV processing
+ (##) Header phase: IP processes the Additional Authenticated Data (AAD), with hash
+ computation only.
+ (##) Payload phase: IP processes the plaintext (P) with hash computation + keystream
+ encryption + data XORing. It works in a similar way for ciphertext (C).
+ (##) Final phase: IP generates the authenticated tag (T) using the last block of data.
+ (#) structure of message construction in GCM is defined as below :
+ (##) 16 bytes Initial Counter Block (ICB)composed of IV and counter
+ (##) The authenticated header A (also knows as Additional Authentication Data AAD)
+ this part of the message is only authenticated, not encrypted.
+ (##) The plaintext message P is both authenticated and encrypted as ciphertext.
+ GCM standard specifies that ciphertext has same bit length as the plaintext.
+ (##) The last block is composed of the length of A (on 64 bits) and the length of ciphertext
+ (on 64 bits)
+
+ [..] This section describe The AES Counter with Cipher Block Chaining-Message
+ Authentication Code (CCM) supported by both CRYP1 IP:
+ (#) Specific parameters for CCM :
+
+ (##) B0 block : According to NIST Special Publication 800-38C,
+ The first block B0 is formatted as follows, where l(m) is encoded in
+ most-significant-byte first order(see below table 3)
+
+ (+++) Q: a bit string representation of the octet length of P (plaintext)
+ (+++) q The octet length of the binary representation of the octet length of the payload
+ (+++) A nonce (N), n The octet length of the where n+q=15.
+ (+++) Flags: most significant octet containing four flags for control information,
+ (+++) t The octet length of the MAC.
+ (##) B1 block (header) : associated data length(a) concatenated with Associated Data (A)
+ the associated data length expressed in bytes (a) defined as below:
+ (+++) If 0 < a < 216-28, then it is encoded as [a]16, i.e. two octets
+ (+++) If 216-28 < a < 232, then it is encoded as 0xff || 0xfe || [a]32, i.e. six octets
+ (+++) If 232 < a < 264, then it is encoded as 0xff || 0xff || [a]64, i.e. ten octets
+ (##) CTRx block : control blocks
+ (+++) Generation of CTR1 from first block B0 information :
+ equal to B0 with first 5 bits zeroed and most significant bits storing octet
+ length of P also zeroed, then incremented by one ( see below Table 4)
+ (+++) Generation of CTR0: same as CTR1 with bit[0] set to zero.
+
+ (#) Four phases are performed in CCM for CRYP1 IP:
+ (##) Init phase: IP prepares the GCM hash subkey (H) and do the IV processing
+ (##) Header phase: IP processes the Additional Authenticated Data (AAD), with hash
+ computation only.
+ (##) Payload phase: IP processes the plaintext (P) with hash computation + keystream
+ encryption + data XORing. It works in a similar way for ciphertext (C).
+ (##) Final phase: IP generates the authenticated tag (T) using the last block of data.
+
+ *** Callback registration ***
+ =============================================
+
+ The compilation define USE_HAL_CRYP_REGISTER_CALLBACKS when set to 1
+ allows the user to configure dynamically the driver callbacks.
+ Use Functions @ref HAL_CRYP_RegisterCallback() or HAL_CRYP_RegisterXXXCallback()
+ to register an interrupt callback.
+
+ Function @ref HAL_CRYP_RegisterCallback() allows to register following callbacks:
+ (+) InCpltCallback : Input FIFO transfer completed callback.
+ (+) OutCpltCallback : Output FIFO transfer completed callback.
+ (+) ErrorCallback : callback for error detection.
+ (+) MspInitCallback : CRYP MspInit.
+ (+) MspDeInitCallback : CRYP MspDeInit.
+ This function takes as parameters the HAL peripheral handle, the Callback ID
+ and a pointer to the user callback function.
+
+ Use function @ref HAL_CRYP_UnRegisterCallback() to reset a callback to the default
+ weak function.
+ @ref HAL_CRYP_UnRegisterCallback() takes as parameters the HAL peripheral handle,
+ and the Callback ID.
+ This function allows to reset following callbacks:
+ (+) InCpltCallback : Input FIFO transfer completed callback.
+ (+) OutCpltCallback : Output FIFO transfer completed callback.
+ (+) ErrorCallback : callback for error detection.
+ (+) MspInitCallback : CRYP MspInit.
+ (+) MspDeInitCallback : CRYP MspDeInit.
+
+ By default, after the @ref HAL_CRYP_Init() and when the state is HAL_CRYP_STATE_RESET
+ all callbacks are set to the corresponding weak functions :
+ examples @ref HAL_CRYP_InCpltCallback() , @ref HAL_CRYP_OutCpltCallback().
+ Exception done for MspInit and MspDeInit functions that are
+ reset to the legacy weak function in the @ref HAL_CRYP_Init()/ @ref HAL_CRYP_DeInit() only when
+ these callbacks are null (not registered beforehand).
+ if not, MspInit or MspDeInit are not null, the @ref HAL_CRYP_Init() / @ref HAL_CRYP_DeInit()
+ keep and use the user MspInit/MspDeInit functions (registered beforehand)
+
+ Callbacks can be registered/unregistered in HAL_CRYP_STATE_READY state only.
+ Exception done MspInit/MspDeInit callbacks that can be registered/unregistered
+ in HAL_CRYP_STATE_READY or HAL_CRYP_STATE_RESET state,
+ thus registered (user) MspInit/DeInit callbacks can be used during the Init/DeInit.
+ In that case first register the MspInit/MspDeInit user callbacks
+ using @ref HAL_CRYP_RegisterCallback() before calling @ref HAL_CRYP_DeInit()
+ or @ref HAL_CRYP_Init() function.
+
+ When The compilation define USE_HAL_CRYP_REGISTER_CALLBACKS is set to 0 or
+ not defined, the callback registration feature is not available and all callbacks
+ are set to the corresponding weak functions.
+
+ Table 1. Initial Counter Block (ICB)
+ +-------------------------------------------------------+
+ | Initialization vector (IV) | Counter |
+ |----------------|----------------|-----------|---------|
+ 127 95 63 31 0
+
+
+ Bit Number Register Contents
+ ---------- --------------- -----------
+ 127 ...96 CRYP_IV1R[31:0] ICB[127:96]
+ 95 ...64 CRYP_IV1L[31:0] B0[95:64]
+ 63 ... 32 CRYP_IV0R[31:0] ICB[63:32]
+ 31 ... 0 CRYP_IV0L[31:0] ICB[31:0], where 32-bit counter= 0x2
+
+ Table 2. GCM last block definition
+
+ +-------------------------------------------------------------------+
+ | Bit[0] | Bit[32] | Bit[64] | Bit[96] |
+ |-----------|--------------------|-----------|----------------------|
+ | 0x0 | Header length[31:0]| 0x0 | Payload length[31:0] |
+ |-----------|--------------------|-----------|----------------------|
+
+ Table 3. B0 block
+ Octet Number Contents
+ ------------ ---------
+ 0 Flags
+ 1 ... 15-q Nonce N
+ 16-q ... 15 Q
+
+ the Flags field is formatted as follows:
+
+ Bit Number Contents
+ ---------- ----------------------
+ 7 Reserved (always zero)
+ 6 Adata
+ 5 ... 3 (t-2)/2
+ 2 ... 0 [q-1]3
+
+ Table 4. CTRx block
+ Bit Number Register Contents
+ ---------- --------------- -----------
+ 127 ...96 CRYP_IV1R[31:0] B0[127:96], where Q length bits are set to 0, except for
+ bit 0 that is set to 1
+ 95 ...64 CRYP_IV1L[31:0] B0[95:64]
+ 63 ... 32 CRYP_IV0R[31:0] B0[63:32]
+ 31 ... 0 CRYP_IV0L[31:0] B0[31:0], where flag bits set to 0
+
+ @endverbatim
+ ******************************************************************************
+ * @attention
+ *
+ * <h2><center>© Copyright (c) 2016 STMicroelectronics.
+ * All rights reserved.</center></h2>
+ *
+ * This software component is licensed by ST under BSD 3-Clause license,
+ * the "License"; You may not use this file except in compliance with the
+ * License. You may obtain a copy of the License at:
+ * opensource.org/licenses/BSD-3-Clause
+ *
+ ******************************************************************************
+ */
+
+/* Includes ------------------------------------------------------------------*/
+#include "stm32f4xx_hal.h"
+
+/** @addtogroup STM32F4xx_HAL_Driver
+ * @{
+ */
+
+#if defined (AES) || defined (CRYP)
+
+/** @defgroup CRYP CRYP
+ * @brief CRYP HAL module driver.
+ * @{
+ */
+
+
+#ifdef HAL_CRYP_MODULE_ENABLED
+
+/* Private typedef -----------------------------------------------------------*/
+/* Private define ------------------------------------------------------------*/
+/** @addtogroup CRYP_Private_Defines
+ * @{
+ */
+#define CRYP_TIMEOUT_KEYPREPARATION 82U /*The latency of key preparation operation is 82 clock cycles.*/
+#define CRYP_TIMEOUT_GCMCCMINITPHASE 299U /* The latency of GCM/CCM init phase to prepare hash subkey is 299 clock cycles.*/
+#define CRYP_TIMEOUT_GCMCCMHEADERPHASE 290U /* The latency of GCM/CCM header phase is 290 clock cycles.*/
+
+#define CRYP_PHASE_READY 0x00000001U /*!< CRYP peripheral is ready for initialization. */
+#define CRYP_PHASE_PROCESS 0x00000002U /*!< CRYP peripheral is in processing phase */
+
+#if defined(AES)
+#define CRYP_OPERATINGMODE_ENCRYPT 0x00000000U /*!< Encryption mode(Mode 1) */
+#define CRYP_OPERATINGMODE_KEYDERIVATION AES_CR_MODE_0 /*!< Key derivation mode only used when performing ECB and CBC decryptions (Mode 2) */
+#define CRYP_OPERATINGMODE_DECRYPT AES_CR_MODE_1 /*!< Decryption (Mode 3) */
+#define CRYP_OPERATINGMODE_KEYDERIVATION_DECRYPT AES_CR_MODE /*!< Key derivation and decryption only used when performing ECB and CBC decryptions (Mode 4) */
+#define CRYP_PHASE_INIT 0x00000000U /*!< GCM/GMAC (or CCM) init phase */
+#define CRYP_PHASE_HEADER AES_CR_GCMPH_0 /*!< GCM/GMAC or CCM header phase */
+#define CRYP_PHASE_PAYLOAD AES_CR_GCMPH_1 /*!< GCM(/CCM) payload phase */
+#define CRYP_PHASE_FINAL AES_CR_GCMPH /*!< GCM/GMAC or CCM final phase */
+#else /* CRYP */
+#define CRYP_PHASE_INIT 0x00000000U /*!< GCM/GMAC (or CCM) init phase */
+#define CRYP_PHASE_HEADER CRYP_CR_GCM_CCMPH_0 /*!< GCM/GMAC or CCM header phase */
+#define CRYP_PHASE_PAYLOAD CRYP_CR_GCM_CCMPH_1 /*!< GCM(/CCM) payload phase */
+#define CRYP_PHASE_FINAL CRYP_CR_GCM_CCMPH /*!< GCM/GMAC or CCM final phase */
+#define CRYP_OPERATINGMODE_ENCRYPT 0x00000000U /*!< Encryption mode */
+#define CRYP_OPERATINGMODE_DECRYPT CRYP_CR_ALGODIR /*!< Decryption */
+#endif /* End CRYP or AES */
+
+ /* CTR1 information to use in CCM algorithm */
+#define CRYP_CCM_CTR1_0 0x07FFFFFFU
+#define CRYP_CCM_CTR1_1 0xFFFFFF00U
+#define CRYP_CCM_CTR1_2 0x00000001U
+
+
+/**
+ * @}
+ */
+
+
+/* Private macro -------------------------------------------------------------*/
+/** @addtogroup CRYP_Private_Macros
+ * @{
+ */
+
+#if defined(CRYP)
+
+#define CRYP_SET_PHASE(__HANDLE__, __PHASE__) do{(__HANDLE__)->Instance->CR &= (uint32_t)(~CRYP_CR_GCM_CCMPH);\
+ (__HANDLE__)->Instance->CR |= (uint32_t)(__PHASE__);\
+ }while(0)
+
+#define HAL_CRYP_FIFO_FLUSH(__HANDLE__) ((__HANDLE__)->Instance->CR |= CRYP_CR_FFLUSH)
+
+#else /*AES*/
+#define CRYP_SET_PHASE(__HANDLE__, __PHASE__) do{(__HANDLE__)->Instance->CR &= (uint32_t)(~AES_CR_GCMPH);\
+ (__HANDLE__)->Instance->CR |= (uint32_t)(__PHASE__);\
+ }while(0)
+#endif /* End AES or CRYP*/
+
+
+/**
+ * @}
+ */
+
+/* Private struct -------------------------------------------------------------*/
+/* Private variables ---------------------------------------------------------*/
+/* Private function prototypes -----------------------------------------------*/
+/** @addtogroup CRYP_Private_Functions_prototypes
+ * @{
+ */
+
+static void CRYP_SetDMAConfig(CRYP_HandleTypeDef *hcryp, uint32_t inputaddr, uint16_t Size, uint32_t outputaddr);
+static void CRYP_DMAInCplt(DMA_HandleTypeDef *hdma);
+static void CRYP_DMAOutCplt(DMA_HandleTypeDef *hdma);
+static void CRYP_DMAError(DMA_HandleTypeDef *hdma);
+static void CRYP_SetKey(CRYP_HandleTypeDef *hcryp, uint32_t KeySize);
+static void CRYP_AES_IT(CRYP_HandleTypeDef *hcryp);
+#if defined (CRYP_CR_ALGOMODE_AES_GCM)|| defined (AES)
+static HAL_StatusTypeDef CRYP_GCMCCM_SetHeaderPhase(CRYP_HandleTypeDef *hcryp, uint32_t Timeout);
+static void CRYP_GCMCCM_SetPayloadPhase_IT(CRYP_HandleTypeDef *hcryp);
+static void CRYP_GCMCCM_SetHeaderPhase_IT(CRYP_HandleTypeDef *hcryp);
+static HAL_StatusTypeDef CRYP_GCMCCM_SetHeaderPhase_DMA(CRYP_HandleTypeDef *hcryp);
+static void CRYP_Workaround(CRYP_HandleTypeDef *hcryp, uint32_t Timeout);
+static HAL_StatusTypeDef CRYP_AESGCM_Process_DMA(CRYP_HandleTypeDef *hcryp);
+static HAL_StatusTypeDef CRYP_AESGCM_Process_IT (CRYP_HandleTypeDef *hcryp);
+static HAL_StatusTypeDef CRYP_AESGCM_Process(CRYP_HandleTypeDef *hcryp, uint32_t Timeout);
+static HAL_StatusTypeDef CRYP_AESCCM_Process(CRYP_HandleTypeDef *hcryp, uint32_t Timeout);
+static HAL_StatusTypeDef CRYP_AESCCM_Process_IT(CRYP_HandleTypeDef *hcryp);
+static HAL_StatusTypeDef CRYP_AESCCM_Process_DMA(CRYP_HandleTypeDef *hcryp);
+#endif /* AES or GCM CCM defined*/
+static void CRYP_AES_ProcessData(CRYP_HandleTypeDef *hcrypt, uint32_t Timeout);
+static HAL_StatusTypeDef CRYP_AES_Encrypt(CRYP_HandleTypeDef *hcryp, uint32_t Timeout);
+static HAL_StatusTypeDef CRYP_AES_Decrypt(CRYP_HandleTypeDef *hcryp, uint32_t Timeout);
+static HAL_StatusTypeDef CRYP_AES_Decrypt_IT(CRYP_HandleTypeDef *hcryp);
+static HAL_StatusTypeDef CRYP_AES_Encrypt_IT(CRYP_HandleTypeDef *hcryp);
+static HAL_StatusTypeDef CRYP_AES_Decrypt_DMA(CRYP_HandleTypeDef *hcryp);
+#if defined (CRYP)
+static void CRYP_TDES_IT(CRYP_HandleTypeDef *hcryp);
+#if defined (CRYP_CR_ALGOMODE_AES_GCM)
+static HAL_StatusTypeDef CRYP_WaitOnIFEMFlag(CRYP_HandleTypeDef *hcryp, uint32_t Timeout);
+#endif /* GCM CCM defined*/
+static HAL_StatusTypeDef CRYP_WaitOnBUSYFlag(CRYP_HandleTypeDef *hcryp, uint32_t Timeout);
+static HAL_StatusTypeDef CRYP_WaitOnOFNEFlag(CRYP_HandleTypeDef *hcryp, uint32_t Timeout);
+static HAL_StatusTypeDef CRYP_TDES_Process(CRYP_HandleTypeDef *hcryp, uint32_t Timeout);
+#else /*AES*/
+static HAL_StatusTypeDef CRYP_WaitOnCCFlag(CRYP_HandleTypeDef *hcryp, uint32_t Timeout);
+#endif /* End CRYP or AES */
+
+/**
+ * @}
+ */
+
+/* Exported functions ---------------------------------------------------------*/
+
+/** @defgroup CRYP_Exported_Functions CRYP Exported Functions
+ * @{
+ */
+
+
+/** @defgroup CRYP_Exported_Functions_Group1 Initialization and de-initialization functions
+ * @brief Initialization and Configuration functions.
+ *
+@verbatim
+ ========================================================================================
+ ##### Initialization, de-initialization and Set and Get configuration functions #####
+ ========================================================================================
+ [..] This section provides functions allowing to:
+ (+) Initialize the CRYP
+ (+) DeInitialize the CRYP
+ (+) Initialize the CRYP MSP
+ (+) DeInitialize the CRYP MSP
+ (+) configure CRYP (HAL_CRYP_SetConfig) with the specified parameters in the CRYP_ConfigTypeDef
+ Parameters which are configured in This section are :
+ (+) Key size
+ (+) Data Type : 32,16, 8 or 1bit
+ (+) AlgoMode :
+ - for CRYP1 IP :
+ ECB and CBC in DES/TDES Standard
+ ECB,CBC,CTR,GCM/GMAC and CCM in AES Standard.
+ - for TinyAES2 IP, only ECB,CBC,CTR,GCM/GMAC and CCM in AES Standard are supported.
+ (+) Get CRYP configuration (HAL_CRYP_GetConfig) from the specified parameters in the CRYP_HandleTypeDef
+
+
+@endverbatim
+ * @{
+ */
+
+
+/**
+ * @brief Initializes the CRYP according to the specified
+ * parameters in the CRYP_ConfigTypeDef and creates the associated handle.
+ * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
+ * the configuration information for CRYP module
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_CRYP_Init(CRYP_HandleTypeDef *hcryp)
+{
+ /* Check the CRYP handle allocation */
+ if(hcryp == NULL)
+ {
+ return HAL_ERROR;
+ }
+
+ /* Check parameters */
+ assert_param(IS_CRYP_KEYSIZE(hcryp->Init.KeySize));
+ assert_param(IS_CRYP_DATATYPE(hcryp->Init.DataType));
+ assert_param(IS_CRYP_ALGORITHM(hcryp->Init.Algorithm));
+
+ #if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1)
+ if(hcryp->State == HAL_CRYP_STATE_RESET)
+ {
+ /* Allocate lock resource and initialize it */
+ hcryp->Lock = HAL_UNLOCKED;
+
+ hcryp->InCpltCallback = HAL_CRYP_InCpltCallback; /* Legacy weak InCpltCallback */
+ hcryp->OutCpltCallback = HAL_CRYP_OutCpltCallback; /* Legacy weak OutCpltCallback */
+ hcryp->ErrorCallback = HAL_CRYP_ErrorCallback; /* Legacy weak ErrorCallback */
+
+ if(hcryp->MspInitCallback == NULL)
+ {
+ hcryp->MspInitCallback = HAL_CRYP_MspInit; /* Legacy weak MspInit */
+ }
+
+ /* Init the low level hardware */
+ hcryp->MspInitCallback(hcryp);
+ }
+#else
+ if(hcryp->State == HAL_CRYP_STATE_RESET)
+ {
+ /* Allocate lock resource and initialize it */
+ hcryp->Lock = HAL_UNLOCKED;
+
+ /* Init the low level hardware */
+ HAL_CRYP_MspInit(hcryp);
+ }
+ #endif /* (USE_HAL_CRYP_REGISTER_CALLBACKS) */
+
+ /* Set the key size(This bit field is don’t care in the DES or TDES modes) data type and Algorithm */
+#if defined (CRYP)
+
+ MODIFY_REG(hcryp->Instance->CR, CRYP_CR_DATATYPE|CRYP_CR_KEYSIZE|CRYP_CR_ALGOMODE, hcryp->Init.DataType | hcryp->Init.KeySize | hcryp->Init.Algorithm);
+
+#else /*AES*/
+
+ MODIFY_REG(hcryp->Instance->CR, AES_CR_DATATYPE|AES_CR_KEYSIZE|AES_CR_CHMOD, hcryp->Init.DataType | hcryp->Init.KeySize | hcryp->Init.Algorithm);
+
+#endif /* End AES or CRYP*/
+
+ /* Reset Error Code field */
+ hcryp->ErrorCode = HAL_CRYP_ERROR_NONE;
+
+ /* Change the CRYP state */
+ hcryp->State = HAL_CRYP_STATE_READY;
+
+ /* Set the default CRYP phase */
+ hcryp->Phase = CRYP_PHASE_READY;
+
+ /* Return function status */
+ return HAL_OK;
+}
+
+/**
+ * @brief De-Initializes the CRYP peripheral.
+ * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
+ * the configuration information for CRYP module
+ * @retval HAL status
+*/
+HAL_StatusTypeDef HAL_CRYP_DeInit(CRYP_HandleTypeDef *hcryp)
+{
+ /* Check the CRYP handle allocation */
+ if(hcryp == NULL)
+ {
+ return HAL_ERROR;
+ }
+
+ /* Set the default CRYP phase */
+ hcryp->Phase = CRYP_PHASE_READY;
+
+ /* Reset CrypInCount and CrypOutCount */
+ hcryp->CrypInCount = 0;
+ hcryp->CrypOutCount = 0;
+ hcryp->CrypHeaderCount =0;
+
+ /* Disable the CRYP peripheral clock */
+ __HAL_CRYP_DISABLE(hcryp);
+
+#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1)
+
+ if(hcryp->MspDeInitCallback == NULL)
+ {
+ hcryp->MspDeInitCallback = HAL_CRYP_MspDeInit; /* Legacy weak MspDeInit */
+ }
+ /* DeInit the low level hardware */
+ hcryp->MspDeInitCallback(hcryp);
+
+#else
+
+ /* DeInit the low level hardware: CLOCK, NVIC.*/
+ HAL_CRYP_MspDeInit(hcryp);
+
+#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
+
+ /* Change the CRYP state */
+ hcryp->State = HAL_CRYP_STATE_RESET;
+
+ /* Release Lock */
+ __HAL_UNLOCK(hcryp);
+
+ /* Return function status */
+ return HAL_OK;
+}
+
+/**
+ * @brief Configure the CRYP according to the specified
+ * parameters in the CRYP_ConfigTypeDef
+ * @param hcryp: pointer to a CRYP_HandleTypeDef structure
+ * @param pConf: pointer to a CRYP_ConfigTypeDef structure that contains
+ * the configuration information for CRYP module
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_CRYP_SetConfig(CRYP_HandleTypeDef *hcryp, CRYP_ConfigTypeDef *pConf )
+{
+ /* Check the CRYP handle allocation */
+ if((hcryp == NULL)|| (pConf == NULL) )
+ {
+ return HAL_ERROR;
+ }
+
+ /* Check parameters */
+ assert_param(IS_CRYP_KEYSIZE(pConf->KeySize));
+ assert_param(IS_CRYP_DATATYPE(pConf->DataType));
+ assert_param(IS_CRYP_ALGORITHM(pConf->Algorithm));
+
+ if(hcryp->State == HAL_CRYP_STATE_READY)
+ {
+ /* Change the CRYP state */
+ hcryp->State = HAL_CRYP_STATE_BUSY;
+
+ /* Process locked */
+ __HAL_LOCK(hcryp);
+
+ /* Set CRYP parameters */
+ hcryp->Init.DataType = pConf->DataType;
+ hcryp->Init.pKey = pConf->pKey;
+ hcryp->Init.Algorithm = pConf->Algorithm;
+ hcryp->Init.KeySize = pConf->KeySize;
+ hcryp->Init.pInitVect = pConf->pInitVect;
+ hcryp->Init.Header = pConf->Header;
+ hcryp->Init.HeaderSize = pConf->HeaderSize;
+ hcryp->Init.B0 = pConf->B0;
+ hcryp->Init.DataWidthUnit = pConf->DataWidthUnit;
+
+ /* Set the key size(This bit field is don’t care in the DES or TDES modes) data type, AlgoMode and operating mode*/
+#if defined (CRYP)
+
+ MODIFY_REG(hcryp->Instance->CR, CRYP_CR_DATATYPE|CRYP_CR_KEYSIZE|CRYP_CR_ALGOMODE, hcryp->Init.DataType | hcryp->Init.KeySize | hcryp->Init.Algorithm);
+
+#else /*AES*/
+ MODIFY_REG(hcryp->Instance->CR, AES_CR_DATATYPE|AES_CR_KEYSIZE|AES_CR_CHMOD, hcryp->Init.DataType | hcryp->Init.KeySize | hcryp->Init.Algorithm);
+
+ /*clear error flags*/
+ __HAL_CRYP_CLEAR_FLAG(hcryp,CRYP_ERR_CLEAR);
+
+#endif /* End AES or CRYP */
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(hcryp);
+
+ /* Reset Error Code field */
+ hcryp->ErrorCode = HAL_CRYP_ERROR_NONE;
+
+ /* Change the CRYP state */
+ hcryp->State = HAL_CRYP_STATE_READY;
+
+ /* Set the default CRYP phase */
+ hcryp->Phase = CRYP_PHASE_READY;
+
+ /* Return function status */
+ return HAL_OK;
+ }
+ else
+ {
+ /* Process Unlocked */
+ __HAL_UNLOCK(hcryp);
+
+ /* Busy error code field */
+ hcryp->ErrorCode |= HAL_CRYP_ERROR_BUSY;
+ return HAL_ERROR;
+ }
+}
+
+/**
+ * @brief Get CRYP Configuration parameters in associated handle.
+ * @param pConf: pointer to a CRYP_ConfigTypeDef structure
+ * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
+ * the configuration information for CRYP module
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_CRYP_GetConfig(CRYP_HandleTypeDef *hcryp, CRYP_ConfigTypeDef *pConf )
+{
+ /* Check the CRYP handle allocation */
+ if((hcryp == NULL)|| (pConf == NULL) )
+ {
+ return HAL_ERROR;
+ }
+
+ if(hcryp->State == HAL_CRYP_STATE_READY)
+ {
+ /* Change the CRYP state */
+ hcryp->State = HAL_CRYP_STATE_BUSY;
+
+ /* Process locked */
+ __HAL_LOCK(hcryp);
+
+ /* Get CRYP parameters */
+ pConf->DataType = hcryp->Init.DataType;
+ pConf->pKey = hcryp->Init.pKey;
+ pConf->Algorithm = hcryp->Init.Algorithm;
+ pConf->KeySize = hcryp->Init.KeySize ;
+ pConf->pInitVect = hcryp->Init.pInitVect;
+ pConf->Header = hcryp->Init.Header ;
+ pConf->HeaderSize = hcryp->Init.HeaderSize;
+ pConf->B0 = hcryp->Init.B0;
+ pConf->DataWidthUnit = hcryp->Init.DataWidthUnit;
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(hcryp);
+
+ /* Change the CRYP state */
+ hcryp->State = HAL_CRYP_STATE_READY;
+
+ /* Return function status */
+ return HAL_OK;
+ }
+ else
+ {
+ /* Process Unlocked */
+ __HAL_UNLOCK(hcryp);
+
+ /* Busy error code field */
+ hcryp->ErrorCode |= HAL_CRYP_ERROR_BUSY;
+ return HAL_ERROR;
+ }
+}
+/**
+ * @brief Initializes the CRYP MSP.
+ * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
+ * the configuration information for CRYP module
+ * @retval None
+ */
+__weak void HAL_CRYP_MspInit(CRYP_HandleTypeDef *hcryp)
+{
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(hcryp);
+
+ /* NOTE : This function Should not be modified, when the callback is needed,
+ the HAL_CRYP_MspInit could be implemented in the user file
+ */
+}
+
+/**
+ * @brief DeInitializes CRYP MSP.
+ * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
+ * the configuration information for CRYP module
+ * @retval None
+ */
+__weak void HAL_CRYP_MspDeInit(CRYP_HandleTypeDef *hcryp)
+{
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(hcryp);
+
+ /* NOTE : This function Should not be modified, when the callback is needed,
+ the HAL_CRYP_MspDeInit could be implemented in the user file
+ */
+}
+
+#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1)
+/**
+ * @brief Register a User CRYP Callback
+ * To be used instead of the weak predefined callback
+ * @param hcryp cryp handle
+ * @param CallbackID ID of the callback to be registered
+ * This parameter can be one of the following values:
+ * @arg @ref HAL_CRYP_INPUT_COMPLETE_CB_ID Input FIFO transfer completed callback ID
+ * @arg @ref HAL_CRYP_OUTPUT_COMPLETE_CB_ID Output FIFO transfer completed callback ID
+ * @arg @ref HAL_CRYP_ERROR_CB_ID Error callback ID
+ * @arg @ref HAL_CRYP_MSPINIT_CB_ID MspInit callback ID
+ * @arg @ref HAL_CRYP_MSPDEINIT_CB_ID MspDeInit callback ID
+ * @param pCallback pointer to the Callback function
+ * @retval status
+ */
+HAL_StatusTypeDef HAL_CRYP_RegisterCallback(CRYP_HandleTypeDef *hcryp, HAL_CRYP_CallbackIDTypeDef CallbackID, pCRYP_CallbackTypeDef pCallback)
+{
+ HAL_StatusTypeDef status = HAL_OK;
+
+ if(pCallback == NULL)
+ {
+ /* Update the error code */
+ hcryp->ErrorCode |= HAL_CRYP_ERROR_INVALID_CALLBACK;
+
+ return HAL_ERROR;
+ }
+ /* Process locked */
+ __HAL_LOCK(hcryp);
+
+ if(hcryp->State == HAL_CRYP_STATE_READY)
+ {
+ switch (CallbackID)
+ {
+ case HAL_CRYP_INPUT_COMPLETE_CB_ID :
+ hcryp->InCpltCallback = pCallback;
+ break;
+
+ case HAL_CRYP_OUTPUT_COMPLETE_CB_ID :
+ hcryp->OutCpltCallback = pCallback;
+ break;
+
+ case HAL_CRYP_ERROR_CB_ID :
+ hcryp->ErrorCallback = pCallback;
+ break;
+
+ case HAL_CRYP_MSPINIT_CB_ID :
+ hcryp->MspInitCallback = pCallback;
+ break;
+
+ case HAL_CRYP_MSPDEINIT_CB_ID :
+ hcryp->MspDeInitCallback = pCallback;
+ break;
+
+ default :
+ /* Update the error code */
+ hcryp->ErrorCode |= HAL_CRYP_ERROR_INVALID_CALLBACK;
+ /* Return error status */
+ status = HAL_ERROR;
+ break;
+ }
+ }
+ else if(hcryp->State == HAL_CRYP_STATE_RESET)
+ {
+ switch (CallbackID)
+ {
+ case HAL_CRYP_MSPINIT_CB_ID :
+ hcryp->MspInitCallback = pCallback;
+ break;
+
+ case HAL_CRYP_MSPDEINIT_CB_ID :
+ hcryp->MspDeInitCallback = pCallback;
+ break;
+
+ default :
+ /* Update the error code */
+ hcryp->ErrorCode |= HAL_CRYP_ERROR_INVALID_CALLBACK;
+ /* Return error status */
+ status = HAL_ERROR;
+ break;
+ }
+ }
+ else
+ {
+ /* Update the error code */
+ hcryp->ErrorCode |= HAL_CRYP_ERROR_INVALID_CALLBACK;
+ /* Return error status */
+ status = HAL_ERROR;
+ }
+
+ /* Release Lock */
+ __HAL_UNLOCK(hcryp);
+
+ return status;
+}
+
+/**
+ * @brief Unregister an CRYP Callback
+ * CRYP callback is redirected to the weak predefined callback
+ * @param hcryp cryp handle
+ * @param CallbackID ID of the callback to be unregistered
+ * This parameter can be one of the following values:
+ * @arg @ref HAL_CRYP_INPUT_COMPLETE_CB_ID Input FIFO transfer completed callback ID
+ * @arg @ref HAL_CRYP_OUTPUT_COMPLETE_CB_ID Output FIFO transfer completed callback ID
+ * @arg @ref HAL_CRYP_ERROR_CB_ID Error callback ID
+ * @arg @ref HAL_CRYP_MSPINIT_CB_ID MspInit callback ID
+ * @arg @ref HAL_CRYP_MSPDEINIT_CB_ID MspDeInit callback ID
+ * @retval status
+ */
+HAL_StatusTypeDef HAL_CRYP_UnRegisterCallback(CRYP_HandleTypeDef *hcryp, HAL_CRYP_CallbackIDTypeDef CallbackID)
+{
+ HAL_StatusTypeDef status = HAL_OK;
+
+ /* Process locked */
+ __HAL_LOCK(hcryp);
+
+ if(hcryp->State == HAL_CRYP_STATE_READY)
+ {
+ switch (CallbackID)
+ {
+ case HAL_CRYP_INPUT_COMPLETE_CB_ID :
+ hcryp->InCpltCallback = HAL_CRYP_InCpltCallback; /* Legacy weak InCpltCallback */
+ break;
+
+ case HAL_CRYP_OUTPUT_COMPLETE_CB_ID :
+ hcryp->OutCpltCallback = HAL_CRYP_OutCpltCallback; /* Legacy weak OutCpltCallback */
+ break;
+
+ case HAL_CRYP_ERROR_CB_ID :
+ hcryp->ErrorCallback = HAL_CRYP_ErrorCallback; /* Legacy weak ErrorCallback */
+ break;
+
+ case HAL_CRYP_MSPINIT_CB_ID :
+ hcryp->MspInitCallback = HAL_CRYP_MspInit;
+ break;
+
+ case HAL_CRYP_MSPDEINIT_CB_ID :
+ hcryp->MspDeInitCallback = HAL_CRYP_MspDeInit;
+ break;
+
+ default :
+ /* Update the error code */
+ hcryp->ErrorCode |= HAL_CRYP_ERROR_INVALID_CALLBACK;
+ /* Return error status */
+ status = HAL_ERROR;
+ break;
+ }
+ }
+ else if(hcryp->State == HAL_CRYP_STATE_RESET)
+ {
+ switch (CallbackID)
+ {
+ case HAL_CRYP_MSPINIT_CB_ID :
+ hcryp->MspInitCallback = HAL_CRYP_MspInit;
+ break;
+
+ case HAL_CRYP_MSPDEINIT_CB_ID :
+ hcryp->MspDeInitCallback = HAL_CRYP_MspDeInit;
+ break;
+
+ default :
+ /* Update the error code */
+ hcryp->ErrorCode |= HAL_CRYP_ERROR_INVALID_CALLBACK;
+ /* Return error status */
+ status = HAL_ERROR;
+ break;
+ }
+ }
+ else
+ {
+ /* Update the error code */
+ hcryp->ErrorCode |= HAL_CRYP_ERROR_INVALID_CALLBACK;
+ /* Return error status */
+ status = HAL_ERROR;
+ }
+
+ /* Release Lock */
+ __HAL_UNLOCK(hcryp);
+
+ return status;
+}
+#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
+/**
+ * @}
+ */
+
+/** @defgroup CRYP_Exported_Functions_Group2 Encrypt Decrypt functions
+ * @brief processing functions.
+ *
+@verbatim
+ ==============================================================================
+ ##### Encrypt Decrypt functions #####
+ ==============================================================================
+ [..] This section provides API allowing to Encrypt/Decrypt Data following
+ Standard DES/TDES or AES, and Algorithm configured by the user:
+ (+) Standard DES/TDES only supported by CRYP1 IP, below list of Algorithm supported :
+ - Electronic Code Book(ECB)
+ - Cipher Block Chaining (CBC)
+ (+) Standard AES supported by CRYP1 IP & TinyAES, list of Algorithm supported:
+ - Electronic Code Book(ECB)
+ - Cipher Block Chaining (CBC)
+ - Counter mode (CTR)
+ - Cipher Block Chaining (CBC)
+ - Counter mode (CTR)
+ - Galois/counter mode (GCM)
+ - Counter with Cipher Block Chaining-Message(CCM)
+ [..] Three processing functions are available:
+ (+) Polling mode : HAL_CRYP_Encrypt & HAL_CRYP_Decrypt
+ (+) Interrupt mode : HAL_CRYP_Encrypt_IT & HAL_CRYP_Decrypt_IT
+ (+) DMA mode : HAL_CRYP_Encrypt_DMA & HAL_CRYP_Decrypt_DMA
+
+@endverbatim
+ * @{
+ */
+
+
+/**
+ * @brief Encryption mode.
+ * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
+ * the configuration information for CRYP module
+ * @param Input: Pointer to the input buffer (plaintext)
+ * @param Size: Length of the plaintext buffer in word.
+ * @param Output: Pointer to the output buffer(ciphertext)
+ * @param Timeout: Specify Timeout value
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_CRYP_Encrypt(CRYP_HandleTypeDef *hcryp, uint32_t *Input, uint16_t Size, uint32_t *Output, uint32_t Timeout)
+{
+ uint32_t algo;
+ HAL_StatusTypeDef status;
+
+ if(hcryp->State == HAL_CRYP_STATE_READY)
+ {
+ /* Change state Busy */
+ hcryp->State = HAL_CRYP_STATE_BUSY;
+
+ /* Process locked */
+ __HAL_LOCK(hcryp);
+
+ /* Reset CrypInCount, CrypOutCount and Initialize pCrypInBuffPtr and pCrypOutBuffPtr parameters*/
+ hcryp->CrypInCount = 0U;
+ hcryp->CrypOutCount = 0U;
+ hcryp->pCrypInBuffPtr = Input;
+ hcryp->pCrypOutBuffPtr = Output;
+
+ /* Calculate Size parameter in Byte*/
+ if (hcryp->Init.DataWidthUnit == CRYP_DATAWIDTHUNIT_WORD)
+ {
+ hcryp->Size = Size * 4U;
+ }
+ else
+ {
+ hcryp->Size = Size;
+ }
+
+#if defined (CRYP)
+ /* Set Encryption operating mode*/
+ MODIFY_REG(hcryp->Instance->CR, CRYP_CR_ALGODIR, CRYP_OPERATINGMODE_ENCRYPT);
+
+ /* algo get algorithm selected */
+ algo = hcryp->Instance->CR & CRYP_CR_ALGOMODE;
+
+ switch(algo)
+ {
+ case CRYP_DES_ECB:
+ case CRYP_DES_CBC:
+ case CRYP_TDES_ECB:
+ case CRYP_TDES_CBC:
+
+ /*Set Key */
+ hcryp->Instance->K1LR = *(uint32_t*)(hcryp->Init.pKey);
+ hcryp->Instance->K1RR = *(uint32_t*)(hcryp->Init.pKey+1);
+ if ((hcryp->Init.Algorithm == CRYP_TDES_ECB) || (hcryp->Init.Algorithm == CRYP_TDES_CBC))
+ {
+ hcryp->Instance->K2LR = *(uint32_t*)(hcryp->Init.pKey+2);
+ hcryp->Instance->K2RR = *(uint32_t*)(hcryp->Init.pKey+3);
+ hcryp->Instance->K3LR = *(uint32_t*)(hcryp->Init.pKey+4);
+ hcryp->Instance->K3RR = *(uint32_t*)(hcryp->Init.pKey+5);
+ }
+
+ /*Set Initialization Vector (IV)*/
+ if ((hcryp->Init.Algorithm == CRYP_DES_CBC) || (hcryp->Init.Algorithm == CRYP_TDES_CBC))
+ {
+ hcryp->Instance->IV0LR = *(uint32_t*)(hcryp->Init.pInitVect);
+ hcryp->Instance->IV0RR = *(uint32_t*)(hcryp->Init.pInitVect+1);
+ }
+
+ /* Flush FIFO */
+ HAL_CRYP_FIFO_FLUSH(hcryp);
+
+ /* Set the phase */
+ hcryp->Phase = CRYP_PHASE_PROCESS;
+
+ /* Statrt DES/TDES encryption process */
+ status = CRYP_TDES_Process(hcryp,Timeout);
+ break;
+
+ case CRYP_AES_ECB:
+ case CRYP_AES_CBC:
+ case CRYP_AES_CTR:
+
+ /* AES encryption */
+ status = CRYP_AES_Encrypt(hcryp, Timeout);
+ break;
+#if defined (CRYP_CR_ALGOMODE_AES_GCM)
+ case CRYP_AES_GCM:
+
+ /* AES GCM encryption */
+ status = CRYP_AESGCM_Process(hcryp, Timeout);
+
+ break;
+
+ case CRYP_AES_CCM:
+
+ /* AES CCM encryption */
+ status = CRYP_AESCCM_Process(hcryp,Timeout);
+ break;
+#endif /* GCM CCM defined*/
+ default:
+ hcryp->ErrorCode |= HAL_CRYP_ERROR_NOT_SUPPORTED;
+ return HAL_ERROR;
+ }
+
+#else /*AES*/
+
+ /* Set the operating mode*/
+ MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_ENCRYPT);
+
+ /* algo get algorithm selected */
+ algo = hcryp->Instance->CR & AES_CR_CHMOD;
+
+ switch(algo)
+ {
+
+ case CRYP_AES_ECB:
+ case CRYP_AES_CBC:
+ case CRYP_AES_CTR:
+
+ /* AES encryption */
+ status = CRYP_AES_Encrypt(hcryp, Timeout);
+ break;
+
+ case CRYP_AES_GCM_GMAC:
+
+ /* AES GCM encryption */
+ status = CRYP_AESGCM_Process (hcryp,Timeout) ;
+ break;
+
+ case CRYP_AES_CCM:
+
+ /* AES CCM encryption */
+ status = CRYP_AESCCM_Process(hcryp,Timeout);
+ break;
+
+ default:
+ hcryp->ErrorCode |= HAL_CRYP_ERROR_NOT_SUPPORTED;
+ return HAL_ERROR;
+ }
+#endif /*end AES or CRYP */
+
+ if (status == HAL_OK)
+ {
+ /* Change the CRYP peripheral state */
+ hcryp->State = HAL_CRYP_STATE_READY;
+
+ /* Process unlocked */
+ __HAL_UNLOCK(hcryp);
+ }
+ }
+ else
+ {
+ /* Busy error code field */
+ hcryp->ErrorCode |= HAL_CRYP_ERROR_BUSY;
+ return HAL_ERROR;
+ }
+
+ /* Return function status */
+ return HAL_OK;
+}
+
+/**
+ * @brief Decryption mode.
+ * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
+ * the configuration information for CRYP module
+ * @param Input: Pointer to the input buffer (ciphertext )
+ * @param Size: Length of the plaintext buffer in word.
+ * @param Output: Pointer to the output buffer(plaintext)
+ * @param Timeout: Specify Timeout value
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_CRYP_Decrypt(CRYP_HandleTypeDef *hcryp, uint32_t *Input, uint16_t Size, uint32_t *Output, uint32_t Timeout)
+{
+ HAL_StatusTypeDef status;
+ uint32_t algo;
+
+ if(hcryp->State == HAL_CRYP_STATE_READY)
+ {
+ /* Change state Busy */
+ hcryp->State = HAL_CRYP_STATE_BUSY;
+
+ /* Process locked */
+ __HAL_LOCK(hcryp);
+
+ /* Reset CrypInCount, CrypOutCount and Initialize pCrypInBuffPtr and pCrypOutBuffPtr parameters*/
+ hcryp->CrypInCount = 0U;
+ hcryp->CrypOutCount = 0U;
+ hcryp->pCrypInBuffPtr = Input;
+ hcryp->pCrypOutBuffPtr = Output;
+
+ /* Calculate Size parameter in Byte*/
+ if (hcryp->Init.DataWidthUnit == CRYP_DATAWIDTHUNIT_WORD)
+ {
+ hcryp->Size = Size * 4U;
+ }
+ else
+ {
+ hcryp->Size = Size;
+ }
+
+#if defined (CRYP)
+
+ /* Set Decryption operating mode*/
+ MODIFY_REG(hcryp->Instance->CR, CRYP_CR_ALGODIR, CRYP_OPERATINGMODE_DECRYPT);
+
+ /* algo get algorithm selected */
+ algo = hcryp->Instance->CR & CRYP_CR_ALGOMODE;
+
+ switch(algo)
+ {
+ case CRYP_DES_ECB:
+ case CRYP_DES_CBC:
+ case CRYP_TDES_ECB:
+ case CRYP_TDES_CBC:
+
+ /*Set Key */
+ hcryp->Instance->K1LR = *(uint32_t*)(hcryp->Init.pKey);
+ hcryp->Instance->K1RR = *(uint32_t*)(hcryp->Init.pKey+1);
+ if ((hcryp->Init.Algorithm == CRYP_TDES_ECB) || (hcryp->Init.Algorithm == CRYP_TDES_CBC))
+ {
+ hcryp->Instance->K2LR = *(uint32_t*)(hcryp->Init.pKey+2);
+ hcryp->Instance->K2RR = *(uint32_t*)(hcryp->Init.pKey+3);
+ hcryp->Instance->K3LR = *(uint32_t*)(hcryp->Init.pKey+4);
+ hcryp->Instance->K3RR = *(uint32_t*)(hcryp->Init.pKey+5);
+ }
+
+ /*Set Initialization Vector (IV)*/
+ if ((hcryp->Init.Algorithm == CRYP_DES_CBC) || (hcryp->Init.Algorithm == CRYP_TDES_CBC))
+ {
+ hcryp->Instance->IV0LR = *(uint32_t*)(hcryp->Init.pInitVect);
+ hcryp->Instance->IV0RR = *(uint32_t*)(hcryp->Init.pInitVect+1);
+ }
+
+ /* Flush FIFO */
+ HAL_CRYP_FIFO_FLUSH(hcryp);
+
+ /* Set the phase */
+ hcryp->Phase = CRYP_PHASE_PROCESS;
+
+ /* Start DES/TDES decryption process */
+ status = CRYP_TDES_Process(hcryp, Timeout);
+
+ break;
+
+ case CRYP_AES_ECB:
+ case CRYP_AES_CBC:
+ case CRYP_AES_CTR:
+
+ /* AES decryption */
+ status = CRYP_AES_Decrypt(hcryp, Timeout);
+ break;
+#if defined (CRYP_CR_ALGOMODE_AES_GCM)
+ case CRYP_AES_GCM:
+
+ /* AES GCM decryption */
+ status = CRYP_AESGCM_Process (hcryp, Timeout) ;
+ break;
+
+ case CRYP_AES_CCM:
+
+ /* AES CCM decryption */
+ status = CRYP_AESCCM_Process(hcryp, Timeout);
+ break;
+#endif /* GCM CCM defined*/
+ default:
+ hcryp->ErrorCode |= HAL_CRYP_ERROR_NOT_SUPPORTED;
+ return HAL_ERROR;
+ }
+
+#else /*AES*/
+
+ /* Set Decryption operating mode*/
+ MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_DECRYPT);
+
+ /* algo get algorithm selected */
+ algo = hcryp->Instance->CR & AES_CR_CHMOD;
+
+ switch(algo)
+ {
+
+ case CRYP_AES_ECB:
+ case CRYP_AES_CBC:
+ case CRYP_AES_CTR:
+
+ /* AES decryption */
+ status = CRYP_AES_Decrypt(hcryp, Timeout);
+ break;
+
+ case CRYP_AES_GCM_GMAC:
+
+ /* AES GCM decryption */
+ status = CRYP_AESGCM_Process (hcryp, Timeout) ;
+ break;
+
+ case CRYP_AES_CCM:
+
+ /* AES CCM decryption */
+ status = CRYP_AESCCM_Process(hcryp, Timeout);
+ break;
+
+ default:
+ hcryp->ErrorCode |= HAL_CRYP_ERROR_NOT_SUPPORTED;
+ return HAL_ERROR;
+ }
+#endif /* End AES or CRYP */
+
+ if (status == HAL_OK)
+ {
+ /* Change the CRYP peripheral state */
+ hcryp->State = HAL_CRYP_STATE_READY;
+
+ /* Process unlocked */
+ __HAL_UNLOCK(hcryp);
+ }
+ }
+ else
+ {
+ /* Busy error code field */
+ hcryp->ErrorCode |= HAL_CRYP_ERROR_BUSY;
+ return HAL_ERROR;
+ }
+
+ /* Return function status */
+ return HAL_OK;
+}
+
+/**
+ * @brief Encryption in interrupt mode.
+ * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
+ * the configuration information for CRYP module
+ * @param Input: Pointer to the input buffer (plaintext)
+ * @param Size: Length of the plaintext buffer in word
+ * @param Output: Pointer to the output buffer(ciphertext)
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_CRYP_Encrypt_IT(CRYP_HandleTypeDef *hcryp, uint32_t *Input, uint16_t Size, uint32_t *Output)
+{
+ uint32_t algo;
+ HAL_StatusTypeDef status = HAL_OK;
+
+ if(hcryp->State == HAL_CRYP_STATE_READY)
+ {
+ /* Change state Busy */
+ hcryp->State = HAL_CRYP_STATE_BUSY;
+
+ /* Process locked */
+ __HAL_LOCK(hcryp);
+
+ /* Reset CrypInCount, CrypOutCount and Initialize pCrypInBuffPtr and pCrypOutBuffPtr parameters*/
+ hcryp->CrypInCount = 0U;
+ hcryp->CrypOutCount = 0U;
+ hcryp->pCrypInBuffPtr = Input;
+ hcryp->pCrypOutBuffPtr = Output;
+
+ /* Calculate Size parameter in Byte*/
+ if (hcryp->Init.DataWidthUnit == CRYP_DATAWIDTHUNIT_WORD)
+ {
+ hcryp->Size = Size * 4U;
+ }
+ else
+ {
+ hcryp->Size = Size;
+ }
+
+#if defined (CRYP)
+
+ /* Set encryption operating mode*/
+ MODIFY_REG(hcryp->Instance->CR, CRYP_CR_ALGODIR, CRYP_OPERATINGMODE_ENCRYPT);
+
+ /* algo get algorithm selected */
+ algo = (hcryp->Instance->CR & CRYP_CR_ALGOMODE);
+
+ switch(algo)
+ {
+ case CRYP_DES_ECB:
+ case CRYP_DES_CBC:
+ case CRYP_TDES_ECB:
+ case CRYP_TDES_CBC:
+
+ /*Set Key */
+ hcryp->Instance->K1LR = *(uint32_t*)(hcryp->Init.pKey);
+ hcryp->Instance->K1RR = *(uint32_t*)(hcryp->Init.pKey+1);
+ if ((hcryp->Init.Algorithm == CRYP_TDES_ECB) || (hcryp->Init.Algorithm == CRYP_TDES_CBC))
+ {
+ hcryp->Instance->K2LR = *(uint32_t*)(hcryp->Init.pKey+2);
+ hcryp->Instance->K2RR = *(uint32_t*)(hcryp->Init.pKey+3);
+ hcryp->Instance->K3LR = *(uint32_t*)(hcryp->Init.pKey+4);
+ hcryp->Instance->K3RR = *(uint32_t*)(hcryp->Init.pKey+5);
+ }
+ /* Set the Initialization Vector*/
+ if ((hcryp->Init.Algorithm == CRYP_DES_CBC) || (hcryp->Init.Algorithm == CRYP_TDES_CBC))
+ {
+ hcryp->Instance->IV0LR = *(uint32_t*)(hcryp->Init.pInitVect);
+ hcryp->Instance->IV0RR = *(uint32_t*)(hcryp->Init.pInitVect+1);
+ }
+
+ /* Flush FIFO */
+ HAL_CRYP_FIFO_FLUSH(hcryp);
+
+ /* Set the phase */
+ hcryp->Phase = CRYP_PHASE_PROCESS;
+
+ /* Enable interrupts */
+ __HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_INI | CRYP_IT_OUTI);
+
+ /* Enable CRYP to start DES/TDES process*/
+ __HAL_CRYP_ENABLE(hcryp);
+ break;
+
+ case CRYP_AES_ECB:
+ case CRYP_AES_CBC:
+ case CRYP_AES_CTR:
+
+ status = CRYP_AES_Encrypt_IT(hcryp);
+ break;
+#if defined (CRYP_CR_ALGOMODE_AES_GCM)
+ case CRYP_AES_GCM:
+
+ status = CRYP_AESGCM_Process_IT (hcryp) ;
+ break;
+
+ case CRYP_AES_CCM:
+
+ status = CRYP_AESCCM_Process_IT(hcryp);
+ break;
+#endif /* GCM CCM defined*/
+ default:
+ hcryp->ErrorCode |= HAL_CRYP_ERROR_NOT_SUPPORTED;
+ status = HAL_ERROR;
+ break;
+ }
+
+#else /* AES */
+
+ /* Set encryption operating mode*/
+ MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_ENCRYPT);
+
+ /* algo get algorithm selected */
+ algo = hcryp->Instance->CR & AES_CR_CHMOD;
+
+ switch(algo)
+ {
+ case CRYP_AES_ECB:
+ case CRYP_AES_CBC:
+ case CRYP_AES_CTR:
+
+ /* AES encryption */
+ status = CRYP_AES_Encrypt_IT(hcryp);
+ break;
+
+ case CRYP_AES_GCM_GMAC:
+
+ /* AES GCM encryption */
+ status = CRYP_AESGCM_Process_IT (hcryp) ;
+ break;
+
+ case CRYP_AES_CCM:
+
+ /* AES CCM encryption */
+ status = CRYP_AESCCM_Process_IT(hcryp);
+ break;
+
+ default:
+ hcryp->ErrorCode |= HAL_CRYP_ERROR_NOT_SUPPORTED;
+ status = HAL_ERROR;
+ break;
+ }
+#endif /*end AES or CRYP*/
+
+ }
+ else
+ {
+ /* Busy error code field */
+ hcryp->ErrorCode |= HAL_CRYP_ERROR_BUSY;
+ status = HAL_ERROR;
+ }
+
+ /* Return function status */
+ return status;
+}
+
+/**
+ * @brief Decryption in itnterrupt mode.
+ * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
+ * the configuration information for CRYP module
+ * @param Input: Pointer to the input buffer (ciphertext )
+ * @param Size: Length of the plaintext buffer in word.
+ * @param Output: Pointer to the output buffer(plaintext)
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_CRYP_Decrypt_IT(CRYP_HandleTypeDef *hcryp, uint32_t *Input, uint16_t Size, uint32_t *Output)
+{
+ uint32_t algo;
+ HAL_StatusTypeDef status = HAL_OK;
+
+ if(hcryp->State == HAL_CRYP_STATE_READY)
+ {
+ /* Change state Busy */
+ hcryp->State = HAL_CRYP_STATE_BUSY;
+
+ /* Process locked */
+ __HAL_LOCK(hcryp);
+
+ /* Reset CrypInCount, CrypOutCount and Initialize pCrypInBuffPtr and pCrypOutBuffPtr parameters*/
+ hcryp->CrypInCount = 0U;
+ hcryp->CrypOutCount = 0U;
+ hcryp->pCrypInBuffPtr = Input;
+ hcryp->pCrypOutBuffPtr = Output;
+
+ /* Calculate Size parameter in Byte*/
+ if (hcryp->Init.DataWidthUnit == CRYP_DATAWIDTHUNIT_WORD)
+ {
+ hcryp->Size = Size * 4U;
+ }
+ else
+ {
+ hcryp->Size = Size;
+ }
+
+#if defined (CRYP)
+
+ /* Set decryption operating mode*/
+ MODIFY_REG(hcryp->Instance->CR, CRYP_CR_ALGODIR,CRYP_OPERATINGMODE_DECRYPT);
+
+ /* algo get algorithm selected */
+ algo = hcryp->Instance->CR & CRYP_CR_ALGOMODE;
+
+ switch(algo)
+ {
+ case CRYP_DES_ECB:
+ case CRYP_DES_CBC:
+ case CRYP_TDES_ECB:
+ case CRYP_TDES_CBC:
+
+ /*Set Key */
+ hcryp->Instance->K1LR = *(uint32_t*)(hcryp->Init.pKey);
+ hcryp->Instance->K1RR = *(uint32_t*)(hcryp->Init.pKey+1);
+ if ((hcryp->Init.Algorithm == CRYP_TDES_ECB) || (hcryp->Init.Algorithm == CRYP_TDES_CBC))
+ {
+ hcryp->Instance->K2LR = *(uint32_t*)(hcryp->Init.pKey+2);
+ hcryp->Instance->K2RR = *(uint32_t*)(hcryp->Init.pKey+3);
+ hcryp->Instance->K3LR = *(uint32_t*)(hcryp->Init.pKey+4);
+ hcryp->Instance->K3RR = *(uint32_t*)(hcryp->Init.pKey+5);
+ }
+
+ /* Set the Initialization Vector*/
+ if ((hcryp->Init.Algorithm == CRYP_DES_CBC) || (hcryp->Init.Algorithm == CRYP_TDES_CBC))
+ {
+ hcryp->Instance->IV0LR = *(uint32_t*)(hcryp->Init.pInitVect);
+ hcryp->Instance->IV0RR = *(uint32_t*)(hcryp->Init.pInitVect+1);
+ }
+ /* Flush FIFO */
+ HAL_CRYP_FIFO_FLUSH(hcryp);
+
+ /* Set the phase */
+ hcryp->Phase = CRYP_PHASE_PROCESS;
+
+ /* Enable interrupts */
+ __HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_INI | CRYP_IT_OUTI);
+
+ /* Enable CRYP and start DES/TDES process*/
+ __HAL_CRYP_ENABLE(hcryp);
+
+ break;
+
+ case CRYP_AES_ECB:
+ case CRYP_AES_CBC:
+ case CRYP_AES_CTR:
+
+ /* AES decryption */
+ status = CRYP_AES_Decrypt_IT(hcryp);
+ break;
+#if defined (CRYP_CR_ALGOMODE_AES_GCM)
+ case CRYP_AES_GCM:
+
+ /* AES GCM decryption */
+ status = CRYP_AESGCM_Process_IT (hcryp) ;
+ break;
+
+ case CRYP_AES_CCM:
+
+ /* AES CCMdecryption */
+ status = CRYP_AESCCM_Process_IT(hcryp);
+ break;
+#endif /* GCM CCM defined*/
+ default:
+ hcryp->ErrorCode |= HAL_CRYP_ERROR_NOT_SUPPORTED;
+ status = HAL_ERROR;
+ break;
+ }
+
+#else /*AES*/
+
+ /* Set decryption operating mode*/
+ MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_DECRYPT);
+
+ /* algo get algorithm selected */
+ algo = hcryp->Instance->CR & AES_CR_CHMOD;
+
+ switch(algo)
+ {
+ case CRYP_AES_ECB:
+ case CRYP_AES_CBC:
+ case CRYP_AES_CTR:
+
+ /* AES decryption */
+ status = CRYP_AES_Decrypt_IT(hcryp);
+ break;
+
+ case CRYP_AES_GCM_GMAC:
+
+ /* AES GCM decryption */
+ status = CRYP_AESGCM_Process_IT (hcryp) ;
+ break;
+
+ case CRYP_AES_CCM:
+
+ /* AES CCM decryption */
+ status = CRYP_AESCCM_Process_IT(hcryp);
+ break;
+
+ default:
+ hcryp->ErrorCode |= HAL_CRYP_ERROR_NOT_SUPPORTED;
+ status = HAL_ERROR;
+ break;
+ }
+#endif /* End AES or CRYP */
+
+ }
+ else
+ {
+ /* Busy error code field */
+ hcryp->ErrorCode |= HAL_CRYP_ERROR_BUSY;
+ status = HAL_ERROR;
+ }
+
+ /* Return function status */
+ return status;
+}
+
+/**
+ * @brief Encryption in DMA mode.
+ * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
+ * the configuration information for CRYP module
+ * @param Input: Pointer to the input buffer (plaintext)
+ * @param Size: Length of the plaintext buffer in word.
+ * @param Output: Pointer to the output buffer(ciphertext)
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_CRYP_Encrypt_DMA(CRYP_HandleTypeDef *hcryp, uint32_t *Input, uint16_t Size, uint32_t *Output)
+{
+ uint32_t algo;
+ HAL_StatusTypeDef status = HAL_OK;
+
+ if(hcryp->State == HAL_CRYP_STATE_READY)
+ {
+ /* Change state Busy */
+ hcryp->State = HAL_CRYP_STATE_BUSY;
+
+ /* Process locked */
+ __HAL_LOCK(hcryp);
+
+ /* Reset CrypInCount, CrypOutCount and Initialize pCrypInBuffPtr and pCrypOutBuffPtr parameters*/
+ hcryp->CrypInCount = 0U;
+ hcryp->CrypOutCount = 0U;
+ hcryp->pCrypInBuffPtr = Input;
+ hcryp->pCrypOutBuffPtr = Output;
+
+ /* Calculate Size parameter in Byte*/
+ if (hcryp->Init.DataWidthUnit == CRYP_DATAWIDTHUNIT_WORD)
+ {
+ hcryp->Size = Size * 4U;
+ }
+ else
+ {
+ hcryp->Size = Size;
+ }
+
+#if defined (CRYP)
+
+ /* Set encryption operating mode*/
+ MODIFY_REG(hcryp->Instance->CR, CRYP_CR_ALGODIR, CRYP_OPERATINGMODE_ENCRYPT);
+
+ /* algo get algorithm selected */
+ algo = hcryp->Instance->CR & CRYP_CR_ALGOMODE;
+
+ switch(algo)
+ {
+ case CRYP_DES_ECB:
+ case CRYP_DES_CBC:
+ case CRYP_TDES_ECB:
+ case CRYP_TDES_CBC:
+
+ /*Set Key */
+ hcryp->Instance->K1LR = *(uint32_t*)(hcryp->Init.pKey);
+ hcryp->Instance->K1RR = *(uint32_t*)(hcryp->Init.pKey+1);
+ if ((hcryp->Init.Algorithm == CRYP_TDES_ECB) || (hcryp->Init.Algorithm == CRYP_TDES_CBC))
+ {
+ hcryp->Instance->K2LR = *(uint32_t*)(hcryp->Init.pKey+2);
+ hcryp->Instance->K2RR = *(uint32_t*)(hcryp->Init.pKey+3);
+ hcryp->Instance->K3LR = *(uint32_t*)(hcryp->Init.pKey+4);
+ hcryp->Instance->K3RR = *(uint32_t*)(hcryp->Init.pKey+5);
+ }
+
+ /* Set the Initialization Vector*/
+ if ((hcryp->Init.Algorithm == CRYP_DES_CBC) || (hcryp->Init.Algorithm == CRYP_TDES_CBC))
+ {
+ hcryp->Instance->IV0LR = *(uint32_t*)(hcryp->Init.pInitVect);
+ hcryp->Instance->IV0RR = *(uint32_t*)(hcryp->Init.pInitVect+1);
+ }
+
+ /* Flush FIFO */
+ HAL_CRYP_FIFO_FLUSH(hcryp);
+
+ /* Set the phase */
+ hcryp->Phase = CRYP_PHASE_PROCESS;
+
+ /* Start DMA process transfer for DES/TDES */
+ CRYP_SetDMAConfig(hcryp, (uint32_t)( hcryp->pCrypInBuffPtr), ((uint16_t)(hcryp->Size)/4U), (uint32_t)(hcryp->pCrypOutBuffPtr));
+ break;
+
+ case CRYP_AES_ECB:
+ case CRYP_AES_CBC:
+ case CRYP_AES_CTR:
+
+ /* Set the Key*/
+ CRYP_SetKey(hcryp, hcryp->Init.KeySize);
+
+ /* Set the Initialization Vector IV */
+ if (hcryp->Init.Algorithm != CRYP_AES_ECB)
+ {
+ hcryp->Instance->IV0LR = *(uint32_t*)(hcryp->Init.pInitVect);
+ hcryp->Instance->IV0RR = *(uint32_t*)(hcryp->Init.pInitVect+1);
+ hcryp->Instance->IV1LR = *(uint32_t*)(hcryp->Init.pInitVect+2);
+ hcryp->Instance->IV1RR = *(uint32_t*)(hcryp->Init.pInitVect+3);
+ }
+ /* Set the phase */
+ hcryp->Phase = CRYP_PHASE_PROCESS;
+
+ /* Start DMA process transfer for AES */
+ CRYP_SetDMAConfig(hcryp, (uint32_t)( hcryp->pCrypInBuffPtr), ((uint16_t)(hcryp->Size)/4U), (uint32_t)(hcryp->pCrypOutBuffPtr));
+ break;
+#if defined (CRYP_CR_ALGOMODE_AES_GCM)
+ case CRYP_AES_GCM:
+ /* AES GCM encryption */
+ status = CRYP_AESGCM_Process_DMA (hcryp) ;
+ break;
+
+ case CRYP_AES_CCM:
+ /* AES CCM encryption */
+ status = CRYP_AESCCM_Process_DMA(hcryp);
+ break;
+#endif /* GCM CCM defined*/
+ default:
+ hcryp->ErrorCode |= HAL_CRYP_ERROR_NOT_SUPPORTED;
+ status = HAL_ERROR;
+ break;
+ }
+
+#else /*AES*/
+ /* Set encryption operating mode*/
+ MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_ENCRYPT);
+
+ /* algo get algorithm selected */
+ algo = hcryp->Instance->CR & AES_CR_CHMOD;
+
+ switch(algo)
+ {
+
+ case CRYP_AES_ECB:
+ case CRYP_AES_CBC:
+ case CRYP_AES_CTR:
+
+ /* Set the Key*/
+ CRYP_SetKey(hcryp, hcryp->Init.KeySize);
+
+ /* Set the Initialization Vector*/
+ if (hcryp->Init.Algorithm != CRYP_AES_ECB)
+ {
+ hcryp->Instance->IVR3 = *(uint32_t*)(hcryp->Init.pInitVect);
+ hcryp->Instance->IVR2 = *(uint32_t*)(hcryp->Init.pInitVect+1);
+ hcryp->Instance->IVR1 = *(uint32_t*)(hcryp->Init.pInitVect+2);
+ hcryp->Instance->IVR0 = *(uint32_t*)(hcryp->Init.pInitVect+3);
+ }
+
+ /* Set the phase */
+ hcryp->Phase = CRYP_PHASE_PROCESS;
+
+ /* Start DMA process transfer for AES */
+ CRYP_SetDMAConfig(hcryp, (uint32_t)( hcryp->pCrypInBuffPtr), (hcryp->Size/4U), (uint32_t)(hcryp->pCrypOutBuffPtr));
+ break;
+
+ case CRYP_AES_GCM_GMAC:
+ /* AES GCM encryption */
+ status = CRYP_AESGCM_Process_DMA (hcryp) ;
+ break;
+
+ case CRYP_AES_CCM:
+ /* AES CCM encryption */
+ status = CRYP_AESCCM_Process_DMA(hcryp);
+ break;
+
+ default:
+ hcryp->ErrorCode |= HAL_CRYP_ERROR_NOT_SUPPORTED;
+ status = HAL_ERROR;
+ break;
+ }
+#endif /* End AES or CRYP */
+
+ }
+ else
+ {
+ /* Busy error code field */
+ hcryp->ErrorCode |= HAL_CRYP_ERROR_BUSY;
+ status = HAL_ERROR;
+ }
+
+ /* Return function status */
+ return status;
+}
+
+/**
+ * @brief Decryption in DMA mode.
+ * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
+ * the configuration information for CRYP module
+ * @param Input: Pointer to the input buffer (ciphertext )
+ * @param Size: Length of the plaintext buffer in word
+ * @param Output: Pointer to the output buffer(plaintext)
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_CRYP_Decrypt_DMA(CRYP_HandleTypeDef *hcryp, uint32_t *Input, uint16_t Size, uint32_t *Output)
+{
+ uint32_t algo;
+ HAL_StatusTypeDef status = HAL_OK;
+
+ if(hcryp->State == HAL_CRYP_STATE_READY)
+ {
+
+ /* Change state Busy */
+ hcryp->State = HAL_CRYP_STATE_BUSY;
+
+ /* Process locked */
+ __HAL_LOCK(hcryp);
+
+ /* Reset CrypInCount, CrypOutCount and Initialize pCrypInBuffPtr, pCrypOutBuffPtr and Size parameters*/
+ hcryp->CrypInCount = 0U;
+ hcryp->CrypOutCount = 0U;
+ hcryp->pCrypInBuffPtr = Input;
+ hcryp->pCrypOutBuffPtr = Output;
+
+ /* Calculate Size parameter in Byte*/
+ if (hcryp->Init.DataWidthUnit == CRYP_DATAWIDTHUNIT_WORD)
+ {
+ hcryp->Size = Size * 4U;
+ }
+ else
+ {
+ hcryp->Size = Size;
+ }
+
+#if defined (CRYP)
+
+ /* Set decryption operating mode*/
+ MODIFY_REG(hcryp->Instance->CR, CRYP_CR_ALGODIR, CRYP_OPERATINGMODE_DECRYPT);
+
+ /* algo get algorithm selected */
+ algo = hcryp->Instance->CR & CRYP_CR_ALGOMODE;
+
+ switch(algo)
+ {
+ case CRYP_DES_ECB:
+ case CRYP_DES_CBC:
+ case CRYP_TDES_ECB:
+ case CRYP_TDES_CBC:
+
+ /*Set Key */
+ hcryp->Instance->K1LR = *(uint32_t*)(hcryp->Init.pKey);
+ hcryp->Instance->K1RR = *(uint32_t*)(hcryp->Init.pKey+1);
+ if ((hcryp->Init.Algorithm == CRYP_TDES_ECB) || (hcryp->Init.Algorithm == CRYP_TDES_CBC))
+ {
+ hcryp->Instance->K2LR = *(uint32_t*)(hcryp->Init.pKey+2);
+ hcryp->Instance->K2RR = *(uint32_t*)(hcryp->Init.pKey+3);
+ hcryp->Instance->K3LR = *(uint32_t*)(hcryp->Init.pKey+4);
+ hcryp->Instance->K3RR = *(uint32_t*)(hcryp->Init.pKey+5);
+ }
+
+ /* Set the Initialization Vector*/
+ if ((hcryp->Init.Algorithm == CRYP_DES_CBC) || (hcryp->Init.Algorithm == CRYP_TDES_CBC))
+ {
+ hcryp->Instance->IV0LR = *(uint32_t*)(hcryp->Init.pInitVect);
+ hcryp->Instance->IV0RR = *(uint32_t*)(hcryp->Init.pInitVect+1);
+ }
+
+ /* Flush FIFO */
+ HAL_CRYP_FIFO_FLUSH(hcryp);
+
+ /* Set the phase */
+ hcryp->Phase = CRYP_PHASE_PROCESS;
+
+ /* Start DMA process transfer for DES/TDES */
+ CRYP_SetDMAConfig(hcryp, (uint32_t)( hcryp->pCrypInBuffPtr), ((uint16_t)(hcryp->Size)/4U), (uint32_t)(hcryp->pCrypOutBuffPtr));
+ break;
+
+ case CRYP_AES_ECB:
+ case CRYP_AES_CBC:
+ case CRYP_AES_CTR:
+
+ /* AES decryption */
+ status = CRYP_AES_Decrypt_DMA(hcryp);
+ break;
+#if defined (CRYP_CR_ALGOMODE_AES_GCM)
+ case CRYP_AES_GCM:
+ /* AES GCM decryption */
+ status = CRYP_AESGCM_Process_DMA (hcryp) ;
+ break;
+
+ case CRYP_AES_CCM:
+ /* AES CCM decryption */
+ status = CRYP_AESCCM_Process_DMA(hcryp);
+ break;
+#endif /* GCM CCM defined*/
+ default:
+ hcryp->ErrorCode |= HAL_CRYP_ERROR_NOT_SUPPORTED;
+ status = HAL_ERROR;
+ break;
+ }
+
+#else /*AES*/
+
+ /* Set decryption operating mode*/
+ MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_DECRYPT);
+
+ /* algo get algorithm selected */
+ algo = hcryp->Instance->CR & AES_CR_CHMOD;
+
+ switch(algo)
+ {
+
+ case CRYP_AES_ECB:
+ case CRYP_AES_CBC:
+ case CRYP_AES_CTR:
+
+ /* AES decryption */
+ status = CRYP_AES_Decrypt_DMA(hcryp);
+ break;
+
+ case CRYP_AES_GCM_GMAC:
+ /* AES GCM decryption */
+ status = CRYP_AESGCM_Process_DMA (hcryp) ;
+ break;
+
+ case CRYP_AES_CCM:
+ /* AES CCM decryption */
+ status = CRYP_AESCCM_Process_DMA(hcryp);
+ break;
+
+ default:
+ hcryp->ErrorCode |= HAL_CRYP_ERROR_NOT_SUPPORTED;
+ status = HAL_ERROR;
+ break;
+ }
+#endif /* End AES or CRYP */
+ }
+ else
+ {
+ /* Busy error code field */
+ hcryp->ErrorCode |= HAL_CRYP_ERROR_BUSY;
+ status = HAL_ERROR;
+ }
+
+ /* Return function status */
+ return status;
+}
+
+/**
+ * @}
+ */
+
+/** @defgroup CRYP_Exported_Functions_Group3 CRYP IRQ handler management
+ * @brief CRYP IRQ handler.
+ *
+@verbatim
+ ==============================================================================
+ ##### CRYP IRQ handler management #####
+ ==============================================================================
+[..] This section provides CRYP IRQ handler and callback functions.
+ (+) HAL_CRYP_IRQHandler CRYP interrupt request
+ (+) HAL_CRYP_InCpltCallback input data transfer complete callback
+ (+) HAL_CRYP_OutCpltCallback output data transfer complete callback
+ (+) HAL_CRYP_ErrorCallback CRYP error callback
+ (+) HAL_CRYP_GetState return the CRYP state
+ (+) HAL_CRYP_GetError return the CRYP error code
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief This function handles cryptographic interrupt request.
+ * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
+ * the configuration information for CRYP module
+ * @retval None
+ */
+void HAL_CRYP_IRQHandler(CRYP_HandleTypeDef *hcryp)
+{
+
+#if defined (CRYP)
+
+ if((__HAL_CRYP_GET_IT(hcryp, CRYP_IT_INI) != 0x0U) || (__HAL_CRYP_GET_IT(hcryp, CRYP_IT_OUTI) != 0x0U))
+ {
+ if ((hcryp->Init.Algorithm == CRYP_DES_ECB)|| (hcryp->Init.Algorithm == CRYP_DES_CBC) || (hcryp->Init.Algorithm == CRYP_TDES_ECB) || (hcryp->Init.Algorithm == CRYP_TDES_CBC))
+ {
+ CRYP_TDES_IT(hcryp); /* DES or TDES*/
+ }
+ else if((hcryp->Init.Algorithm == CRYP_AES_ECB) || (hcryp->Init.Algorithm == CRYP_AES_CBC) || (hcryp->Init.Algorithm == CRYP_AES_CTR))
+ {
+ CRYP_AES_IT(hcryp); /*AES*/
+ }
+#if defined (CRYP_CR_ALGOMODE_AES_GCM)
+ else if((hcryp->Init.Algorithm == CRYP_AES_GCM) ||(hcryp->Init.Algorithm == CRYP_CR_ALGOMODE_AES_CCM) )
+ {
+ /* if header phase */
+ if ((hcryp->Instance->CR & CRYP_PHASE_HEADER) == CRYP_PHASE_HEADER )
+ {
+ CRYP_GCMCCM_SetHeaderPhase_IT(hcryp);
+ }
+ else /* if payload phase */
+ {
+ CRYP_GCMCCM_SetPayloadPhase_IT(hcryp);
+ }
+ }
+#endif /* GCM CCM defined*/
+ else
+ {
+ /* Nothing to do */
+ }
+ }
+
+#else /*AES*/
+ if((__HAL_CRYP_GET_FLAG(hcryp,CRYP_IT_CCF) != 0x0U) && (__HAL_CRYP_GET_IT_SOURCE(hcryp,CRYP_IT_CCFIE) != 0x0U))
+ {
+
+ /* Clear computation complete flag */
+ __HAL_CRYP_CLEAR_FLAG(hcryp,CRYP_CCF_CLEAR);
+
+ if(hcryp->Init.Algorithm == CRYP_AES_GCM_GMAC)
+ {
+
+ /* if header phase */
+ if ((hcryp->Instance->CR & CRYP_PHASE_HEADER) == CRYP_PHASE_HEADER )
+ {
+ CRYP_GCMCCM_SetHeaderPhase_IT(hcryp);
+ }
+ else /* if payload phase */
+ {
+ CRYP_GCMCCM_SetPayloadPhase_IT(hcryp);
+ }
+ }
+ else if(hcryp->Init.Algorithm == CRYP_AES_CCM)
+ {
+ /* if header phase */
+ if (hcryp->Init.HeaderSize >= hcryp->CrypHeaderCount )
+ {
+ CRYP_GCMCCM_SetHeaderPhase_IT(hcryp);
+ }
+ else /* if payload phase */
+ {
+ CRYP_GCMCCM_SetPayloadPhase_IT(hcryp);
+ }
+ }
+ else /* AES Algorithm ECB,CBC or CTR*/
+ {
+ CRYP_AES_IT(hcryp);
+ }
+ }
+ /* Check if error occurred */
+ if (__HAL_CRYP_GET_IT_SOURCE(hcryp,CRYP_IT_ERRIE) != RESET)
+ {
+ /* If write Error occurred */
+ if (__HAL_CRYP_GET_FLAG(hcryp,CRYP_IT_WRERR) != RESET)
+ {
+ hcryp->ErrorCode |= HAL_CRYP_ERROR_WRITE;
+ }
+ /* If read Error occurred */
+ if (__HAL_CRYP_GET_FLAG(hcryp,CRYP_IT_RDERR) != RESET)
+ {
+ hcryp->ErrorCode |= HAL_CRYP_ERROR_READ;
+ }
+ }
+#endif /* End AES or CRYP */
+}
+
+/**
+ * @brief Return the CRYP error code.
+ * @param hcryp : pointer to a CRYP_HandleTypeDef structure that contains
+ * the configuration information for the CRYP IP
+ * @retval CRYP error code
+ */
+uint32_t HAL_CRYP_GetError(CRYP_HandleTypeDef *hcryp)
+{
+ return hcryp->ErrorCode;
+}
+
+/**
+ * @brief Returns the CRYP state.
+ * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
+ * the configuration information for CRYP module.
+ * @retval HAL state
+ */
+HAL_CRYP_STATETypeDef HAL_CRYP_GetState(CRYP_HandleTypeDef *hcryp)
+{
+ return hcryp->State;
+}
+
+/**
+ * @brief Input FIFO transfer completed callback.
+ * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
+ * the configuration information for CRYP module.
+ * @retval None
+ */
+__weak void HAL_CRYP_InCpltCallback(CRYP_HandleTypeDef *hcryp)
+{
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(hcryp);
+
+ /* NOTE : This function Should not be modified, when the callback is needed,
+ the HAL_CRYP_InCpltCallback could be implemented in the user file
+ */
+}
+
+/**
+ * @brief Output FIFO transfer completed callback.
+ * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
+ * the configuration information for CRYP module.
+ * @retval None
+ */
+__weak void HAL_CRYP_OutCpltCallback(CRYP_HandleTypeDef *hcryp)
+{
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(hcryp);
+
+ /* NOTE : This function Should not be modified, when the callback is needed,
+ the HAL_CRYP_OutCpltCallback could be implemented in the user file
+ */
+}
+
+/**
+ * @brief CRYP error callback.
+ * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
+ * the configuration information for CRYP module.
+ * @retval None
+ */
+ __weak void HAL_CRYP_ErrorCallback(CRYP_HandleTypeDef *hcryp)
+{
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(hcryp);
+
+ /* NOTE : This function Should not be modified, when the callback is needed,
+ the HAL_CRYP_ErrorCallback could be implemented in the user file
+ */
+}
+/**
+ * @}
+ */
+
+/* Private functions ---------------------------------------------------------*/
+/** @addtogroup CRYP_Private_Functions
+ * @{
+ */
+
+ #if defined (CRYP)
+
+/**
+ * @brief Encryption in ECB/CBC Algorithm with DES/TDES standard.
+ * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
+ * the configuration information for CRYP module
+ * @param Timeout: specify Timeout value
+ * @retval HAL status
+ */
+static HAL_StatusTypeDef CRYP_TDES_Process(CRYP_HandleTypeDef *hcryp, uint32_t Timeout)
+{
+ uint32_t temp; /* Temporary CrypOutBuff */
+ uint16_t incount; /* Temporary CrypInCount Value */
+ uint16_t outcount; /* Temporary CrypOutCount Value */
+
+ /* Enable CRYP */
+ __HAL_CRYP_ENABLE(hcryp);
+ /*Temporary CrypOutCount Value*/
+ outcount = hcryp->CrypOutCount;
+
+ /*Start processing*/
+ while((hcryp->CrypInCount < (hcryp->Size/4U)) && (outcount < (hcryp->Size/4U)))
+ {
+ /* Temporary CrypInCount Value */
+ incount = hcryp->CrypInCount;
+ /* Write plain data and get cipher data */
+ if(((hcryp->Instance->SR & CRYP_FLAG_IFNF ) != 0x0U) && (incount < (hcryp->Size/4U)))
+ {
+ /* Write the input block in the IN FIFO */
+ hcryp->Instance->DIN = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount );
+ hcryp->CrypInCount++;
+ hcryp->Instance->DIN = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount );
+ hcryp->CrypInCount++;
+ }
+
+ /* Wait for OFNE flag to be raised */
+ if(CRYP_WaitOnOFNEFlag(hcryp, Timeout) != HAL_OK)
+ {
+ /* Disable the CRYP peripheral clock */
+ __HAL_CRYP_DISABLE(hcryp);
+
+ /* Change state & errorCode*/
+ hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
+ hcryp->State = HAL_CRYP_STATE_READY;
+
+ /* Process unlocked */
+ __HAL_UNLOCK(hcryp);
+#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1)
+ /*Call registered error callback*/
+ hcryp->ErrorCallback(hcryp);
+#else
+ /*Call legacy weak error callback*/
+ HAL_CRYP_ErrorCallback(hcryp);
+#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
+ }
+
+ /*Temporary CrypOutCount Value*/
+ outcount = hcryp->CrypOutCount;
+
+ if(((hcryp->Instance->SR & CRYP_FLAG_OFNE ) != 0x0U) && (outcount < (hcryp->Size/4U)))
+ {
+ /* Read the output block from the Output FIFO and put them in temporary Buffer then get CrypOutBuff from temporary buffer */
+ temp = hcryp->Instance->DOUT;
+ *(uint32_t *)(hcryp->pCrypOutBuffPtr + (hcryp->CrypOutCount)) = temp;
+ hcryp->CrypOutCount++;
+ temp = hcryp->Instance->DOUT;
+ *(uint32_t *)(hcryp->pCrypOutBuffPtr + (hcryp->CrypOutCount)) = temp;
+ hcryp->CrypOutCount++;
+ }
+ /*Temporary CrypOutCount Value*/
+ outcount = hcryp->CrypOutCount;
+ }
+ /* Disable CRYP */
+ __HAL_CRYP_DISABLE(hcryp);
+ /* Change the CRYP state */
+ hcryp->State = HAL_CRYP_STATE_READY;
+
+ /* Return function status */
+ return HAL_OK;
+}
+
+/**
+ * @brief CRYP block input/output data handling under interruption with DES/TDES standard.
+ * @note The function is called under interruption only, once
+ * interruptions have been enabled by CRYP_Decrypt_IT() and CRYP_Encrypt_IT().
+ * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
+ * the configuration information for CRYP module.
+ * @retval none
+ */
+static void CRYP_TDES_IT(CRYP_HandleTypeDef *hcryp)
+{
+ uint32_t temp; /* Temporary CrypOutBuff */
+
+ if(hcryp->State == HAL_CRYP_STATE_BUSY)
+ {
+ if((__HAL_CRYP_GET_IT(hcryp, CRYP_IT_INI) != 0x0U) && (__HAL_CRYP_GET_FLAG(hcryp, CRYP_FLAG_INRIS) != 0x0U))
+
+ {
+ /* Write input block in the IN FIFO */
+ hcryp->Instance->DIN = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount );
+ hcryp->CrypInCount++;
+ hcryp->Instance->DIN = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount );
+ hcryp->CrypInCount++;
+
+ if(hcryp->CrypInCount == ((uint16_t)(hcryp->Size)/4U))
+ {
+ /* Disable interruption */
+ __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_INI);
+ /* Call the input data transfer complete callback */
+#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U)
+ /*Call registered Input complete callback*/
+ hcryp->InCpltCallback(hcryp);
+#else
+ /*Call legacy weak Input complete callback*/
+ HAL_CRYP_InCpltCallback(hcryp);
+#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
+ }
+ }
+ if((__HAL_CRYP_GET_IT(hcryp, CRYP_IT_OUTI) != 0x0U)&& (__HAL_CRYP_GET_FLAG(hcryp, CRYP_FLAG_OUTRIS) != 0x0U))
+ {
+ /* Read the output block from the Output FIFO and put them in temporary Buffer then get CrypOutBuff from temporary buffer */
+ temp = hcryp->Instance->DOUT;
+ *(uint32_t *)(hcryp->pCrypOutBuffPtr + (hcryp->CrypOutCount)) = temp;
+ hcryp->CrypOutCount++;
+ temp = hcryp->Instance->DOUT;
+ *(uint32_t *)(hcryp->pCrypOutBuffPtr + (hcryp->CrypOutCount)) = temp;
+ hcryp->CrypOutCount++;
+ if(hcryp->CrypOutCount == ((uint16_t)(hcryp->Size)/4U))
+ {
+ /* Disable interruption */
+ __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_OUTI);
+
+ /* Disable CRYP */
+ __HAL_CRYP_DISABLE(hcryp);
+
+ /* Process unlocked */
+ __HAL_UNLOCK(hcryp);
+
+ /* Change the CRYP state */
+ hcryp->State = HAL_CRYP_STATE_READY;
+ /* Call output transfer complete callback */
+#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1)
+ /*Call registered Output complete callback*/
+ hcryp->OutCpltCallback(hcryp);
+#else
+ /*Call legacy weak Output complete callback*/
+ HAL_CRYP_OutCpltCallback(hcryp);
+#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
+ }
+ }
+ }
+ else
+ {
+ /* Process unlocked */
+ __HAL_UNLOCK(hcryp);
+ /* Busy error code field */
+ hcryp->ErrorCode |= HAL_CRYP_ERROR_BUSY;
+#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1)
+ /*Call registered error callback*/
+ hcryp->ErrorCallback(hcryp);
+#else
+ /*Call legacy weak error callback*/
+ HAL_CRYP_ErrorCallback(hcryp);
+#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
+ }
+}
+
+#endif /* CRYP */
+
+/**
+ * @brief Encryption in ECB/CBC & CTR Algorithm with AES Standard
+ * @param hcryp: pointer to a CRYP_HandleTypeDef structure
+ * @param Timeout: specify Timeout value
+ * @retval HAL status
+ */
+static HAL_StatusTypeDef CRYP_AES_Encrypt(CRYP_HandleTypeDef *hcryp, uint32_t Timeout)
+{
+ uint16_t outcount; /* Temporary CrypOutCount Value */
+
+ /* Set the Key*/
+ CRYP_SetKey(hcryp, hcryp->Init.KeySize);
+
+ if (hcryp->Init.Algorithm != CRYP_AES_ECB)
+ {
+ /* Set the Initialization Vector*/
+#if defined (AES)
+ hcryp->Instance->IVR3 = *(uint32_t*)(hcryp->Init.pInitVect);
+ hcryp->Instance->IVR2 = *(uint32_t*)(hcryp->Init.pInitVect+1);
+ hcryp->Instance->IVR1 = *(uint32_t*)(hcryp->Init.pInitVect+2);
+ hcryp->Instance->IVR0 = *(uint32_t*)(hcryp->Init.pInitVect+3);
+#else /* CRYP */
+ hcryp->Instance->IV0LR = *(uint32_t*)(hcryp->Init.pInitVect);
+ hcryp->Instance->IV0RR = *(uint32_t*)(hcryp->Init.pInitVect+1);
+ hcryp->Instance->IV1LR = *(uint32_t*)(hcryp->Init.pInitVect+2);
+ hcryp->Instance->IV1RR = *(uint32_t*)(hcryp->Init.pInitVect+3);
+#endif /* End AES or CRYP */
+ }
+
+ /* Set the phase */
+ hcryp->Phase = CRYP_PHASE_PROCESS;
+
+ /* Enable CRYP */
+ __HAL_CRYP_ENABLE(hcryp);
+
+ /*Temporary CrypOutCount Value*/
+ outcount = hcryp->CrypOutCount;
+
+ while((hcryp->CrypInCount < (hcryp->Size/4U)) && (outcount < (hcryp->Size/4U)))
+ {
+ /* Write plain Ddta and get cipher data */
+ CRYP_AES_ProcessData(hcryp,Timeout);
+ /*Temporary CrypOutCount Value*/
+ outcount = hcryp->CrypOutCount;
+ }
+
+ /* Disable CRYP */
+ __HAL_CRYP_DISABLE(hcryp);
+
+ /* Change the CRYP state */
+ hcryp->State = HAL_CRYP_STATE_READY;
+
+ /* Return function status */
+ return HAL_OK;
+}
+
+/**
+ * @brief Encryption in ECB/CBC & CTR mode with AES Standard using interrupt mode
+ * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
+ * the configuration information for CRYP module
+ * @retval HAL status
+ */
+static HAL_StatusTypeDef CRYP_AES_Encrypt_IT(CRYP_HandleTypeDef *hcryp)
+{
+
+ /* Set the Key*/
+ CRYP_SetKey(hcryp, hcryp->Init.KeySize);
+
+ if (hcryp->Init.Algorithm != CRYP_AES_ECB)
+ {
+ /* Set the Initialization Vector*/
+#if defined (AES)
+ hcryp->Instance->IVR3 = *(uint32_t*)(hcryp->Init.pInitVect);
+ hcryp->Instance->IVR2 = *(uint32_t*)(hcryp->Init.pInitVect+1);
+ hcryp->Instance->IVR1 = *(uint32_t*)(hcryp->Init.pInitVect+2);
+ hcryp->Instance->IVR0 = *(uint32_t*)(hcryp->Init.pInitVect+3);
+
+#else /* CRYP */
+ hcryp->Instance->IV0LR = *(uint32_t*)(hcryp->Init.pInitVect);
+ hcryp->Instance->IV0RR = *(uint32_t*)(hcryp->Init.pInitVect+1);
+ hcryp->Instance->IV1LR = *(uint32_t*)(hcryp->Init.pInitVect+2);
+ hcryp->Instance->IV1RR = *(uint32_t*)(hcryp->Init.pInitVect+3);
+#endif /* End AES or CRYP */
+ }
+ /* Set the phase */
+ hcryp->Phase = CRYP_PHASE_PROCESS;
+
+ if(hcryp->Size != 0U)
+ {
+#if defined (AES)
+
+ /* Enable computation complete flag and error interrupts */
+ __HAL_CRYP_ENABLE_IT(hcryp,CRYP_IT_CCFIE | CRYP_IT_ERRIE);
+
+ /* Enable CRYP */
+ __HAL_CRYP_ENABLE(hcryp);
+
+ /* Write the input block in the IN FIFO */
+ hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount );
+ hcryp->CrypInCount++;
+ hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount );
+ hcryp->CrypInCount++;
+ hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount );
+ hcryp->CrypInCount++;
+ hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount );
+ hcryp->CrypInCount++;
+
+#else /* CRYP */
+
+ /* Enable interrupts */
+ __HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_INI | CRYP_IT_OUTI);
+
+ /* Enable CRYP */
+ __HAL_CRYP_ENABLE(hcryp);
+
+#endif /* End AES or CRYP */
+ }
+ else
+ {
+ /* Change the CRYP state */
+ hcryp->State = HAL_CRYP_STATE_READY;
+
+ /* Process unlocked */
+ __HAL_UNLOCK(hcryp);
+ }
+
+ /* Return function status */
+ return HAL_OK;
+}
+
+/**
+ * @brief Decryption in ECB/CBC & CTR mode with AES Standard
+ * @param hcryp: pointer to a CRYP_HandleTypeDef structure
+ * @param Timeout: Specify Timeout value
+ * @retval HAL status
+ */
+static HAL_StatusTypeDef CRYP_AES_Decrypt(CRYP_HandleTypeDef *hcryp, uint32_t Timeout )
+{
+ uint16_t outcount; /* Temporary CrypOutCount Value */
+
+ /* Key preparation for ECB/CBC */
+ if (hcryp->Init.Algorithm != CRYP_AES_CTR)
+ {
+#if defined (AES)
+ if (hcryp->AutoKeyDerivation == DISABLE)/*Mode 2 Key preparation*/
+ {
+ /* Set key preparation for decryption operating mode*/
+ MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_KEYDERIVATION);
+
+ /* Set the Key*/
+ CRYP_SetKey(hcryp, hcryp->Init.KeySize);
+
+ /* Enable CRYP */
+ __HAL_CRYP_ENABLE(hcryp);
+
+ /* Wait for CCF flag to be raised */
+ if(CRYP_WaitOnCCFlag(hcryp, Timeout) != HAL_OK)
+ {
+ /* Disable the CRYP peripheral clock */
+ __HAL_CRYP_DISABLE(hcryp);
+
+ /* Change state & error code*/
+ hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
+ hcryp->State = HAL_CRYP_STATE_READY;
+
+ /* Process unlocked */
+ __HAL_UNLOCK(hcryp);
+ return HAL_ERROR;
+ }
+ /* Clear CCF Flag */
+ __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
+
+ /* Return to decryption operating mode(Mode 3)*/
+ MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_DECRYPT);
+ }
+ else /*Mode 4 : decryption & Key preparation*/
+ {
+ /* Set the Key*/
+ CRYP_SetKey(hcryp, hcryp->Init.KeySize);
+
+ /* Set decryption & Key preparation operating mode*/
+ MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_KEYDERIVATION_DECRYPT);
+ }
+#else /* CRYP */
+ /* change ALGOMODE to key preparation for decryption*/
+ MODIFY_REG(hcryp->Instance->CR, CRYP_CR_ALGOMODE, CRYP_CR_ALGOMODE_AES_KEY );
+
+ /* Set the Key*/
+ CRYP_SetKey(hcryp, hcryp->Init.KeySize);
+
+ /* Enable CRYP */
+ __HAL_CRYP_ENABLE(hcryp);
+
+ /* Wait for BUSY flag to be raised */
+ if(CRYP_WaitOnBUSYFlag(hcryp, Timeout) != HAL_OK)
+ {
+ /* Disable the CRYP peripheral clock */
+ __HAL_CRYP_DISABLE(hcryp);
+
+ /* Change state */
+ hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
+ hcryp->State = HAL_CRYP_STATE_READY;
+
+ /* Process unlocked */
+ __HAL_UNLOCK(hcryp);
+ return HAL_ERROR;
+ }
+ /* Turn back to ALGOMODE of the configuration */
+ MODIFY_REG(hcryp->Instance->CR, CRYP_CR_ALGOMODE, hcryp->Init.Algorithm );
+
+#endif /* End AES or CRYP */
+ }
+ else /*Algorithm CTR */
+ {
+ /* Set the Key*/
+ CRYP_SetKey(hcryp, hcryp->Init.KeySize);
+ }
+
+ /* Set IV */
+ if (hcryp->Init.Algorithm != CRYP_AES_ECB)
+ {
+ /* Set the Initialization Vector*/
+#if defined (AES)
+ hcryp->Instance->IVR3 = *(uint32_t*)(hcryp->Init.pInitVect);
+ hcryp->Instance->IVR2 = *(uint32_t*)(hcryp->Init.pInitVect+1);
+ hcryp->Instance->IVR1 = *(uint32_t*)(hcryp->Init.pInitVect+2);
+ hcryp->Instance->IVR0 = *(uint32_t*)(hcryp->Init.pInitVect+3);
+#else /* CRYP */
+ hcryp->Instance->IV0LR = *(uint32_t*)(hcryp->Init.pInitVect);
+ hcryp->Instance->IV0RR = *(uint32_t*)(hcryp->Init.pInitVect+1);
+ hcryp->Instance->IV1LR = *(uint32_t*)(hcryp->Init.pInitVect+2);
+ hcryp->Instance->IV1RR = *(uint32_t*)(hcryp->Init.pInitVect+3);
+#endif /* End AES or CRYP */
+ }
+ /* Set the phase */
+ hcryp->Phase = CRYP_PHASE_PROCESS;
+
+ /* Enable CRYP */
+ __HAL_CRYP_ENABLE(hcryp);
+
+ /*Temporary CrypOutCount Value*/
+ outcount = hcryp->CrypOutCount;
+
+ while((hcryp->CrypInCount < (hcryp->Size/4U)) && (outcount < (hcryp->Size/4U)))
+ {
+ /* Write plain data and get cipher data */
+ CRYP_AES_ProcessData(hcryp,Timeout);
+ /*Temporary CrypOutCount Value*/
+ outcount = hcryp->CrypOutCount;
+ }
+
+ /* Disable CRYP */
+ __HAL_CRYP_DISABLE(hcryp);
+
+ /* Change the CRYP state */
+ hcryp->State = HAL_CRYP_STATE_READY;
+
+ /* Return function status */
+ return HAL_OK;
+}
+/**
+ * @brief Decryption in ECB/CBC & CTR mode with AES Standard using interrupt mode
+ * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
+ * the configuration information for CRYP module
+ * @retval HAL status
+ */
+static HAL_StatusTypeDef CRYP_AES_Decrypt_IT(CRYP_HandleTypeDef *hcryp)
+{
+ __IO uint32_t count = 0U;
+
+ /* Key preparation for ECB/CBC */
+ if (hcryp->Init.Algorithm != CRYP_AES_CTR)
+ {
+#if defined (AES)
+ if (hcryp->AutoKeyDerivation == DISABLE)/*Mode 2 Key preparation*/
+ {
+ /* Set key preparation for decryption operating mode*/
+ MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_KEYDERIVATION);
+
+ /* Set the Key*/
+ CRYP_SetKey(hcryp, hcryp->Init.KeySize);
+
+ /* Enable CRYP */
+ __HAL_CRYP_ENABLE(hcryp);
+
+ /* Wait for CCF flag to be raised */
+ count = CRYP_TIMEOUT_KEYPREPARATION;
+ do
+ {
+ count-- ;
+ if(count == 0U)
+ {
+ /* Disable the CRYP peripheral clock */
+ __HAL_CRYP_DISABLE(hcryp);
+
+ /* Change state */
+ hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
+ hcryp->State = HAL_CRYP_STATE_READY;
+
+ /* Process unlocked */
+ __HAL_UNLOCK(hcryp);
+ return HAL_ERROR;
+ }
+ }
+ while(HAL_IS_BIT_CLR(hcryp->Instance->SR, AES_SR_CCF));
+
+ /* Clear CCF Flag */
+ __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
+
+ /* Return to decryption operating mode(Mode 3)*/
+ MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_DECRYPT);
+ }
+ else /*Mode 4 : decryption & key preparation*/
+ {
+ /* Set the Key*/
+ CRYP_SetKey(hcryp, hcryp->Init.KeySize);
+
+ /* Set decryption & key preparation operating mode*/
+ MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_KEYDERIVATION_DECRYPT);
+ }
+#else /* CRYP */
+
+ /* change ALGOMODE to key preparation for decryption*/
+ MODIFY_REG(hcryp->Instance->CR, CRYP_CR_ALGOMODE, CRYP_CR_ALGOMODE_AES_KEY );
+
+ /* Set the Key*/
+ CRYP_SetKey(hcryp, hcryp->Init.KeySize);
+
+ /* Enable CRYP */
+ __HAL_CRYP_ENABLE(hcryp);
+
+ /* Wait for BUSY flag to be raised */
+ count = CRYP_TIMEOUT_KEYPREPARATION;
+ do
+ {
+ count-- ;
+ if(count == 0U)
+ {
+ /* Change state */
+ hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
+ hcryp->State = HAL_CRYP_STATE_READY;
+
+ /* Process unlocked */
+ __HAL_UNLOCK(hcryp);
+ return HAL_ERROR;
+ }
+ }
+ while(HAL_IS_BIT_SET(hcryp->Instance->SR, CRYP_FLAG_BUSY));
+
+ /* Turn back to ALGOMODE of the configuration */
+ MODIFY_REG(hcryp->Instance->CR, CRYP_CR_ALGOMODE, hcryp->Init.Algorithm );
+
+#endif /* End AES or CRYP */
+ }
+
+ else /*Algorithm CTR */
+ {
+ /* Set the Key*/
+ CRYP_SetKey(hcryp, hcryp->Init.KeySize);
+ }
+
+ /* Set IV */
+ if (hcryp->Init.Algorithm != CRYP_AES_ECB)
+ {
+ /* Set the Initialization Vector*/
+#if defined (AES)
+ hcryp->Instance->IVR3 = *(uint32_t*)(hcryp->Init.pInitVect);
+ hcryp->Instance->IVR2 = *(uint32_t*)(hcryp->Init.pInitVect+1);
+ hcryp->Instance->IVR1 = *(uint32_t*)(hcryp->Init.pInitVect+2);
+ hcryp->Instance->IVR0 = *(uint32_t*)(hcryp->Init.pInitVect+3);
+#else /* CRYP */
+ hcryp->Instance->IV0LR = *(uint32_t*)(hcryp->Init.pInitVect);
+ hcryp->Instance->IV0RR = *(uint32_t*)(hcryp->Init.pInitVect+1);
+ hcryp->Instance->IV1LR = *(uint32_t*)(hcryp->Init.pInitVect+2);
+ hcryp->Instance->IV1RR = *(uint32_t*)(hcryp->Init.pInitVect+3);
+#endif /* End AES or CRYP */
+ }
+ /* Set the phase */
+ hcryp->Phase = CRYP_PHASE_PROCESS;
+ if(hcryp->Size != 0U)
+ {
+
+#if defined (AES)
+
+ /* Enable computation complete flag and error interrupts */
+ __HAL_CRYP_ENABLE_IT(hcryp,CRYP_IT_CCFIE | CRYP_IT_ERRIE);
+
+ /* Enable CRYP */
+ __HAL_CRYP_ENABLE(hcryp);
+
+ /* Write the input block in the IN FIFO */
+ hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount );
+ hcryp->CrypInCount++;
+ hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount );
+ hcryp->CrypInCount++;
+ hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount );
+ hcryp->CrypInCount++;
+ hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount );
+ hcryp->CrypInCount++;
+
+#else /* CRYP */
+
+ /* Enable interrupts */
+ __HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_INI | CRYP_IT_OUTI);
+
+ /* Enable CRYP */
+ __HAL_CRYP_ENABLE(hcryp);
+
+#endif /* End AES or CRYP */
+ }
+ else
+ {
+ /* Process locked */
+ __HAL_UNLOCK(hcryp);
+
+ /* Change the CRYP state */
+ hcryp->State = HAL_CRYP_STATE_READY;
+ }
+
+ /* Return function status */
+ return HAL_OK;
+}
+/**
+ * @brief Decryption in ECB/CBC & CTR mode with AES Standard using DMA mode
+ * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
+ * the configuration information for CRYP module
+ * @retval HAL status
+ */
+static HAL_StatusTypeDef CRYP_AES_Decrypt_DMA(CRYP_HandleTypeDef *hcryp)
+{
+ __IO uint32_t count = 0U;
+
+ /* Key preparation for ECB/CBC */
+ if (hcryp->Init.Algorithm != CRYP_AES_CTR)
+ {
+#if defined (AES)
+ if (hcryp->AutoKeyDerivation == DISABLE)/*Mode 2 key preparation*/
+ {
+ /* Set key preparation for decryption operating mode*/
+ MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_KEYDERIVATION);
+
+ /* Set the Key*/
+ CRYP_SetKey(hcryp, hcryp->Init.KeySize);
+
+ /* Enable CRYP */
+ __HAL_CRYP_ENABLE(hcryp);
+
+ /* Wait for CCF flag to be raised */
+ count = CRYP_TIMEOUT_KEYPREPARATION;
+ do
+ {
+ count-- ;
+ if(count == 0U)
+ {
+ /* Disable the CRYP peripheral clock */
+ __HAL_CRYP_DISABLE(hcryp);
+
+ /* Change state */
+ hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
+ hcryp->State = HAL_CRYP_STATE_READY;
+
+ /* Process unlocked */
+ __HAL_UNLOCK(hcryp);
+ return HAL_ERROR;
+ }
+ }
+ while(HAL_IS_BIT_CLR(hcryp->Instance->SR, AES_SR_CCF));
+
+ /* Clear CCF Flag */
+ __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
+
+ /* Return to decryption operating mode(Mode 3)*/
+ MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_DECRYPT);
+ }
+ else /*Mode 4 : decryption & key preparation*/
+ {
+ /* Set the Key*/
+ CRYP_SetKey(hcryp, hcryp->Init.KeySize);
+
+ /* Set decryption & Key preparation operating mode*/
+ MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_KEYDERIVATION_DECRYPT);
+ }
+#else /* CRYP */
+ /* change ALGOMODE to key preparation for decryption*/
+ MODIFY_REG(hcryp->Instance->CR, CRYP_CR_ALGOMODE, CRYP_CR_ALGOMODE_AES_KEY );
+
+ /* Set the Key*/
+ CRYP_SetKey(hcryp, hcryp->Init.KeySize);
+
+ /* Enable CRYP */
+ __HAL_CRYP_ENABLE(hcryp);
+
+ /* Wait for BUSY flag to be raised */
+ count = CRYP_TIMEOUT_KEYPREPARATION;
+ do
+ {
+ count-- ;
+ if(count == 0U)
+ {
+ /* Disable the CRYP peripheral clock */
+ __HAL_CRYP_DISABLE(hcryp);
+
+ /* Change state */
+ hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
+ hcryp->State = HAL_CRYP_STATE_READY;
+
+ /* Process unlocked */
+ __HAL_UNLOCK(hcryp);
+ return HAL_ERROR;
+ }
+ }
+ while(HAL_IS_BIT_SET(hcryp->Instance->SR, CRYP_FLAG_BUSY));
+
+ /* Turn back to ALGOMODE of the configuration */
+ MODIFY_REG(hcryp->Instance->CR, CRYP_CR_ALGOMODE, hcryp->Init.Algorithm );
+
+#endif /* End AES or CRYP */
+ }
+ else /*Algorithm CTR */
+ {
+ /* Set the Key*/
+ CRYP_SetKey(hcryp, hcryp->Init.KeySize);
+ }
+
+ if (hcryp->Init.Algorithm != CRYP_AES_ECB)
+ {
+ /* Set the Initialization Vector*/
+#if defined (AES)
+ hcryp->Instance->IVR3 = *(uint32_t*)(hcryp->Init.pInitVect);
+ hcryp->Instance->IVR2 = *(uint32_t*)(hcryp->Init.pInitVect+1);
+ hcryp->Instance->IVR1 = *(uint32_t*)(hcryp->Init.pInitVect+2);
+ hcryp->Instance->IVR0 = *(uint32_t*)(hcryp->Init.pInitVect+3);
+#else /* CRYP */
+ hcryp->Instance->IV0LR = *(uint32_t*)(hcryp->Init.pInitVect);
+ hcryp->Instance->IV0RR = *(uint32_t*)(hcryp->Init.pInitVect+1);
+ hcryp->Instance->IV1LR = *(uint32_t*)(hcryp->Init.pInitVect+2);
+ hcryp->Instance->IV1RR = *(uint32_t*)(hcryp->Init.pInitVect+3);
+#endif /* End AES or CRYP */
+ }
+ /* Set the phase */
+ hcryp->Phase = CRYP_PHASE_PROCESS;
+
+ if(hcryp->Size != 0U)
+ {
+ /* Set the input and output addresses and start DMA transfer */
+ CRYP_SetDMAConfig(hcryp, (uint32_t)( hcryp->pCrypInBuffPtr), (hcryp->Size/4U), (uint32_t)(hcryp->pCrypOutBuffPtr));
+ }
+ else
+ {
+ /* Process unlocked */
+ __HAL_UNLOCK(hcryp);
+
+ /* Change the CRYP state */
+ hcryp->State = HAL_CRYP_STATE_READY;
+ }
+
+ /* Return function status */
+ return HAL_OK;
+}
+
+
+/**
+ * @brief DMA CRYP input data process complete callback.
+ * @param hdma: DMA handle
+ * @retval None
+ */
+static void CRYP_DMAInCplt(DMA_HandleTypeDef *hdma)
+{
+ CRYP_HandleTypeDef* hcryp = (CRYP_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent;
+
+ /* Disable the DMA transfer for input FIFO request by resetting the DIEN bit
+ in the DMACR register */
+#if defined (CRYP)
+ hcryp->Instance->DMACR &= (uint32_t)(~CRYP_DMACR_DIEN);
+
+#else /* AES */
+ CLEAR_BIT(hcryp->Instance->CR, AES_CR_DMAINEN);
+
+ /* TinyAES2, No output on CCM AES, unlock should be done when input data process complete */
+ if((hcryp->Init.Algorithm & CRYP_AES_CCM) == CRYP_AES_CCM)
+ {
+ /* Clear CCF flag */
+ __HAL_CRYP_CLEAR_FLAG(hcryp,CRYP_CCF_CLEAR);
+
+ /* Change the CRYP state to ready */
+ hcryp->State = HAL_CRYP_STATE_READY;
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(hcryp);
+ }
+#endif /* End AES or CRYP */
+
+ /* Call input data transfer complete callback */
+#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1)
+ /*Call registered Input complete callback*/
+ hcryp->InCpltCallback(hcryp);
+#else
+ /*Call legacy weak Input complete callback*/
+ HAL_CRYP_InCpltCallback(hcryp);
+#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
+}
+
+/**
+ * @brief DMA CRYP output data process complete callback.
+ * @param hdma: DMA handle
+ * @retval None
+ */
+static void CRYP_DMAOutCplt(DMA_HandleTypeDef *hdma)
+{
+ CRYP_HandleTypeDef* hcryp = (CRYP_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent;
+
+ /* Disable the DMA transfer for output FIFO request by resetting
+ the DOEN bit in the DMACR register */
+
+#if defined (CRYP)
+
+ hcryp->Instance->DMACR &= (uint32_t)(~CRYP_DMACR_DOEN);
+#if defined (CRYP_CR_ALGOMODE_AES_GCM)
+ if((hcryp->Init.Algorithm & CRYP_AES_GCM) != CRYP_AES_GCM)
+ {
+ /* Disable CRYP (not allowed in GCM)*/
+ __HAL_CRYP_DISABLE(hcryp);
+ }
+
+#else /*NO GCM CCM */
+ /* Disable CRYP */
+ __HAL_CRYP_DISABLE(hcryp);
+#endif /* GCM CCM defined*/
+#else /* AES */
+
+ CLEAR_BIT(hcryp->Instance->CR, AES_CR_DMAOUTEN);
+
+ /* Clear CCF flag */
+ __HAL_CRYP_CLEAR_FLAG(hcryp,CRYP_CCF_CLEAR);
+
+ if((hcryp->Init.Algorithm & CRYP_AES_GCM_GMAC) != CRYP_AES_GCM_GMAC)
+ {
+ /* Disable CRYP (not allowed in GCM)*/
+ __HAL_CRYP_DISABLE(hcryp);
+ }
+#endif /* End AES or CRYP */
+
+ /* Change the CRYP state to ready */
+ hcryp->State = HAL_CRYP_STATE_READY;
+
+ /* Process unlocked */
+ __HAL_UNLOCK(hcryp);
+ /* Call output data transfer complete callback */
+#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1)
+ /*Call registered Output complete callback*/
+ hcryp->OutCpltCallback(hcryp);
+#else
+ /*Call legacy weak Output complete callback*/
+ HAL_CRYP_OutCpltCallback(hcryp);
+#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
+}
+
+/**
+ * @brief DMA CRYP communication error callback.
+ * @param hdma: DMA handle
+ * @retval None
+ */
+static void CRYP_DMAError(DMA_HandleTypeDef *hdma)
+{
+ CRYP_HandleTypeDef* hcryp = (CRYP_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent;
+
+ /* Change the CRYP peripheral state */
+ hcryp->State= HAL_CRYP_STATE_READY;
+
+ /* DMA error code field */
+ hcryp->ErrorCode |= HAL_CRYP_ERROR_DMA;
+
+#if defined (AES)
+
+ /* Clear CCF flag */
+ __HAL_CRYP_CLEAR_FLAG(hcryp,CRYP_CCF_CLEAR);
+
+#endif /* AES */
+
+ /* Call error callback */
+#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1)
+ /*Call registered error callback*/
+ hcryp->ErrorCallback(hcryp);
+#else
+ /*Call legacy weak error callback*/
+ HAL_CRYP_ErrorCallback(hcryp);
+#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
+}
+
+/**
+ * @brief Set the DMA configuration and start the DMA transfer
+ * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
+ * the configuration information for CRYP module
+ * @param inputaddr: address of the input buffer
+ * @param Size: size of the input buffer, must be a multiple of 16.
+ * @param outputaddr: address of the output buffer
+ * @retval None
+ */
+static void CRYP_SetDMAConfig(CRYP_HandleTypeDef *hcryp, uint32_t inputaddr, uint16_t Size, uint32_t outputaddr)
+{
+ /* Set the CRYP DMA transfer complete callback */
+ hcryp->hdmain->XferCpltCallback = CRYP_DMAInCplt;
+
+ /* Set the DMA input error callback */
+ hcryp->hdmain->XferErrorCallback = CRYP_DMAError;
+
+ /* Set the CRYP DMA transfer complete callback */
+ hcryp->hdmaout->XferCpltCallback = CRYP_DMAOutCplt;
+
+ /* Set the DMA output error callback */
+ hcryp->hdmaout->XferErrorCallback = CRYP_DMAError;
+
+#if defined (CRYP)
+
+ /* Enable CRYP */
+ __HAL_CRYP_ENABLE(hcryp);
+
+ /* Enable the input DMA Stream */
+ if ( HAL_DMA_Start_IT(hcryp->hdmain, inputaddr, (uint32_t)&hcryp->Instance->DIN, Size)!=HAL_OK)
+ {
+ /* DMA error code field */
+ hcryp->ErrorCode |= HAL_CRYP_ERROR_DMA;
+
+ /* Call error callback */
+#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1)
+ /*Call registered error callback*/
+ hcryp->ErrorCallback(hcryp);
+#else
+ /*Call legacy weak error callback*/
+ HAL_CRYP_ErrorCallback(hcryp);
+#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
+ }
+ /* Enable the output DMA Stream */
+ if (HAL_DMA_Start_IT(hcryp->hdmaout, (uint32_t)&hcryp->Instance->DOUT, outputaddr, Size)!=HAL_OK)
+ {
+ /* DMA error code field */
+ hcryp->ErrorCode |= HAL_CRYP_ERROR_DMA;
+
+ /* Call error callback */
+#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1)
+ /*Call registered error callback*/
+ hcryp->ErrorCallback(hcryp);
+#else
+ /*Call legacy weak error callback*/
+ HAL_CRYP_ErrorCallback(hcryp);
+#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
+ }
+ /* Enable In/Out DMA request */
+ hcryp->Instance->DMACR = CRYP_DMACR_DOEN | CRYP_DMACR_DIEN;
+
+#else /* AES */
+
+ if(((hcryp->Init.Algorithm & CRYP_AES_GCM_GMAC) != CRYP_AES_GCM_GMAC) && ((hcryp->Init.Algorithm & CRYP_AES_CCM) != CRYP_AES_CCM))
+ {
+ /* Enable CRYP (not allowed in GCM & CCM)*/
+ __HAL_CRYP_ENABLE(hcryp);
+ }
+
+ /* Enable the DMA input stream */
+ if (HAL_DMA_Start_IT(hcryp->hdmain, inputaddr, (uint32_t)&hcryp->Instance->DINR, Size)!=HAL_OK)
+ {
+ /* DMA error code field */
+ hcryp->ErrorCode |= HAL_CRYP_ERROR_DMA;
+
+ /* Call error callback */
+#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1)
+ /*Call registered error callback*/
+ hcryp->ErrorCallback(hcryp);
+#else
+ /*Call legacy weak error callback*/
+ HAL_CRYP_ErrorCallback(hcryp);
+#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
+ }
+ /* Enable the DMA output stream */
+ if (HAL_DMA_Start_IT(hcryp->hdmaout, (uint32_t)&hcryp->Instance->DOUTR, outputaddr, Size)!=HAL_OK)
+ {
+ /* DMA error code field */
+ hcryp->ErrorCode |= HAL_CRYP_ERROR_DMA;
+
+ /* Call error callback */
+#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1)
+ /*Call registered error callback*/
+ hcryp->ErrorCallback(hcryp);
+#else
+ /*Call legacy weak error callback*/
+ HAL_CRYP_ErrorCallback(hcryp);
+#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
+ }
+ /*AES2v1.1.1 : CCM authentication : no init phase, only header and final phase */
+ /* Enable In and Out DMA requests */
+ if((hcryp->Init.Algorithm & CRYP_AES_CCM) == CRYP_AES_CCM)
+ {
+ /* Enable only In DMA requests for CCM*/
+ SET_BIT(hcryp->Instance->CR, (AES_CR_DMAINEN ));
+ }
+ else
+ {
+ /* Enable In and Out DMA requests */
+ SET_BIT(hcryp->Instance->CR, (AES_CR_DMAINEN | AES_CR_DMAOUTEN));
+ }
+#endif /* End AES or CRYP */
+}
+
+/**
+ * @brief Process Data: Write Input data in polling mode and used in AES functions.
+ * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
+ * the configuration information for CRYP module
+ * @param Timeout: Specify Timeout value
+ * @retval None
+ */
+static void CRYP_AES_ProcessData(CRYP_HandleTypeDef *hcryp, uint32_t Timeout)
+{
+
+ uint32_t temp; /* Temporary CrypOutBuff */
+#if defined (CRYP)
+ uint16_t incount; /* Temporary CrypInCount Value */
+ uint16_t outcount; /* Temporary CrypOutCount Value */
+#endif
+
+#if defined (CRYP)
+
+ /*Temporary CrypOutCount Value*/
+ incount = hcryp->CrypInCount;
+
+ if(((hcryp->Instance->SR & CRYP_FLAG_IFNF ) != 0x0U) && (incount < (hcryp->Size/4U)))
+ {
+ /* Write the input block in the IN FIFO */
+ hcryp->Instance->DIN = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount );
+ hcryp->CrypInCount++;
+ hcryp->Instance->DIN = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount );
+ hcryp->CrypInCount++;
+ hcryp->Instance->DIN = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount );
+ hcryp->CrypInCount++;
+ hcryp->Instance->DIN = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount );
+ hcryp->CrypInCount++;
+ }
+
+ /* Wait for OFNE flag to be raised */
+ if(CRYP_WaitOnOFNEFlag(hcryp, Timeout) != HAL_OK)
+ {
+ /* Disable the CRYP peripheral clock */
+ __HAL_CRYP_DISABLE(hcryp);
+
+ /* Change state & error code*/
+ hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
+ hcryp->State = HAL_CRYP_STATE_READY;
+
+ /* Process unlocked */
+ __HAL_UNLOCK(hcryp);
+#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1)
+ /*Call registered error callback*/
+ hcryp->ErrorCallback(hcryp);
+#else
+ /*Call legacy weak error callback*/
+ HAL_CRYP_ErrorCallback(hcryp);
+#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
+ }
+
+ /*Temporary CrypOutCount Value*/
+ outcount = hcryp->CrypOutCount;
+
+ if(((hcryp->Instance->SR & CRYP_FLAG_OFNE ) != 0x0U) && (outcount < (hcryp->Size/4U)))
+ {
+ /* Read the output block from the Output FIFO and put them in temporary buffer then get CrypOutBuff from temporary buffer */
+ temp = hcryp->Instance->DOUT;
+ *(uint32_t *)(hcryp->pCrypOutBuffPtr + hcryp->CrypOutCount) = temp;
+ hcryp->CrypOutCount++;
+ temp = hcryp->Instance->DOUT;
+ *(uint32_t *)(hcryp->pCrypOutBuffPtr + hcryp->CrypOutCount) = temp;
+ hcryp->CrypOutCount++;
+ temp = hcryp->Instance->DOUT;
+ *(uint32_t *)(hcryp->pCrypOutBuffPtr + hcryp->CrypOutCount) = temp;
+ hcryp->CrypOutCount++;
+ temp = hcryp->Instance->DOUT;
+ *(uint32_t *)(hcryp->pCrypOutBuffPtr + hcryp->CrypOutCount) = temp;
+ hcryp->CrypOutCount++;
+ }
+
+#else /* AES */
+
+ /* Write the input block in the IN FIFO */
+ hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount );
+ hcryp->CrypInCount++;
+ hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount );
+ hcryp->CrypInCount++;
+ hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount );
+ hcryp->CrypInCount++;
+ hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount );
+ hcryp->CrypInCount++;
+
+ /* Wait for CCF flag to be raised */
+ if(CRYP_WaitOnCCFlag(hcryp, Timeout) != HAL_OK)
+ {
+ /* Disable the CRYP peripheral clock */
+ __HAL_CRYP_DISABLE(hcryp);
+
+ /* Change state */
+ hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
+ hcryp->State = HAL_CRYP_STATE_READY;
+
+ /* Process unlocked */
+ __HAL_UNLOCK(hcryp);
+#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1)
+ /*Call registered error callback*/
+ hcryp->ErrorCallback(hcryp);
+#else
+ /*Call legacy weak error callback*/
+ HAL_CRYP_ErrorCallback(hcryp);
+#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
+ }
+
+ /* Clear CCF Flag */
+ __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
+
+ /* Read the output block from the output FIFO and put them in temporary buffer then get CrypOutBuff from temporary buffer*/
+ temp = hcryp->Instance->DOUTR;
+ *(uint32_t *)(hcryp->pCrypOutBuffPtr + (hcryp->CrypOutCount)) =temp;
+ hcryp->CrypOutCount++;
+ temp = hcryp->Instance->DOUTR;
+ *(uint32_t *)(hcryp->pCrypOutBuffPtr + hcryp->CrypOutCount) =temp;
+ hcryp->CrypOutCount++;
+ temp = hcryp->Instance->DOUTR;
+ *(uint32_t *)(hcryp->pCrypOutBuffPtr + (hcryp->CrypOutCount)) = temp;
+ hcryp->CrypOutCount++;
+ temp = hcryp->Instance->DOUTR;
+ *(uint32_t *)(hcryp->pCrypOutBuffPtr + hcryp->CrypOutCount) = temp;
+ hcryp->CrypOutCount++;
+
+#endif /* End AES or CRYP */
+}
+
+/**
+ * @brief Handle CRYP block input/output data handling under interruption.
+ * @note The function is called under interruption only, once
+ * interruptions have been enabled by HAL_CRYP_Encrypt_IT or HAL_CRYP_Decrypt_IT.
+ * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
+ * the configuration information for CRYP module.
+ * @retval HAL status
+ */
+static void CRYP_AES_IT(CRYP_HandleTypeDef *hcryp)
+{
+ uint32_t temp; /* Temporary CrypOutBuff */
+#if defined (CRYP)
+ uint16_t incount; /* Temporary CrypInCount Value */
+ uint16_t outcount; /* Temporary CrypOutCount Value */
+#endif
+
+ if(hcryp->State == HAL_CRYP_STATE_BUSY)
+ {
+#if defined (CRYP)
+
+ /*Temporary CrypOutCount Value*/
+ incount = hcryp->CrypInCount;
+ if(((hcryp->Instance->SR & CRYP_FLAG_IFNF ) != 0x0U) && (incount < (hcryp->Size/4U)))
+ {
+ /* Write the input block in the IN FIFO */
+ hcryp->Instance->DIN = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount );
+ hcryp->CrypInCount++;
+ hcryp->Instance->DIN = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount );
+ hcryp->CrypInCount++;
+ hcryp->Instance->DIN = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount );
+ hcryp->CrypInCount++;
+ hcryp->Instance->DIN = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount );
+ hcryp->CrypInCount++;
+ if(hcryp->CrypInCount == ((uint16_t)(hcryp->Size)/4U))
+ {
+ /* Disable interrupts */
+ __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_INI);
+
+ /* Call the input data transfer complete callback */
+#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1)
+ /*Call registered Input complete callback*/
+ hcryp->InCpltCallback(hcryp);
+#else
+ /*Call legacy weak Input complete callback*/
+ HAL_CRYP_InCpltCallback(hcryp);
+#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
+ }
+ }
+ /*Temporary CrypOutCount Value*/
+ outcount = hcryp->CrypOutCount;
+
+ if(((hcryp->Instance->SR & CRYP_FLAG_OFNE ) != 0x0U) && (outcount < (hcryp->Size/4U)))
+ {
+ /* Read the output block from the output FIFO and put them in temporary buffer then get CrypOutBuff from temporary buffer */
+ temp = hcryp->Instance->DOUT;
+ *(uint32_t *)(hcryp->pCrypOutBuffPtr + hcryp->CrypOutCount) = temp;
+ hcryp->CrypOutCount++;
+ temp = hcryp->Instance->DOUT;
+ *(uint32_t *)(hcryp->pCrypOutBuffPtr + hcryp->CrypOutCount) = temp;
+ hcryp->CrypOutCount++;
+ temp = hcryp->Instance->DOUT;
+ *(uint32_t *)(hcryp->pCrypOutBuffPtr + hcryp->CrypOutCount) = temp;
+ hcryp->CrypOutCount++;
+ temp = hcryp->Instance->DOUT;
+ *(uint32_t *)(hcryp->pCrypOutBuffPtr + hcryp->CrypOutCount) = temp;
+ hcryp->CrypOutCount++;
+ if(hcryp->CrypOutCount == ((uint16_t)(hcryp->Size)/4U))
+ {
+ /* Disable interrupts */
+ __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_OUTI);
+
+ /* Change the CRYP state */
+ hcryp->State = HAL_CRYP_STATE_READY;
+
+ /* Disable CRYP */
+ __HAL_CRYP_DISABLE(hcryp);
+
+ /* Process unlocked */
+ __HAL_UNLOCK(hcryp);
+
+ /* Call Output transfer complete callback */
+#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1)
+ /*Call registered Output complete callback*/
+ hcryp->OutCpltCallback(hcryp);
+#else
+ /*Call legacy weak Output complete callback*/
+ HAL_CRYP_OutCpltCallback(hcryp);
+#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
+ }
+ }
+
+#else /*AES*/
+
+ /* Read the output block from the output FIFO and put them in temporary buffer then get CrypOutBuff from temporary buffer*/
+ temp = hcryp->Instance->DOUTR;
+ *(uint32_t *)(hcryp->pCrypOutBuffPtr + (hcryp->CrypOutCount)) =temp;
+ hcryp->CrypOutCount++;
+ temp = hcryp->Instance->DOUTR;
+ *(uint32_t *)(hcryp->pCrypOutBuffPtr + hcryp->CrypOutCount) =temp;
+ hcryp->CrypOutCount++;
+ temp = hcryp->Instance->DOUTR;
+ *(uint32_t *)(hcryp->pCrypOutBuffPtr + (hcryp->CrypOutCount)) = temp;
+ hcryp->CrypOutCount++;
+ temp = hcryp->Instance->DOUTR;
+ *(uint32_t *)(hcryp->pCrypOutBuffPtr + hcryp->CrypOutCount) = temp;
+ hcryp->CrypOutCount++;
+
+ if(hcryp->CrypOutCount == (hcryp->Size/4U))
+ {
+ /* Disable Computation Complete flag and errors interrupts */
+ __HAL_CRYP_DISABLE_IT(hcryp,CRYP_IT_CCFIE|CRYP_IT_ERRIE);
+
+ /* Change the CRYP state */
+ hcryp->State = HAL_CRYP_STATE_READY;
+
+ /* Disable CRYP */
+ __HAL_CRYP_DISABLE(hcryp);
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(hcryp);
+
+ /* Call Output transfer complete callback */
+#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1)
+ /*Call registered Output complete callback*/
+ hcryp->OutCpltCallback(hcryp);
+#else
+ /*Call legacy weak Output complete callback*/
+ HAL_CRYP_OutCpltCallback(hcryp);
+#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
+ }
+ else
+ {
+ /* Write the input block in the IN FIFO */
+ hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount );
+ hcryp->CrypInCount++;
+ hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount );
+ hcryp->CrypInCount++;
+ hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount );
+ hcryp->CrypInCount++;
+ hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount );
+ hcryp->CrypInCount++;
+
+ if(hcryp->CrypInCount == (hcryp->Size/4U))
+ {
+ /* Call Input transfer complete callback */
+#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U)
+ /*Call registered Input complete callback*/
+ hcryp->InCpltCallback(hcryp);
+#else
+ /*Call legacy weak Input complete callback*/
+ HAL_CRYP_InCpltCallback(hcryp);
+#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
+ }
+ }
+#endif /* End AES or CRYP */
+
+ }
+ else
+ {
+ /* Busy error code field */
+ hcryp->ErrorCode |= HAL_CRYP_ERROR_BUSY;
+#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1)
+ /*Call registered error callback*/
+ hcryp->ErrorCallback(hcryp);
+#else
+ /*Call legacy weak error callback*/
+ HAL_CRYP_ErrorCallback(hcryp);
+#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
+ }
+}
+
+/**
+ * @brief Writes Key in Key registers.
+ * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
+ * the configuration information for CRYP module
+ * @param KeySize: Size of Key
+ * @retval None
+ */
+static void CRYP_SetKey(CRYP_HandleTypeDef *hcryp, uint32_t KeySize)
+{
+#if defined (CRYP)
+
+ switch(KeySize)
+ {
+ case CRYP_KEYSIZE_256B:
+ hcryp->Instance->K0LR = *(uint32_t*)(hcryp->Init.pKey);
+ hcryp->Instance->K0RR = *(uint32_t*)(hcryp->Init.pKey+1);
+ hcryp->Instance->K1LR = *(uint32_t*)(hcryp->Init.pKey+2);
+ hcryp->Instance->K1RR = *(uint32_t*)(hcryp->Init.pKey+3);
+ hcryp->Instance->K2LR = *(uint32_t*)(hcryp->Init.pKey+4);
+ hcryp->Instance->K2RR = *(uint32_t*)(hcryp->Init.pKey+5);
+ hcryp->Instance->K3LR = *(uint32_t*)(hcryp->Init.pKey+6);
+ hcryp->Instance->K3RR = *(uint32_t*)(hcryp->Init.pKey+7);
+ break;
+ case CRYP_KEYSIZE_192B:
+ hcryp->Instance->K1LR = *(uint32_t*)(hcryp->Init.pKey);
+ hcryp->Instance->K1RR = *(uint32_t*)(hcryp->Init.pKey+1);
+ hcryp->Instance->K2LR = *(uint32_t*)(hcryp->Init.pKey+2);
+ hcryp->Instance->K2RR = *(uint32_t*)(hcryp->Init.pKey+3);
+ hcryp->Instance->K3LR = *(uint32_t*)(hcryp->Init.pKey+4);
+ hcryp->Instance->K3RR = *(uint32_t*)(hcryp->Init.pKey+5);
+ break;
+ case CRYP_KEYSIZE_128B:
+ hcryp->Instance->K2LR = *(uint32_t*)(hcryp->Init.pKey);
+ hcryp->Instance->K2RR = *(uint32_t*)(hcryp->Init.pKey+1);
+ hcryp->Instance->K3LR = *(uint32_t*)(hcryp->Init.pKey+2);
+ hcryp->Instance->K3RR = *(uint32_t*)(hcryp->Init.pKey+3);
+
+ break;
+ default:
+ break;
+ }
+#else /*AES*/
+ switch(KeySize)
+ {
+ case CRYP_KEYSIZE_256B:
+ hcryp->Instance->KEYR7 =*(uint32_t*)(hcryp->Init.pKey);
+ hcryp->Instance->KEYR6 =*(uint32_t*)(hcryp->Init.pKey+1);
+ hcryp->Instance->KEYR5 =*(uint32_t*)(hcryp->Init.pKey+2);
+ hcryp->Instance->KEYR4 =*(uint32_t*)(hcryp->Init.pKey+3);
+ hcryp->Instance->KEYR3 =*(uint32_t*)(hcryp->Init.pKey+4);
+ hcryp->Instance->KEYR2 =*(uint32_t*)(hcryp->Init.pKey+5);
+ hcryp->Instance->KEYR1 =*(uint32_t*)(hcryp->Init.pKey+6);
+ hcryp->Instance->KEYR0 =*(uint32_t*)(hcryp->Init.pKey+7);
+ break;
+ case CRYP_KEYSIZE_128B:
+ hcryp->Instance->KEYR3 =*(uint32_t*)(hcryp->Init.pKey);
+ hcryp->Instance->KEYR2 =*(uint32_t*)(hcryp->Init.pKey+1);
+ hcryp->Instance->KEYR1 =*(uint32_t*)(hcryp->Init.pKey+2);
+ hcryp->Instance->KEYR0 =*(uint32_t*)(hcryp->Init.pKey+3);
+
+ break;
+ default:
+ break;
+ }
+#endif /* End AES or CRYP */
+}
+
+#if defined (CRYP_CR_ALGOMODE_AES_GCM)|| defined (AES)
+/**
+ * @brief Encryption/Decryption process in AES GCM mode and prepare the authentication TAG
+ * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
+ * the configuration information for CRYP module
+ * @param Timeout: Timeout duration
+ * @retval HAL status
+ */
+static HAL_StatusTypeDef CRYP_AESGCM_Process(CRYP_HandleTypeDef *hcryp, uint32_t Timeout)
+{
+ uint32_t tickstart;
+ uint32_t wordsize = (uint32_t)(hcryp->Size)/4U ;
+ uint16_t outcount; /* Temporary CrypOutCount Value */
+
+ /* Reset CrypHeaderCount */
+ hcryp->CrypHeaderCount = 0U;
+
+ /****************************** Init phase **********************************/
+
+ CRYP_SET_PHASE(hcryp,CRYP_PHASE_INIT);
+
+ /* Set the key */
+ CRYP_SetKey(hcryp, hcryp->Init.KeySize);
+
+#if defined(CRYP)
+
+ /* Set the initialization vector and the counter : Initial Counter Block (ICB)*/
+ hcryp->Instance->IV0LR = *(uint32_t*)(hcryp->Init.pInitVect);
+ hcryp->Instance->IV0RR = *(uint32_t*)(hcryp->Init.pInitVect+1);
+ hcryp->Instance->IV1LR = *(uint32_t*)(hcryp->Init.pInitVect+2);
+ hcryp->Instance->IV1RR = *(uint32_t*)(hcryp->Init.pInitVect+3);
+
+ /* Enable the CRYP peripheral */
+ __HAL_CRYP_ENABLE(hcryp);
+
+ /* Get tick */
+ tickstart = HAL_GetTick();
+
+ /*Wait for the CRYPEN bit to be cleared*/
+ while((hcryp->Instance->CR & CRYP_CR_CRYPEN) == CRYP_CR_CRYPEN)
+ {
+ /* Check for the Timeout */
+ if(Timeout != HAL_MAX_DELAY)
+ {
+ if(((HAL_GetTick() - tickstart ) > Timeout)||(Timeout == 0U))
+ {
+ /* Disable the CRYP peripheral clock */
+ __HAL_CRYP_DISABLE(hcryp);
+
+ /* Change state */
+ hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
+ hcryp->State = HAL_CRYP_STATE_READY;
+
+ /* Process unlocked */
+ __HAL_UNLOCK(hcryp);
+ return HAL_ERROR;
+ }
+ }
+ }
+
+#else /* AES */
+ /* Workaround 1 : only AES.
+ Datatype configuration must be 32 bits during Init phase. Only, after Init, and before re
+ enabling the IP, datatype different from 32 bits can be configured.*/
+ /* Select DATATYPE 32 */
+ MODIFY_REG(hcryp->Instance->CR, AES_CR_DATATYPE, CRYP_DATATYPE_32B);
+
+ /* Set the initialization vector and the counter : Initial Counter Block (ICB)*/
+ hcryp->Instance->IVR3 = *(uint32_t*)(hcryp->Init.pInitVect);
+ hcryp->Instance->IVR2 = *(uint32_t*)(hcryp->Init.pInitVect+1);
+ hcryp->Instance->IVR1 = *(uint32_t*)(hcryp->Init.pInitVect+2);
+ hcryp->Instance->IVR0 = *(uint32_t*)(hcryp->Init.pInitVect+3);
+
+ /* Enable the CRYP peripheral */
+ __HAL_CRYP_ENABLE(hcryp);
+
+ /* just wait for hash computation */
+ if(CRYP_WaitOnCCFlag(hcryp, Timeout) != HAL_OK)
+ {
+ /* Change state */
+ hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
+ hcryp->State = HAL_CRYP_STATE_READY;
+
+ /* Process unlocked & return error */
+ __HAL_UNLOCK(hcryp);
+ return HAL_ERROR;
+ }
+ /* Clear CCF flag */
+ __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
+
+#endif /* End AES or CRYP */
+
+ /************************ Header phase *************************************/
+
+ if(CRYP_GCMCCM_SetHeaderPhase(hcryp, Timeout) != HAL_OK)
+ {
+ return HAL_ERROR;
+ }
+
+ /*************************Payload phase ************************************/
+
+ /* Set the phase */
+ hcryp->Phase = CRYP_PHASE_PROCESS;
+
+#if defined(CRYP)
+
+ /* Disable the CRYP peripheral */
+ __HAL_CRYP_DISABLE(hcryp);
+
+ /* Select payload phase once the header phase is performed */
+ CRYP_SET_PHASE(hcryp, CRYP_PHASE_PAYLOAD);
+
+ /* Enable the CRYP peripheral */
+ __HAL_CRYP_ENABLE(hcryp);
+
+#else /* AES */
+
+ /* Select payload phase once the header phase is performed */
+ CRYP_SET_PHASE(hcryp, CRYP_PHASE_PAYLOAD);
+
+#endif /* End AES or CRYP */
+
+ if ((hcryp->Size % 16U) != 0U)
+ {
+ /* recalculate wordsize */
+ wordsize = ((wordsize/4U)*4U) ;
+ }
+
+ /* Get tick */
+ tickstart = HAL_GetTick();
+ /*Temporary CrypOutCount Value*/
+ outcount = hcryp->CrypOutCount;
+
+ /* Write input data and get output Data */
+ while((hcryp->CrypInCount < wordsize) && (outcount < wordsize))
+ {
+ /* Write plain data and get cipher data */
+ CRYP_AES_ProcessData(hcryp,Timeout);
+
+ /*Temporary CrypOutCount Value*/
+ outcount = hcryp->CrypOutCount;
+
+ /* Check for the Timeout */
+ if(Timeout != HAL_MAX_DELAY)
+ {
+ if(((HAL_GetTick() - tickstart ) > Timeout)||(Timeout == 0U))
+ {
+ /* Disable the CRYP peripheral clock */
+ __HAL_CRYP_DISABLE(hcryp);
+
+ /* Change state & error code */
+ hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
+ hcryp->State = HAL_CRYP_STATE_READY;
+
+ /* Process unlocked */
+ __HAL_UNLOCK(hcryp);
+ return HAL_ERROR;
+ }
+ }
+ }
+
+ if ((hcryp->Size % 16U) != 0U)
+ {
+ /* Workaround 2 : CRYP1 & AES generates correct TAG for GCM mode only when input block size is multiple of
+ 128 bits. If lthe size of the last block of payload is inferior to 128 bits, when GCM encryption
+ is selected, then the TAG message will be wrong.*/
+ CRYP_Workaround(hcryp,Timeout);
+ }
+
+ /* Return function status */
+ return HAL_OK;
+}
+
+/**
+ * @brief Encryption/Decryption process in AES GCM mode and prepare the authentication TAG in interrupt mode
+ * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
+ * the configuration information for CRYP module
+ * @retval HAL status
+ */
+static HAL_StatusTypeDef CRYP_AESGCM_Process_IT(CRYP_HandleTypeDef *hcryp)
+{
+ __IO uint32_t count = 0U;
+#if defined(AES)
+ uint32_t loopcounter;
+ uint32_t lastwordsize;
+ uint32_t npblb;
+#endif /* AES */
+
+ /* Reset CrypHeaderCount */
+ hcryp->CrypHeaderCount =0U;
+
+ /******************************* Init phase *********************************/
+
+ CRYP_SET_PHASE(hcryp,CRYP_PHASE_INIT);
+
+ /* Set the key */
+ CRYP_SetKey(hcryp, hcryp->Init.KeySize);
+
+#if defined(CRYP)
+ /* Set the initialization vector and the counter : Initial Counter Block (ICB)*/
+ hcryp->Instance->IV0LR = *(uint32_t*)(hcryp->Init.pInitVect);
+ hcryp->Instance->IV0RR = *(uint32_t*)(hcryp->Init.pInitVect+1);
+ hcryp->Instance->IV1LR = *(uint32_t*)(hcryp->Init.pInitVect+2);
+ hcryp->Instance->IV1RR = *(uint32_t*)(hcryp->Init.pInitVect+3);
+
+ /* Enable the CRYP peripheral */
+ __HAL_CRYP_ENABLE(hcryp);
+
+ /*Wait for the CRYPEN bit to be cleared*/
+ count = CRYP_TIMEOUT_GCMCCMINITPHASE;
+ do
+ {
+ count-- ;
+ if(count == 0U)
+ {
+ /* Disable the CRYP peripheral clock */
+ __HAL_CRYP_DISABLE(hcryp);
+
+ /* Change state */
+ hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
+ hcryp->State = HAL_CRYP_STATE_READY;
+
+ /* Process unlocked */
+ __HAL_UNLOCK(hcryp);
+ return HAL_ERROR;
+ }
+ }
+ while((hcryp->Instance->CR & CRYP_CR_CRYPEN) == CRYP_CR_CRYPEN);
+
+#else /* AES */
+
+ /* Workaround 1 : only AES
+ Datatype configuration must be 32 bits during INIT phase. Only, after INIT, and before re
+ enabling the IP, datatype different from 32 bits can be configured.*/
+ /* Select DATATYPE 32 */
+ MODIFY_REG(hcryp->Instance->CR, AES_CR_DATATYPE, CRYP_DATATYPE_32B);
+
+ /* Set the initialization vector and the counter : Initial Counter Block (ICB)*/
+ hcryp->Instance->IVR3 = *(uint32_t*)(hcryp->Init.pInitVect);
+ hcryp->Instance->IVR2 = *(uint32_t*)(hcryp->Init.pInitVect+1);
+ hcryp->Instance->IVR1 = *(uint32_t*)(hcryp->Init.pInitVect+2);
+ hcryp->Instance->IVR0 = *(uint32_t*)(hcryp->Init.pInitVect+3);
+
+ /* Enable the CRYP peripheral */
+ __HAL_CRYP_ENABLE(hcryp);
+
+ /* just wait for hash computation */
+ count = CRYP_TIMEOUT_GCMCCMINITPHASE;
+ do
+ {
+ count-- ;
+ if(count == 0U)
+ {
+ /* Disable the CRYP peripheral clock */
+ __HAL_CRYP_DISABLE(hcryp);
+
+ /* Change state */
+ hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
+ hcryp->State = HAL_CRYP_STATE_READY;
+
+ /* Process unlocked */
+ __HAL_UNLOCK(hcryp);
+ return HAL_ERROR;
+ }
+ }
+ while(HAL_IS_BIT_CLR(hcryp->Instance->SR, AES_SR_CCF));
+
+ /* Clear CCF flag */
+ __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
+
+#endif /* End AES or CRYP */
+
+ /***************************** Header phase *********************************/
+
+#if defined(CRYP)
+
+ /* Select header phase */
+ CRYP_SET_PHASE(hcryp, CRYP_PHASE_HEADER);
+
+ /* Enable interrupts */
+ __HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_INI);
+
+ /* Enable CRYP */
+ __HAL_CRYP_ENABLE(hcryp);
+
+#else /* AES */
+
+ /* Workaround 1: only AES , before re-enabling the IP, datatype can be configured*/
+ MODIFY_REG(hcryp->Instance->CR, AES_CR_DATATYPE, hcryp->Init.DataType);
+
+ /* Select header phase */
+ CRYP_SET_PHASE(hcryp, CRYP_PHASE_HEADER);
+
+ /* Enable computation complete flag and error interrupts */
+ __HAL_CRYP_ENABLE_IT(hcryp,CRYP_IT_CCFIE | CRYP_IT_ERRIE);
+
+ /* Enable the CRYP peripheral */
+ __HAL_CRYP_ENABLE(hcryp);
+
+ if(hcryp->Init.HeaderSize == 0U) /*header phase is skipped*/
+ {
+ /* Set the phase */
+ hcryp->Phase = CRYP_PHASE_PROCESS;
+
+ /* Select payload phase once the header phase is performed */
+ MODIFY_REG(hcryp->Instance->CR, AES_CR_GCMPH, CRYP_PHASE_PAYLOAD);
+
+ /* Write the payload Input block in the IN FIFO */
+ if(hcryp->Size == 0U)
+ {
+ /* Disable interrupts */
+ __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_CCFIE| CRYP_IT_ERRIE);
+
+ /* Change the CRYP state */
+ hcryp->State = HAL_CRYP_STATE_READY;
+
+ /* Process unlocked */
+ __HAL_UNLOCK(hcryp);
+ }
+ else if (hcryp->Size >= 16U)
+ {
+ hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount );
+ hcryp->CrypInCount++;
+ hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount );
+ hcryp->CrypInCount++;
+ hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount );
+ hcryp->CrypInCount++;
+ hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount );
+ hcryp->CrypInCount++;
+ if(hcryp->CrypInCount == ( hcryp->Size/4U))
+ {
+ /* Call Input transfer complete callback */
+#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1)
+ /*Call registered Input complete callback*/
+ hcryp->InCpltCallback(hcryp);
+#else
+ /*Call legacy weak Input complete callback*/
+ HAL_CRYP_InCpltCallback(hcryp);
+#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
+ }
+ }
+ else /* Size < 16Bytes : first block is the last block*/
+ {
+ /* Workaround not implemented*/
+ /* Size should be %4 otherwise Tag will be incorrectly generated for GCM Encryption:
+ Workaround is implemented in polling mode, so if last block of
+ payload <128bit don't use CRYP_Encrypt_IT otherwise TAG is incorrectly generated for GCM Encryption. */
+
+ /* Compute the number of padding bytes in last block of payload */
+ npblb = 16U- (uint32_t)(hcryp->Size);
+
+ /* Number of valid words (lastwordsize) in last block */
+ if ((npblb % 4U) ==0U)
+ {
+ lastwordsize = (16U-npblb)/4U;
+ }
+ else
+ {
+ lastwordsize = ((16U-npblb)/4U) +1U;
+ }
+
+ /* last block optionally pad the data with zeros*/
+ for(loopcounter = 0U; loopcounter < lastwordsize ; loopcounter++)
+ {
+ hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount );
+ hcryp->CrypInCount++;
+ }
+ while(loopcounter < 4U )
+ {
+ /* pad the data with zeros to have a complete block */
+ hcryp->Instance->DINR = 0x0U;
+ loopcounter++;
+ }
+ }
+ }
+ else if ((hcryp->Init.HeaderSize) < 4U)
+ {
+ for(loopcounter = 0U; loopcounter < hcryp->Init.HeaderSize ; loopcounter++)
+ {
+ hcryp->Instance->DINR = *(uint32_t*)(hcryp->Init.Header + hcryp->CrypHeaderCount);
+ hcryp->CrypHeaderCount++ ;
+ }
+ while(loopcounter < 4U )
+ {
+ /* pad the data with zeros to have a complete block */
+ hcryp->Instance->DINR = 0x0U;
+ loopcounter++;
+ }
+ /* Set the phase */
+ hcryp->Phase = CRYP_PHASE_PROCESS;
+
+ /* Select payload phase once the header phase is performed */
+ CRYP_SET_PHASE(hcryp, CRYP_PHASE_PAYLOAD);
+
+ /* Call Input transfer complete callback */
+#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1)
+ /*Call registered Input complete callback*/
+ hcryp->InCpltCallback(hcryp);
+#else
+ /*Call legacy weak Input complete callback*/
+ HAL_CRYP_InCpltCallback(hcryp);
+#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
+ }
+ else if ((hcryp->Init.HeaderSize) >= 4U)
+ {
+ /* Write the input block in the IN FIFO */
+ hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount );
+ hcryp->CrypHeaderCount++;
+ hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount );
+ hcryp->CrypHeaderCount++;
+ hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount );
+ hcryp->CrypHeaderCount++;
+ hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount );
+ hcryp->CrypHeaderCount++;
+ }
+ else
+ {
+ /* Nothing to do */
+ }
+
+#endif /* End AES or CRYP */
+
+ /* Return function status */
+ return HAL_OK;
+}
+
+
+/**
+ * @brief Encryption/Decryption process in AES GCM mode and prepare the authentication TAG using DMA
+ * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
+ * the configuration information for CRYP module
+ * @retval HAL status
+ */
+static HAL_StatusTypeDef CRYP_AESGCM_Process_DMA(CRYP_HandleTypeDef *hcryp)
+{
+ __IO uint32_t count = 0U;
+ uint32_t wordsize;
+
+ /* Reset CrypHeaderCount */
+ hcryp->CrypHeaderCount = 0U;
+
+ /*************************** Init phase ************************************/
+
+ CRYP_SET_PHASE(hcryp,CRYP_PHASE_INIT);
+
+ /* Set the key */
+ CRYP_SetKey(hcryp, hcryp->Init.KeySize);
+
+#if defined(CRYP)
+ /* Set the initialization vector and the counter : Initial Counter Block (ICB)*/
+ hcryp->Instance->IV0LR = *(uint32_t*)(hcryp->Init.pInitVect);
+ hcryp->Instance->IV0RR = *(uint32_t*)(hcryp->Init.pInitVect+1);
+ hcryp->Instance->IV1LR = *(uint32_t*)(hcryp->Init.pInitVect+2);
+ hcryp->Instance->IV1RR = *(uint32_t*)(hcryp->Init.pInitVect+3);
+
+ /* Enable the CRYP peripheral */
+ __HAL_CRYP_ENABLE(hcryp);
+
+ /*Wait for the CRYPEN bit to be cleared*/
+ count = CRYP_TIMEOUT_GCMCCMINITPHASE;
+ do
+ {
+ count-- ;
+ if(count == 0U)
+ {
+ /* Disable the CRYP peripheral clock */
+ __HAL_CRYP_DISABLE(hcryp);
+
+ /* Change state */
+ hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
+ hcryp->State = HAL_CRYP_STATE_READY;
+
+ /* Process unlocked */
+ __HAL_UNLOCK(hcryp);
+ return HAL_ERROR;
+ }
+ }
+ while((hcryp->Instance->CR & CRYP_CR_CRYPEN) == CRYP_CR_CRYPEN);
+
+#else /* AES */
+
+ /*Workaround 1 : only AES
+ Datatype configuration must be 32 bits during Init phase. Only, after Init, and before re
+ enabling the IP, datatype different from 32 bits can be configured.*/
+ /* Select DATATYPE 32 */
+ MODIFY_REG(hcryp->Instance->CR, AES_CR_DATATYPE, CRYP_DATATYPE_32B);
+
+ /* Set the initialization vector and the counter : Initial Counter Block (ICB)*/
+ hcryp->Instance->IVR3 = *(uint32_t*)(hcryp->Init.pInitVect);
+ hcryp->Instance->IVR2 = *(uint32_t*)(hcryp->Init.pInitVect+1);
+ hcryp->Instance->IVR1 = *(uint32_t*)(hcryp->Init.pInitVect+2);
+ hcryp->Instance->IVR0 = *(uint32_t*)(hcryp->Init.pInitVect+3);
+
+ /* Enable the CRYP peripheral */
+ __HAL_CRYP_ENABLE(hcryp);
+
+ /* just wait for hash computation */
+ count = CRYP_TIMEOUT_GCMCCMINITPHASE;
+ do
+ {
+ count-- ;
+ if(count == 0U)
+ {
+ /* Disable the CRYP peripheral clock */
+ __HAL_CRYP_DISABLE(hcryp);
+
+ /* Change state */
+ hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
+ hcryp->State = HAL_CRYP_STATE_READY;
+
+ /* Process unlocked */
+ __HAL_UNLOCK(hcryp);
+ return HAL_ERROR;
+ }
+ }
+ while(HAL_IS_BIT_CLR(hcryp->Instance->SR, AES_SR_CCF));
+
+ /* Clear CCF flag */
+ __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
+
+#endif /* End AES or CRYP */
+
+ /************************ Header phase *************************************/
+
+ if(CRYP_GCMCCM_SetHeaderPhase_DMA(hcryp) != HAL_OK)
+ {
+ return HAL_ERROR;
+ }
+
+ /************************ Payload phase ************************************/
+
+ /* Set the phase */
+ hcryp->Phase = CRYP_PHASE_PROCESS;
+
+#if defined(CRYP)
+
+ /* Disable the CRYP peripheral */
+ __HAL_CRYP_DISABLE(hcryp);
+
+#endif /* CRYP */
+
+ /* Select payload phase once the header phase is performed */
+ CRYP_SET_PHASE(hcryp, CRYP_PHASE_PAYLOAD);
+
+ if(hcryp->Size != 0U)
+ {
+ /* CRYP1 IP V < 2.2.1 Size should be %4 otherwise Tag will be incorrectly generated for GCM Encryption:
+ Workaround is implemented in polling mode, so if last block of
+ payload <128bit don't use DMA mode otherwise TAG is incorrectly generated . */
+ /* Set the input and output addresses and start DMA transfer */
+ if ((hcryp->Size % 16U) == 0U)
+ {
+ CRYP_SetDMAConfig(hcryp, (uint32_t)( hcryp->pCrypInBuffPtr), (hcryp->Size/4U), (uint32_t)(hcryp->pCrypOutBuffPtr));
+ }
+ else /*to compute last word<128bits, otherwise it will not be encrypted/decrypted */
+ {
+ wordsize = (uint32_t)(hcryp->Size)+(16U-((uint32_t)(hcryp->Size)%16U)) ;
+
+ /* Set the input and output addresses and start DMA transfer, pCrypOutBuffPtr size should be %4 */
+ CRYP_SetDMAConfig(hcryp, (uint32_t)( hcryp->pCrypInBuffPtr), ((uint16_t)wordsize/4U), (uint32_t)(hcryp->pCrypOutBuffPtr));
+ }
+ }
+ else
+ {
+ /* Process unLocked */
+ __HAL_UNLOCK(hcryp);
+
+ /* Change the CRYP state and phase */
+ hcryp->State = HAL_CRYP_STATE_READY;
+ }
+
+ /* Return function status */
+ return HAL_OK;
+}
+
+
+/**
+ * @brief AES CCM encryption/decryption processing in polling mode
+ * for TinyAES IP, no encrypt/decrypt performed, only authentication preparation.
+ * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
+ * the configuration information for CRYP module
+ * @param Timeout: Timeout duration
+ * @retval HAL status
+ */
+static HAL_StatusTypeDef CRYP_AESCCM_Process(CRYP_HandleTypeDef *hcryp, uint32_t Timeout)
+{
+ uint32_t tickstart;
+ uint32_t wordsize= (uint32_t)(hcryp->Size)/4U;
+ uint16_t outcount; /* Temporary CrypOutCount Value */
+#if defined(AES)
+ uint32_t loopcounter;
+ uint32_t npblb;
+ uint32_t lastwordsize;
+#endif /* AES */
+
+ /* Reset CrypHeaderCount */
+ hcryp->CrypHeaderCount = 0U;
+
+#if defined(CRYP)
+
+ /********************** Init phase ******************************************/
+
+ CRYP_SET_PHASE(hcryp,CRYP_PHASE_INIT);
+
+ /* Set the key */
+ CRYP_SetKey(hcryp, hcryp->Init.KeySize);
+
+ /* Set the initialization vector (IV) with CTR1 information */
+ hcryp->Instance->IV0LR = (hcryp->Init.B0[0]) & CRYP_CCM_CTR1_0;
+ hcryp->Instance->IV0RR = hcryp->Init.B0[1];
+ hcryp->Instance->IV1LR = hcryp->Init.B0[2];
+ hcryp->Instance->IV1RR = (hcryp->Init.B0[3] & CRYP_CCM_CTR1_1)| CRYP_CCM_CTR1_2;
+
+
+ /* Enable the CRYP peripheral */
+ __HAL_CRYP_ENABLE(hcryp);
+
+ /*Write B0 packet into CRYP_DIN Register*/
+ if(hcryp->Init.DataType == CRYP_DATATYPE_8B)
+ {
+ hcryp->Instance->DIN = __REV(*(uint32_t*)(hcryp->Init.B0));
+ hcryp->Instance->DIN = __REV( *(uint32_t*)(hcryp->Init.B0+1));
+ hcryp->Instance->DIN = __REV(*(uint32_t*)(hcryp->Init.B0+2));
+ hcryp->Instance->DIN = __REV(*(uint32_t*)(hcryp->Init.B0+3));
+ }
+ else if(hcryp->Init.DataType == CRYP_DATATYPE_16B)
+ {
+ hcryp->Instance->DIN = __ROR(*(uint32_t*)(hcryp->Init.B0), 16);
+ hcryp->Instance->DIN = __ROR( *(uint32_t*)(hcryp->Init.B0+1), 16);
+ hcryp->Instance->DIN = __ROR(*(uint32_t*)(hcryp->Init.B0+2), 16);
+ hcryp->Instance->DIN = __ROR(*(uint32_t*)(hcryp->Init.B0+3), 16);
+ }
+ else if(hcryp->Init.DataType == CRYP_DATATYPE_1B)
+ {
+ hcryp->Instance->DIN = __RBIT(*(uint32_t*)(hcryp->Init.B0));
+ hcryp->Instance->DIN = __RBIT( *(uint32_t*)(hcryp->Init.B0+1));
+ hcryp->Instance->DIN = __RBIT(*(uint32_t*)(hcryp->Init.B0+2));
+ hcryp->Instance->DIN = __RBIT(*(uint32_t*)(hcryp->Init.B0+3));
+ }
+ else
+ {
+ hcryp->Instance->DIN = *(uint32_t*)(hcryp->Init.B0);
+ hcryp->Instance->DIN = *(uint32_t*)(hcryp->Init.B0+1);
+ hcryp->Instance->DIN = *(uint32_t*)(hcryp->Init.B0+2);
+ hcryp->Instance->DIN = *(uint32_t*)(hcryp->Init.B0+3);
+ }
+ /* Get tick */
+ tickstart = HAL_GetTick();
+
+ /*Wait for the CRYPEN bit to be cleared*/
+ while((hcryp->Instance->CR & CRYP_CR_CRYPEN) == CRYP_CR_CRYPEN)
+ {
+ /* Check for the Timeout */
+ if(Timeout != HAL_MAX_DELAY)
+ {
+ if(((HAL_GetTick() - tickstart ) > Timeout)||(Timeout == 0U))
+ {
+ /* Disable the CRYP peripheral clock */
+ __HAL_CRYP_DISABLE(hcryp);
+
+ /* Change state */
+ hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
+ hcryp->State = HAL_CRYP_STATE_READY;
+
+ /* Process unlocked */
+ __HAL_UNLOCK(hcryp);
+ return HAL_ERROR;
+ }
+ }
+ }
+#else /* AES */
+ /*AES2v1.1.1 : CCM authentication : no init phase, only header and final phase */
+ /* Select header phase */
+ CRYP_SET_PHASE(hcryp, CRYP_PHASE_HEADER);
+
+ /* configured encryption mode */
+ MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_ENCRYPT);
+
+ /* Set the key */
+ CRYP_SetKey(hcryp, hcryp->Init.KeySize);
+
+ /* Set the initialization vector with zero values*/
+ hcryp->Instance->IVR3 = 0U;
+ hcryp->Instance->IVR2 = 0U;
+ hcryp->Instance->IVR1 = 0U;
+ hcryp->Instance->IVR0 = 0U;
+
+ /* Enable the CRYP peripheral */
+ __HAL_CRYP_ENABLE(hcryp);
+
+ /*Write the B0 packet into CRYP_DIN*/
+ hcryp->Instance->DINR = *(uint32_t*)(hcryp->Init.B0);
+ hcryp->Instance->DINR = *(uint32_t*)(hcryp->Init.B0+1);
+ hcryp->Instance->DINR = *(uint32_t*)(hcryp->Init.B0+2);
+ hcryp->Instance->DINR = *(uint32_t*)(hcryp->Init.B0+3);
+
+ /* wait until the end of computation */
+ if(CRYP_WaitOnCCFlag(hcryp, Timeout) != HAL_OK)
+ {
+ /* Change state */
+ hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
+ hcryp->State = HAL_CRYP_STATE_READY;
+
+ /* Process unlocked & return error */
+ __HAL_UNLOCK(hcryp);
+ return HAL_ERROR;
+ }
+ /* Clear CCF flag */
+ __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
+
+ /* Set the phase */
+ hcryp->Phase = CRYP_PHASE_PROCESS;
+
+ /* From that point the whole message must be processed, first the Header then the payload.
+ First the Header block(B1) : associated data length expressed in bytes concatenated with Associated Data (A)*/
+
+ if (hcryp->Init.HeaderSize != 0U)
+ {
+ if ((hcryp->Init.HeaderSize %4U )== 0U)
+ {
+ /* HeaderSize %4, no padding */
+ for(loopcounter = 0U; (loopcounter < hcryp->Init.HeaderSize); loopcounter+=4U)
+ {
+ /* Write the Input block in the Data Input register */
+ hcryp->Instance->DINR = *(uint32_t*)(hcryp->Init.Header + hcryp->CrypHeaderCount);
+ hcryp->CrypHeaderCount++ ;
+ hcryp->Instance->DINR = *(uint32_t*)(hcryp->Init.Header + hcryp->CrypHeaderCount);
+ hcryp->CrypHeaderCount++ ;
+ hcryp->Instance->DINR = *(uint32_t*)(hcryp->Init.Header + hcryp->CrypHeaderCount);
+ hcryp->CrypHeaderCount++ ;
+ hcryp->Instance->DINR = *(uint32_t*)(hcryp->Init.Header + hcryp->CrypHeaderCount);
+ hcryp->CrypHeaderCount++ ;
+
+ if(CRYP_WaitOnCCFlag(hcryp, Timeout) != HAL_OK)
+ {
+ /* Disable the CRYP peripheral clock */
+ __HAL_CRYP_DISABLE(hcryp);
+
+ /* Change state */
+ hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
+ hcryp->State = HAL_CRYP_STATE_READY;
+
+ /* Process unlocked */
+ __HAL_UNLOCK(hcryp);
+ return HAL_ERROR;
+ }
+ /* Clear CCF Flag */
+ __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
+ }
+ }
+ else
+ {
+ /*Write Header block in the IN FIFO without last block */
+ for(loopcounter = 0U; (loopcounter < ((hcryp->Init.HeaderSize)-(hcryp->Init.HeaderSize %4U ))); loopcounter+=4U)
+ {
+ /* Write the input block in the data input register */
+ hcryp->Instance->DINR = *(uint32_t*)(hcryp->Init.Header + hcryp->CrypHeaderCount);
+ hcryp->CrypHeaderCount++ ;
+ hcryp->Instance->DINR = *(uint32_t*)(hcryp->Init.Header + hcryp->CrypHeaderCount);
+ hcryp->CrypHeaderCount++ ;
+ hcryp->Instance->DINR = *(uint32_t*)(hcryp->Init.Header + hcryp->CrypHeaderCount);
+ hcryp->CrypHeaderCount++ ;
+ hcryp->Instance->DINR = *(uint32_t*)(hcryp->Init.Header + hcryp->CrypHeaderCount);
+ hcryp->CrypHeaderCount++ ;
+
+ if(CRYP_WaitOnCCFlag(hcryp, Timeout) != HAL_OK)
+ {
+ /* Disable the CRYP peripheral clock */
+ __HAL_CRYP_DISABLE(hcryp);
+
+ /* Change state */
+ hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
+ hcryp->State = HAL_CRYP_STATE_READY;
+
+ /* Process unlocked */
+ __HAL_UNLOCK(hcryp);
+ return HAL_ERROR;
+ }
+ /* Clear CCF Flag */
+ __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
+ }
+ /* Last block optionally pad the data with zeros*/
+ for(loopcounter = 0U; (loopcounter < (hcryp->Init.HeaderSize %4U )); loopcounter++)
+ {
+ hcryp->Instance->DINR = *(uint32_t*)(hcryp->Init.Header + hcryp->CrypHeaderCount);
+ hcryp->CrypHeaderCount++ ;
+ }
+ while(loopcounter <4U )
+ {
+ /* Pad the data with zeros to have a complete block */
+ hcryp->Instance->DINR = 0x0U;
+ loopcounter++;
+ }
+
+ if(CRYP_WaitOnCCFlag(hcryp, Timeout) != HAL_OK)
+ {
+ /* Disable the CRYP peripheral clock */
+ __HAL_CRYP_DISABLE(hcryp);
+
+ /* Change state */
+ hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
+ hcryp->State = HAL_CRYP_STATE_READY;
+
+ /* Process unlocked */
+ __HAL_UNLOCK(hcryp);
+ return HAL_ERROR;
+ }
+ /* Clear CCF flag */
+ __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
+ }
+ }
+ /* Then the payload: cleartext payload (not the ciphertext payload).
+ Write input Data, no output Data to get */
+ if (hcryp->Size != 0U)
+ {
+ if ((hcryp->Size % 16U) != 0U)
+ {
+ /* recalculate wordsize */
+ wordsize = ((wordsize/4U)*4U) ;
+ }
+
+ /* Get tick */
+ tickstart = HAL_GetTick();
+ /*Temporary CrypOutCount Value*/
+ outcount = hcryp->CrypOutCount;
+
+ while((hcryp->CrypInCount < wordsize) && (outcount < wordsize))
+ {
+ /* Write plain data and get cipher data */
+ CRYP_AES_ProcessData(hcryp,Timeout);
+
+ /*Temporary CrypOutCount Value*/
+ outcount = hcryp->CrypOutCount;
+
+ /* Check for the Timeout */
+ if(Timeout != HAL_MAX_DELAY)
+ {
+ if(((HAL_GetTick() - tickstart ) > Timeout)||(Timeout == 0U))
+ {
+ /* Disable the CRYP peripheral clock */
+ __HAL_CRYP_DISABLE(hcryp);
+
+ /* Change state */
+ hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
+ hcryp->State = HAL_CRYP_STATE_READY;
+
+ /* Process unlocked */
+ __HAL_UNLOCK(hcryp);
+ return HAL_ERROR;
+ }
+ }
+ }
+
+ if ((hcryp->Size % 16U) != 0U)
+ {
+ /* Compute the number of padding bytes in last block of payload */
+ npblb = ((((uint32_t)(hcryp->Size)/16U)+1U)*16U)- (uint32_t)(hcryp->Size);
+
+ /* Number of valid words (lastwordsize) in last block */
+ if ((npblb%4U) ==0U)
+ {
+ lastwordsize = (16U-npblb)/4U;
+ }
+ else
+ {
+ lastwordsize = ((16U-npblb)/4U) +1U;
+ }
+ /* Last block optionally pad the data with zeros*/
+ for(loopcounter=0U; loopcounter < lastwordsize; loopcounter ++)
+ {
+ /* Write the last input block in the IN FIFO */
+ hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount );
+ hcryp->CrypInCount++;
+ }
+ while(loopcounter < 4U)
+ {
+ /* Pad the data with zeros to have a complete block */
+ hcryp->Instance->DINR = 0U;
+ loopcounter++;
+ }
+ /* Wait for CCF flag to be raised */
+ if(CRYP_WaitOnCCFlag(hcryp, Timeout) != HAL_OK)
+ {
+ /* Disable the CRYP peripheral clock */
+ __HAL_CRYP_DISABLE(hcryp);
+
+ /* Change state */
+ hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
+ hcryp->State = HAL_CRYP_STATE_READY;
+
+ /* Process unlocked */
+ __HAL_UNLOCK(hcryp);
+ return HAL_ERROR;
+ }
+ /* Clear CCF flag */
+ __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
+
+ }
+ }
+#endif /* End AES or CRYP */
+
+#if defined(CRYP)
+
+ /************************* Header phase *************************************/
+ /* Header block(B1) : associated data length expressed in bytes concatenated
+ with Associated Data (A)*/
+
+ if(CRYP_GCMCCM_SetHeaderPhase(hcryp, Timeout) != HAL_OK)
+ {
+ return HAL_ERROR;
+ }
+
+ /********************** Payload phase ***************************************/
+
+ /* Set the phase */
+ hcryp->Phase = CRYP_PHASE_PROCESS;
+
+ /* Disable the CRYP peripheral */
+ __HAL_CRYP_DISABLE(hcryp);
+
+ /* Select payload phase once the header phase is performed */
+ CRYP_SET_PHASE(hcryp, CRYP_PHASE_PAYLOAD);
+
+ /* Enable the CRYP peripheral */
+ __HAL_CRYP_ENABLE(hcryp);
+
+ if ((hcryp->Size % 16U) != 0U)
+ {
+ /* recalculate wordsize */
+ wordsize = ((wordsize/4U)*4U) ;
+ }
+ /* Get tick */
+ tickstart = HAL_GetTick();
+ /*Temporary CrypOutCount Value*/
+ outcount = hcryp->CrypOutCount;
+
+ /* Write input data and get output data */
+ while((hcryp->CrypInCount < wordsize) && (outcount < wordsize))
+ {
+ /* Write plain data and get cipher data */
+ CRYP_AES_ProcessData(hcryp,Timeout);
+
+ /* Check for the Timeout */
+ if(Timeout != HAL_MAX_DELAY)
+ {
+ if(((HAL_GetTick() - tickstart ) > Timeout)||(Timeout == 0U))
+ {
+ /* Disable the CRYP peripheral clock */
+ __HAL_CRYP_DISABLE(hcryp);
+
+ /* Change state */
+ hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
+ hcryp->State = HAL_CRYP_STATE_READY;
+
+ /* Process unlocked */
+ __HAL_UNLOCK(hcryp);
+ return HAL_ERROR;
+ }
+ }
+ }
+
+ if ((hcryp->Size % 16U) != 0U)
+ {
+ /* CRYP Workaround : CRYP1 generates correct TAG during CCM decryption only when ciphertext blocks size is multiple of
+ 128 bits. If lthe size of the last block of payload is inferior to 128 bits, when CCM decryption
+ is selected, then the TAG message will be wrong.*/
+ CRYP_Workaround(hcryp,Timeout);
+ }
+#endif /* CRYP */
+
+ /* Return function status */
+ return HAL_OK;
+}
+
+/**
+ * @brief AES CCM encryption/decryption process in interrupt mode
+ * for TinyAES IP, no encrypt/decrypt performed, only authentication preparation.
+ * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
+ * the configuration information for CRYP module
+ * @retval HAL status
+ */
+static HAL_StatusTypeDef CRYP_AESCCM_Process_IT(CRYP_HandleTypeDef *hcryp)
+{
+#if defined(CRYP)
+ __IO uint32_t count = 0U;
+#endif /* CRYP */
+
+ /* Reset CrypHeaderCount */
+ hcryp->CrypHeaderCount = 0U;
+
+#if defined(CRYP)
+
+ /************ Init phase ************/
+
+ CRYP_SET_PHASE(hcryp,CRYP_PHASE_INIT);
+
+ /* Set the key */
+ CRYP_SetKey(hcryp, hcryp->Init.KeySize);
+
+ /* Set the initialization vector (IV) with CTR1 information */
+ hcryp->Instance->IV0LR = (hcryp->Init.B0[0]) & CRYP_CCM_CTR1_0;
+ hcryp->Instance->IV0RR = hcryp->Init.B0[1];
+ hcryp->Instance->IV1LR = hcryp->Init.B0[2];
+ hcryp->Instance->IV1RR = (hcryp->Init.B0[3] & CRYP_CCM_CTR1_1)| CRYP_CCM_CTR1_2;
+
+ /* Enable the CRYP peripheral */
+ __HAL_CRYP_ENABLE(hcryp);
+
+ /*Write the B0 packet into CRYP_DIN Register*/
+ if(hcryp->Init.DataType == CRYP_DATATYPE_8B)
+ {
+ hcryp->Instance->DIN = __REV(*(uint32_t*)(hcryp->Init.B0));
+ hcryp->Instance->DIN = __REV( *(uint32_t*)(hcryp->Init.B0+1));
+ hcryp->Instance->DIN = __REV(*(uint32_t*)(hcryp->Init.B0+2));
+ hcryp->Instance->DIN = __REV(*(uint32_t*)(hcryp->Init.B0+3));
+ }
+ else if(hcryp->Init.DataType == CRYP_DATATYPE_16B)
+ {
+ hcryp->Instance->DIN = __ROR(*(uint32_t*)(hcryp->Init.B0), 16);
+ hcryp->Instance->DIN = __ROR( *(uint32_t*)(hcryp->Init.B0+1), 16);
+ hcryp->Instance->DIN = __ROR(*(uint32_t*)(hcryp->Init.B0+2), 16);
+ hcryp->Instance->DIN = __ROR(*(uint32_t*)(hcryp->Init.B0+3), 16);
+ }
+ else if(hcryp->Init.DataType == CRYP_DATATYPE_1B)
+ {
+ hcryp->Instance->DIN = __RBIT(*(uint32_t*)(hcryp->Init.B0));
+ hcryp->Instance->DIN = __RBIT( *(uint32_t*)(hcryp->Init.B0+1));
+ hcryp->Instance->DIN = __RBIT(*(uint32_t*)(hcryp->Init.B0+2));
+ hcryp->Instance->DIN = __RBIT(*(uint32_t*)(hcryp->Init.B0+3));
+ }
+ else
+ {
+ hcryp->Instance->DIN = *(uint32_t*)(hcryp->Init.B0);
+ hcryp->Instance->DIN = *(uint32_t*)(hcryp->Init.B0+1);
+ hcryp->Instance->DIN = *(uint32_t*)(hcryp->Init.B0+2);
+ hcryp->Instance->DIN = *(uint32_t*)(hcryp->Init.B0+3);
+ }
+ /*Wait for the CRYPEN bit to be cleared*/
+ count = CRYP_TIMEOUT_GCMCCMINITPHASE;
+ do
+ {
+ count-- ;
+ if(count == 0U)
+ {
+ /* Disable the CRYP peripheral clock */
+ __HAL_CRYP_DISABLE(hcryp);
+
+ /* Change state */
+ hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
+ hcryp->State = HAL_CRYP_STATE_READY;
+
+ /* Process unlocked */
+ __HAL_UNLOCK(hcryp);
+ return HAL_ERROR;
+ }
+ }
+ while((hcryp->Instance->CR & CRYP_CR_CRYPEN) == CRYP_CR_CRYPEN);
+
+ /* Select header phase */
+ CRYP_SET_PHASE(hcryp, CRYP_PHASE_HEADER);
+
+ /* Enable interrupts */
+ __HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_INI);
+
+ /* Enable CRYP */
+ __HAL_CRYP_ENABLE(hcryp);
+
+#else /* AES */
+
+ /*AES2v1.1.1 : CCM authentication : no init phase, only header and final phase */
+ /* Select header phase */
+ CRYP_SET_PHASE(hcryp, CRYP_PHASE_HEADER);
+
+ /* configured mode and encryption mode */
+ MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_ENCRYPT);
+
+ /* Set the key */
+ CRYP_SetKey(hcryp, hcryp->Init.KeySize);
+
+ /* Set the initialization vector with zero values*/
+ hcryp->Instance->IVR3 = 0U;
+ hcryp->Instance->IVR2 = 0U;
+ hcryp->Instance->IVR1 = 0U;
+ hcryp->Instance->IVR0 = 0U;
+
+ /* Enable interrupts */
+ __HAL_CRYP_ENABLE_IT(hcryp,CRYP_IT_CCFIE | CRYP_IT_ERRIE);
+ /* Enable the CRYP peripheral */
+ __HAL_CRYP_ENABLE(hcryp);
+
+ /*Write the B0 packet into CRYP_DIN*/
+ hcryp->Instance->DINR = *(uint32_t*)(hcryp->Init.B0);
+ hcryp->Instance->DINR = *(uint32_t*)(hcryp->Init.B0+1);
+ hcryp->Instance->DINR = *(uint32_t*)(hcryp->Init.B0+2);
+ hcryp->Instance->DINR = *(uint32_t*)(hcryp->Init.B0+3);
+
+#endif /* End AES or CRYP */
+
+ /* Return function status */
+ return HAL_OK;
+}
+/**
+ * @brief AES CCM encryption/decryption process in DMA mode
+ * for TinyAES IP, no encrypt/decrypt performed, only authentication preparation.
+ * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
+ * the configuration information for CRYP module
+ * @retval HAL status
+ */
+static HAL_StatusTypeDef CRYP_AESCCM_Process_DMA(CRYP_HandleTypeDef *hcryp)
+{
+ uint32_t wordsize;
+ __IO uint32_t count = 0U;
+
+ /* Reset CrypHeaderCount */
+ hcryp->CrypHeaderCount = 0U;
+
+#if defined(CRYP)
+
+ /************************** Init phase **************************************/
+
+ CRYP_SET_PHASE(hcryp,CRYP_PHASE_INIT);
+
+ /* Set the key */
+ CRYP_SetKey(hcryp, hcryp->Init.KeySize);
+
+ /* Set the initialization vector (IV) with CTR1 information */
+ hcryp->Instance->IV0LR = (hcryp->Init.B0[0]) & CRYP_CCM_CTR1_0;
+ hcryp->Instance->IV0RR = hcryp->Init.B0[1];
+ hcryp->Instance->IV1LR = hcryp->Init.B0[2];
+ hcryp->Instance->IV1RR = (hcryp->Init.B0[3] & CRYP_CCM_CTR1_1)| CRYP_CCM_CTR1_2;
+
+ /* Enable the CRYP peripheral */
+ __HAL_CRYP_ENABLE(hcryp);
+
+ /*Write the B0 packet into CRYP_DIN Register*/
+ if(hcryp->Init.DataType == CRYP_DATATYPE_8B)
+ {
+ hcryp->Instance->DIN = __REV(*(uint32_t*)(hcryp->Init.B0));
+ hcryp->Instance->DIN = __REV( *(uint32_t*)(hcryp->Init.B0+1));
+ hcryp->Instance->DIN = __REV(*(uint32_t*)(hcryp->Init.B0+2));
+ hcryp->Instance->DIN = __REV(*(uint32_t*)(hcryp->Init.B0+3));
+ }
+ else if(hcryp->Init.DataType == CRYP_DATATYPE_16B)
+ {
+ hcryp->Instance->DIN = __ROR(*(uint32_t*)(hcryp->Init.B0), 16);
+ hcryp->Instance->DIN = __ROR( *(uint32_t*)(hcryp->Init.B0+1), 16);
+ hcryp->Instance->DIN = __ROR(*(uint32_t*)(hcryp->Init.B0+2), 16);
+ hcryp->Instance->DIN = __ROR(*(uint32_t*)(hcryp->Init.B0+3), 16);
+ }
+ else if(hcryp->Init.DataType == CRYP_DATATYPE_1B)
+ {
+ hcryp->Instance->DIN = __RBIT(*(uint32_t*)(hcryp->Init.B0));
+ hcryp->Instance->DIN = __RBIT( *(uint32_t*)(hcryp->Init.B0+1));
+ hcryp->Instance->DIN = __RBIT(*(uint32_t*)(hcryp->Init.B0+2));
+ hcryp->Instance->DIN = __RBIT(*(uint32_t*)(hcryp->Init.B0+3));
+ }
+ else
+ {
+ hcryp->Instance->DIN = *(uint32_t*)(hcryp->Init.B0);
+ hcryp->Instance->DIN = *(uint32_t*)(hcryp->Init.B0+1);
+ hcryp->Instance->DIN = *(uint32_t*)(hcryp->Init.B0+2);
+ hcryp->Instance->DIN = *(uint32_t*)(hcryp->Init.B0+3);
+ }
+
+ /*Wait for the CRYPEN bit to be cleared*/
+ count = CRYP_TIMEOUT_GCMCCMINITPHASE;
+ do
+ {
+ count-- ;
+ if(count == 0U)
+ {
+ /* Disable the CRYP peripheral clock */
+ __HAL_CRYP_DISABLE(hcryp);
+
+ /* Change state */
+ hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
+ hcryp->State = HAL_CRYP_STATE_READY;
+
+ /* Process unlocked */
+ __HAL_UNLOCK(hcryp);
+ return HAL_ERROR;
+ }
+ }
+ while((hcryp->Instance->CR & CRYP_CR_CRYPEN) == CRYP_CR_CRYPEN);
+
+#else /* AES */
+
+ /*AES2v1.1.1 : CCM authentication : no init phase, only header and final phase */
+ /* Select header phase */
+ CRYP_SET_PHASE(hcryp, CRYP_PHASE_HEADER);
+
+ /* configured CCM chaining mode and encryption mode */
+ MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_ENCRYPT);
+
+ /* Set the key */
+ CRYP_SetKey(hcryp, hcryp->Init.KeySize);
+
+ /* Set the initialization vector with zero values*/
+ hcryp->Instance->IVR3 = 0U;
+ hcryp->Instance->IVR2 = 0U;
+ hcryp->Instance->IVR1 = 0U;
+ hcryp->Instance->IVR0 = 0U;
+
+ /* Enable the CRYP peripheral */
+ __HAL_CRYP_ENABLE(hcryp);
+
+ /*Write the B0 packet into CRYP_DIN*/
+ hcryp->Instance->DINR = *(uint32_t*)(hcryp->Init.B0);
+ hcryp->Instance->DINR = *(uint32_t*)(hcryp->Init.B0+1);
+ hcryp->Instance->DINR = *(uint32_t*)(hcryp->Init.B0+2);
+ hcryp->Instance->DINR = *(uint32_t*)(hcryp->Init.B0+3);
+
+ /* wait until the end of computation */
+ count = CRYP_TIMEOUT_GCMCCMINITPHASE;
+ do
+ {
+ count-- ;
+ if(count == 0U)
+{
+ /* Disable the CRYP peripheral clock */
+ __HAL_CRYP_DISABLE(hcryp);
+
+ /* Change state */
+ hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
+ hcryp->State = HAL_CRYP_STATE_READY;
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(hcryp);
+ return HAL_ERROR;
+}
+ }
+ while(HAL_IS_BIT_CLR(hcryp->Instance->SR, AES_SR_CCF));
+
+ /* Clear CCF flag */
+ __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
+
+#endif /* AES */
+
+ /********************* Header phase *****************************************/
+
+ if(CRYP_GCMCCM_SetHeaderPhase_DMA(hcryp) != HAL_OK)
+ {
+ return HAL_ERROR;
+ }
+
+ /******************** Payload phase *****************************************/
+
+ /* Set the phase */
+ hcryp->Phase = CRYP_PHASE_PROCESS;
+
+#if defined(CRYP)
+
+ /* Disable the CRYP peripheral */
+ __HAL_CRYP_DISABLE(hcryp);
+
+ /* Select payload phase once the header phase is performed */
+ CRYP_SET_PHASE(hcryp, CRYP_PHASE_PAYLOAD);
+
+#endif /* CRYP */
+
+ if(hcryp->Size != 0U)
+ {
+ /* Size should be %4 otherwise Tag will be incorrectly generated for GCM Encryption & CCM Decryption
+ Workaround is implemented in polling mode, so if last block of
+ payload <128bit don't use HAL_CRYP_AESGCM_DMA otherwise TAG is incorrectly generated for GCM Encryption. */
+ /* Set the input and output addresses and start DMA transfer */
+ if ((hcryp->Size % 16U) == 0U)
+ {
+ CRYP_SetDMAConfig(hcryp, (uint32_t)( hcryp->pCrypInBuffPtr), hcryp->Size/4U, (uint32_t)(hcryp->pCrypOutBuffPtr));
+ }
+ else
+ {
+ wordsize = (uint32_t)(hcryp->Size)+16U-((uint32_t)(hcryp->Size) %16U) ;
+
+ /* Set the input and output addresses and start DMA transfer, pCrypOutBuffPtr size should be %4*/
+ CRYP_SetDMAConfig(hcryp, (uint32_t)( hcryp->pCrypInBuffPtr), (uint16_t)wordsize/4U, (uint32_t)(hcryp->pCrypOutBuffPtr));
+ }
+ }
+ else /*Size = 0*/
+ {
+ /* Process unlocked */
+ __HAL_UNLOCK(hcryp);
+
+ /* Change the CRYP state and phase */
+ hcryp->State = HAL_CRYP_STATE_READY;
+ }
+
+ /* Return function status */
+ return HAL_OK;
+}
+
+/**
+ * @brief Sets the payload phase in iterrupt mode
+ * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
+ * the configuration information for CRYP module
+ * @retval state
+ */
+static void CRYP_GCMCCM_SetPayloadPhase_IT(CRYP_HandleTypeDef *hcryp)
+{
+ uint32_t loopcounter;
+ uint32_t temp; /* Temporary CrypOutBuff */
+ uint32_t lastwordsize;
+ uint32_t npblb;
+ #if defined(AES)
+ uint16_t outcount; /* Temporary CrypOutCount Value */
+#endif /* AES */
+
+ /***************************** Payload phase *******************************/
+
+#if defined(CRYP)
+ if(hcryp->Size == 0U)
+ {
+ /* Disable interrupts */
+ __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_INI| CRYP_IT_OUTI);
+
+ /* Process unlocked */
+ __HAL_UNLOCK(hcryp);
+
+ /* Change the CRYP state */
+ hcryp->State = HAL_CRYP_STATE_READY;
+ }
+
+ else if (((hcryp->Size/4U) - (hcryp->CrypInCount)) >= 4U)
+ {
+ /* Write the input block in the IN FIFO */
+ hcryp->Instance->DIN = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount );
+ hcryp->CrypInCount++;
+ hcryp->Instance->DIN = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount );
+ hcryp->CrypInCount++;
+ hcryp->Instance->DIN = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount );
+ hcryp->CrypInCount++;
+ hcryp->Instance->DIN = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount );
+ hcryp->CrypInCount++;
+ if(((hcryp->Size/4U) == hcryp->CrypInCount) &&((hcryp->Size %16U )== 0U))
+ {
+ /* Disable interrupts */
+ __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_INI);
+
+ /* Call the input data transfer complete callback */
+#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U)
+ /*Call registered Input complete callback*/
+ hcryp->InCpltCallback(hcryp);
+#else
+ /*Call legacy weak Input complete callback*/
+ HAL_CRYP_InCpltCallback(hcryp);
+#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
+ }
+ if(hcryp->CrypOutCount < (hcryp->Size/4U))
+ {
+ /* Read the output block from the Output FIFO and put them in temporary buffer then get CrypOutBuff from temporary buffer */
+ temp = hcryp->Instance->DOUT;
+ *(uint32_t *)(hcryp->pCrypOutBuffPtr + hcryp->CrypOutCount) = temp;
+ hcryp->CrypOutCount++;
+ temp = hcryp->Instance->DOUT;
+ *(uint32_t *)(hcryp->pCrypOutBuffPtr + hcryp->CrypOutCount) = temp;
+ hcryp->CrypOutCount++;
+ temp = hcryp->Instance->DOUT;
+ *(uint32_t *)(hcryp->pCrypOutBuffPtr + hcryp->CrypOutCount) = temp;
+ hcryp->CrypOutCount++;
+ temp = hcryp->Instance->DOUT;
+ *(uint32_t *)(hcryp->pCrypOutBuffPtr + hcryp->CrypOutCount) = temp;
+ hcryp->CrypOutCount++;
+ if (((hcryp->Size/4U) == hcryp->CrypOutCount)&&((hcryp->Size %16U )== 0U))
+ {
+ /* Disable interrupts */
+ __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_OUTI);
+
+ /* Change the CRYP state */
+ hcryp->State = HAL_CRYP_STATE_READY;
+
+ /* Disable CRYP */
+ __HAL_CRYP_DISABLE(hcryp);
+
+ /* Process unlocked */
+ __HAL_UNLOCK(hcryp);
+
+ /* Call output transfer complete callback */
+#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1)
+ /*Call registered Output complete callback*/
+ hcryp->OutCpltCallback(hcryp);
+#else
+ /*Call legacy weak Output complete callback*/
+ HAL_CRYP_OutCpltCallback(hcryp);
+#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
+ }
+ }
+ }
+ else if ((hcryp->Size %16U )!= 0U)
+ {
+ /* Size should be %4 in word and %16 in byte otherwise TAG will be incorrectly generated for GCM Encryption & CCM Decryption
+ Workaround is implemented in polling mode, so if last block of
+ payload <128bit don't use CRYP_AESGCM_Encrypt_IT otherwise TAG is incorrectly generated. */
+
+ /* Compute the number of padding bytes in last block of payload */
+ npblb = ((((uint32_t)(hcryp->Size)/16U)+1U)*16U)- (uint32_t)(hcryp->Size);
+
+ /* Number of valid words (lastwordsize) in last block */
+ if ((npblb%4U) ==0U)
+ {
+ lastwordsize = (16U-npblb)/4U;
+ }
+ else
+ {
+ lastwordsize = ((16U-npblb)/4U) +1U;
+ }
+
+ /* Last block optionally pad the data with zeros*/
+ for(loopcounter = 0U; loopcounter < lastwordsize; loopcounter++)
+ {
+ hcryp->Instance->DIN = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount );
+ hcryp->CrypInCount++;
+ }
+ while(loopcounter < 4U )
+ {
+ /* Pad the data with zeros to have a complete block */
+ hcryp->Instance->DIN = 0x0U;
+ loopcounter++;
+ }
+ __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_INI);
+
+ if((hcryp->Instance->SR & CRYP_FLAG_OFNE ) != 0x0U)
+ {
+ for(loopcounter = 0U; loopcounter < 4U; loopcounter++)
+ {
+ /* Read the output block from the output FIFO and put them in temporary buffer */
+ temp= hcryp->Instance->DOUT;
+
+ /*get CrypOutBuff from temporary buffer */
+ *(uint32_t *)(hcryp->pCrypOutBuffPtr + (hcryp->CrypOutCount))=temp;
+ hcryp->CrypOutCount++;
+ }
+ }
+ if(hcryp->CrypOutCount >= (hcryp->Size/4U))
+ {
+ /* Disable interrupts */
+ __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_OUTI|CRYP_IT_INI);
+
+ /* Change the CRYP peripheral state */
+ hcryp->State = HAL_CRYP_STATE_READY;
+
+ /* Process unlocked */
+ __HAL_UNLOCK(hcryp);
+
+ /* Call output transfer complete callback */
+#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1)
+ /*Call registered Output complete callback*/
+ hcryp->OutCpltCallback(hcryp);
+#else
+ /*Call legacy weak Output complete callback*/
+ HAL_CRYP_OutCpltCallback(hcryp);
+#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
+ }
+ }
+ else
+ {
+ /* Nothing to do */
+ }
+#else /* AES */
+
+ /* Read the output block from the output FIFO and put them in temporary buffer then get CrypOutBuff from temporary buffer*/
+ temp = hcryp->Instance->DOUTR;
+ *(uint32_t *)(hcryp->pCrypOutBuffPtr + (hcryp->CrypOutCount)) =temp;
+ hcryp->CrypOutCount++;
+ temp = hcryp->Instance->DOUTR;
+ *(uint32_t *)(hcryp->pCrypOutBuffPtr + hcryp->CrypOutCount) =temp;
+ hcryp->CrypOutCount++;
+ temp = hcryp->Instance->DOUTR;
+ *(uint32_t *)(hcryp->pCrypOutBuffPtr + (hcryp->CrypOutCount)) = temp;
+ hcryp->CrypOutCount++;
+ temp = hcryp->Instance->DOUTR;
+ *(uint32_t *)(hcryp->pCrypOutBuffPtr + hcryp->CrypOutCount) = temp;
+ hcryp->CrypOutCount++;
+ /*Temporary CrypOutCount Value*/
+ outcount = hcryp->CrypOutCount;
+
+ if((hcryp->CrypOutCount >= (hcryp->Size/4U)) && ((outcount*4U) >= hcryp->Size) )
+ {
+ /* Disable computation complete flag and errors interrupts */
+ __HAL_CRYP_DISABLE_IT(hcryp,CRYP_IT_CCFIE|CRYP_IT_ERRIE);
+
+ /* Change the CRYP state */
+ hcryp->State = HAL_CRYP_STATE_READY;
+
+ /* Process unlocked */
+ __HAL_UNLOCK(hcryp);
+
+ /* Call output transfer complete callback */
+#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1)
+ /*Call registered Output complete callback*/
+ hcryp->OutCpltCallback(hcryp);
+#else
+ /*Call legacy weak Output complete callback*/
+ HAL_CRYP_OutCpltCallback(hcryp);
+#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
+ }
+
+ else if (((hcryp->Size/4U) - (hcryp->CrypInCount)) >= 4U)
+ {
+ /* Write the input block in the IN FIFO */
+ hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount );
+ hcryp->CrypInCount++;
+ hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount );
+ hcryp->CrypInCount++;
+ hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount );
+ hcryp->CrypInCount++;
+ hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount );
+ hcryp->CrypInCount++;
+ if((hcryp->CrypInCount == hcryp->Size) && (hcryp->Init.Algorithm == CRYP_AES_GCM_GMAC))
+ {
+ /* Call Input transfer complete callback */
+#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1)
+ /*Call registered Input complete callback*/
+ hcryp->InCpltCallback(hcryp);
+#else
+ /*Call legacy weak Input complete callback*/
+ HAL_CRYP_InCpltCallback(hcryp);
+#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
+ }
+ }
+ else /* Last block of payload < 128bit*/
+ {
+ /* Workaround not implemented, Size should be %4 otherwise Tag will be incorrectly
+ generated for GCM Encryption & CCM Decryption. Workaround is implemented in polling mode, so if last block of
+ payload <128bit don't use CRYP_Encrypt_IT otherwise TAG is incorrectly generated for GCM Encryption & CCM Decryption. */
+
+ /* Compute the number of padding bytes in last block of payload */
+ npblb = ((((uint32_t)(hcryp->Size)/16U)+1U)*16U) - (uint32_t)(hcryp->Size);
+
+ /* Number of valid words (lastwordsize) in last block */
+ if ((npblb%4U) ==0U)
+ {
+ lastwordsize = (16U-npblb)/4U;
+ }
+ else
+ {
+ lastwordsize = ((16U-npblb)/4U) +1U;
+ }
+
+ /* Last block optionally pad the data with zeros*/
+ for(loopcounter = 0U; loopcounter < lastwordsize; loopcounter++)
+ {
+ hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount );
+ hcryp->CrypInCount++;
+ }
+ while(loopcounter < 4U )
+ {
+ /* pad the data with zeros to have a complete block */
+ hcryp->Instance->DINR = 0x0U;
+ loopcounter++;
+ }
+ }
+#endif /* AES */
+
+}
+
+
+/**
+ * @brief Sets the header phase in polling mode
+ * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
+ * the configuration information for CRYP module(Header & HeaderSize)
+ * @param Timeout: Timeout value
+ * @retval state
+ */
+static HAL_StatusTypeDef CRYP_GCMCCM_SetHeaderPhase(CRYP_HandleTypeDef *hcryp, uint32_t Timeout)
+{
+ uint32_t loopcounter;
+
+ /***************************** Header phase for GCM/GMAC or CCM *********************************/
+
+ if((hcryp->Init.HeaderSize != 0U))
+ {
+
+#if defined(CRYP)
+
+ /* Select header phase */
+ CRYP_SET_PHASE(hcryp, CRYP_PHASE_HEADER);
+
+ /* Enable the CRYP peripheral */
+ __HAL_CRYP_ENABLE(hcryp);
+
+ if ((hcryp->Init.HeaderSize %4U )== 0U)
+ {
+ /* HeaderSize %4, no padding */
+ for(loopcounter = 0U; (loopcounter < hcryp->Init.HeaderSize); loopcounter+=4U)
+ {
+ hcryp->Instance->DIN = *(uint32_t*)(hcryp->Init.Header + hcryp->CrypHeaderCount);
+ hcryp->CrypHeaderCount++ ;
+ hcryp->Instance->DIN = *(uint32_t*)(hcryp->Init.Header + hcryp->CrypHeaderCount);
+ hcryp->CrypHeaderCount++ ;
+ hcryp->Instance->DIN = *(uint32_t*)(hcryp->Init.Header + hcryp->CrypHeaderCount);
+ hcryp->CrypHeaderCount++ ;
+ hcryp->Instance->DIN = *(uint32_t*)(hcryp->Init.Header + hcryp->CrypHeaderCount);
+ hcryp->CrypHeaderCount++ ;
+
+ /* Wait for IFEM to be raised */
+ if(CRYP_WaitOnIFEMFlag(hcryp, Timeout) != HAL_OK)
+ {
+ /* Disable the CRYP peripheral clock */
+ __HAL_CRYP_DISABLE(hcryp);
+
+ /* Change state */
+ hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
+ hcryp->State = HAL_CRYP_STATE_READY;
+
+ /* Process unlocked */
+ __HAL_UNLOCK(hcryp);
+ return HAL_ERROR;
+ }
+ }
+ }
+ else
+ {
+ /*Write header block in the IN FIFO without last block */
+ for(loopcounter = 0U; (loopcounter < ((hcryp->Init.HeaderSize)-(hcryp->Init.HeaderSize %4U ))); loopcounter+= 4U)
+ {
+ hcryp->Instance->DIN = *(uint32_t*)(hcryp->Init.Header + hcryp->CrypHeaderCount);
+ hcryp->CrypHeaderCount++ ;
+ hcryp->Instance->DIN = *(uint32_t*)(hcryp->Init.Header + hcryp->CrypHeaderCount);
+ hcryp->CrypHeaderCount++ ;
+ hcryp->Instance->DIN = *(uint32_t*)(hcryp->Init.Header + hcryp->CrypHeaderCount);
+ hcryp->CrypHeaderCount++ ;
+ hcryp->Instance->DIN = *(uint32_t*)(hcryp->Init.Header + hcryp->CrypHeaderCount);
+ hcryp->CrypHeaderCount++ ;
+
+ /* Wait for IFEM to be raised */
+ if(CRYP_WaitOnIFEMFlag(hcryp, Timeout) != HAL_OK)
+ {
+ /* Disable the CRYP peripheral clock */
+ __HAL_CRYP_DISABLE(hcryp);
+
+ /* Change state */
+ hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
+ hcryp->State = HAL_CRYP_STATE_READY;
+
+ /* Process unlocked */
+ __HAL_UNLOCK(hcryp);
+ return HAL_ERROR;
+ }
+ }
+ /* Last block optionally pad the data with zeros*/
+ for(loopcounter = 0U; (loopcounter < (hcryp->Init.HeaderSize %4U )); loopcounter++)
+ {
+ hcryp->Instance->DIN = *(uint32_t*)(hcryp->Init.Header + hcryp->CrypHeaderCount);
+ hcryp->CrypHeaderCount++ ;
+ }
+ while(loopcounter <4U )
+ {
+ /* pad the data with zeros to have a complete block */
+ hcryp->Instance->DIN = 0x0U;
+ loopcounter++;
+ }
+ /* Wait for CCF IFEM to be raised */
+ if(CRYP_WaitOnIFEMFlag(hcryp, Timeout) != HAL_OK)
+ {
+ /* Disable the CRYP peripheral clock */
+ __HAL_CRYP_DISABLE(hcryp);
+
+ /* Change state */
+ hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
+ hcryp->State = HAL_CRYP_STATE_READY;
+
+ /* Process unlocked */
+ __HAL_UNLOCK(hcryp);
+ return HAL_ERROR;
+ }
+ }
+ /* Wait until the complete message has been processed */
+ if(CRYP_WaitOnBUSYFlag(hcryp, Timeout) != HAL_OK)
+ {
+ /* Disable the CRYP peripheral clock */
+ __HAL_CRYP_DISABLE(hcryp);
+
+ /* Change state */
+ hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
+ hcryp->State = HAL_CRYP_STATE_READY;
+
+ /* Process unlocked & return error */
+ __HAL_UNLOCK(hcryp);
+ return HAL_ERROR;
+ }
+
+#else /* AES */
+
+ if(hcryp->Init.Algorithm == CRYP_AES_GCM_GMAC)
+ {
+ /* Workaround 1 :only AES before re-enabling the IP, datatype can be configured.*/
+ MODIFY_REG(hcryp->Instance->CR, AES_CR_DATATYPE, hcryp->Init.DataType);
+
+ /* Select header phase */
+ CRYP_SET_PHASE(hcryp, CRYP_PHASE_HEADER);
+
+ /* Enable the CRYP peripheral */
+ __HAL_CRYP_ENABLE(hcryp);
+
+ }
+ if ((hcryp->Init.HeaderSize %4U )== 0U)
+ {
+ /* HeaderSize %4, no padding */
+ for(loopcounter = 0U; (loopcounter < hcryp->Init.HeaderSize); loopcounter+= 4U)
+ {
+ /* Write the input block in the data input register */
+ hcryp->Instance->DINR = *(uint32_t*)(hcryp->Init.Header + hcryp->CrypHeaderCount);
+ hcryp->CrypHeaderCount++ ;
+ hcryp->Instance->DINR = *(uint32_t*)(hcryp->Init.Header + hcryp->CrypHeaderCount);
+ hcryp->CrypHeaderCount++ ;
+ hcryp->Instance->DINR = *(uint32_t*)(hcryp->Init.Header + hcryp->CrypHeaderCount);
+ hcryp->CrypHeaderCount++ ;
+ hcryp->Instance->DINR = *(uint32_t*)(hcryp->Init.Header + hcryp->CrypHeaderCount);
+ hcryp->CrypHeaderCount++ ;
+
+ if(CRYP_WaitOnCCFlag(hcryp, Timeout) != HAL_OK)
+ {
+ /* Disable the CRYP peripheral clock */
+ __HAL_CRYP_DISABLE(hcryp);
+
+ /* Change state */
+ hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
+ hcryp->State = HAL_CRYP_STATE_READY;
+
+ /* Process unlocked */
+ __HAL_UNLOCK(hcryp);
+ return HAL_ERROR;
+ }
+ /* Clear CCF flag */
+ __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
+ }
+ }
+ else
+ {
+ /*Write header block in the IN FIFO without last block */
+ for(loopcounter = 0U; (loopcounter < ((hcryp->Init.HeaderSize)-(hcryp->Init.HeaderSize %4U ))); loopcounter+=4U)
+ {
+ /* Write the input block in the data input register */
+ hcryp->Instance->DINR = *(uint32_t*)(hcryp->Init.Header + hcryp->CrypHeaderCount);
+ hcryp->CrypHeaderCount++ ;
+ hcryp->Instance->DINR = *(uint32_t*)(hcryp->Init.Header + hcryp->CrypHeaderCount);
+ hcryp->CrypHeaderCount++ ;
+ hcryp->Instance->DINR = *(uint32_t*)(hcryp->Init.Header + hcryp->CrypHeaderCount);
+ hcryp->CrypHeaderCount++ ;
+ hcryp->Instance->DINR = *(uint32_t*)(hcryp->Init.Header + hcryp->CrypHeaderCount);
+ hcryp->CrypHeaderCount++ ;
+
+ if(CRYP_WaitOnCCFlag(hcryp, Timeout) != HAL_OK)
+ {
+ /* Disable the CRYP peripheral clock */
+ __HAL_CRYP_DISABLE(hcryp);
+
+ /* Change state */
+ hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
+ hcryp->State = HAL_CRYP_STATE_READY;
+
+ /* Process unlocked */
+ __HAL_UNLOCK(hcryp);
+ return HAL_ERROR;
+ }
+ /* Clear CCF flag */
+ __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
+ }
+ /* Last block optionally pad the data with zeros*/
+ for(loopcounter = 0U; (loopcounter < (hcryp->Init.HeaderSize %4U )); loopcounter++)
+ {
+ hcryp->Instance->DINR = *(uint32_t*)(hcryp->Init.Header + hcryp->CrypHeaderCount);
+ hcryp->CrypHeaderCount++ ;
+ }
+ while(loopcounter < 4U )
+ {
+ /*Pad the data with zeros to have a complete block */
+ hcryp->Instance->DINR = 0x0U;
+ loopcounter++;
+ }
+
+ if(CRYP_WaitOnCCFlag(hcryp, Timeout) != HAL_OK)
+ {
+ /* Disable the CRYP peripheral clock */
+ __HAL_CRYP_DISABLE(hcryp);
+
+ /* Change state */
+ hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
+ hcryp->State = HAL_CRYP_STATE_READY;
+
+ /* Process unlocked */
+ __HAL_UNLOCK(hcryp);
+ return HAL_ERROR;
+ }
+ /* Clear CCF flag */
+ __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
+ }
+#endif /* End AES or CRYP */
+ }
+ else
+ {
+#if defined(AES)
+ if(hcryp->Init.Algorithm == CRYP_AES_GCM_GMAC)
+ {
+ /*Workaround 1: only AES, before re-enabling the IP, datatype can be configured.*/
+ MODIFY_REG(hcryp->Instance->CR, AES_CR_DATATYPE, hcryp->Init.DataType);
+
+ /* Select header phase */
+ CRYP_SET_PHASE(hcryp, CRYP_PHASE_HEADER);
+
+ /* Enable the CRYP peripheral */
+ __HAL_CRYP_ENABLE(hcryp);
+ }
+#endif /* AES */
+ }
+ /* Return function status */
+ return HAL_OK;
+}
+
+/**
+ * @brief Sets the header phase when using DMA in process
+ * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
+ * the configuration information for CRYP module(Header & HeaderSize)
+ * @retval None
+ */
+static HAL_StatusTypeDef CRYP_GCMCCM_SetHeaderPhase_DMA(CRYP_HandleTypeDef *hcryp)
+{
+ __IO uint32_t count = 0U;
+ uint32_t loopcounter;
+
+ /***************************** Header phase for GCM/GMAC or CCM *********************************/
+ if((hcryp->Init.HeaderSize != 0U))
+ {
+
+#if defined(CRYP)
+
+ /* Select header phase */
+ CRYP_SET_PHASE(hcryp, CRYP_PHASE_HEADER);
+
+ /* Enable the CRYP peripheral */
+ __HAL_CRYP_ENABLE(hcryp);
+
+ if ((hcryp->Init.HeaderSize %4U )== 0U)
+ {
+ /* HeaderSize %4, no padding */
+ for(loopcounter = 0U; (loopcounter < hcryp->Init.HeaderSize); loopcounter+=4U)
+ {
+ hcryp->Instance->DIN = *(uint32_t*)(hcryp->Init.Header + hcryp->CrypHeaderCount);
+ hcryp->CrypHeaderCount++ ;
+ hcryp->Instance->DIN = *(uint32_t*)(hcryp->Init.Header + hcryp->CrypHeaderCount);
+ hcryp->CrypHeaderCount++ ;
+ hcryp->Instance->DIN = *(uint32_t*)(hcryp->Init.Header + hcryp->CrypHeaderCount);
+ hcryp->CrypHeaderCount++ ;
+ hcryp->Instance->DIN = *(uint32_t*)(hcryp->Init.Header + hcryp->CrypHeaderCount);
+ hcryp->CrypHeaderCount++ ;
+
+ /* Wait for IFEM to be raised */
+ count = CRYP_TIMEOUT_GCMCCMHEADERPHASE;
+ do
+ {
+ count-- ;
+ if(count == 0U)
+ {
+ /* Disable the CRYP peripheral clock */
+ __HAL_CRYP_DISABLE(hcryp);
+
+ /* Change state */
+ hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
+ hcryp->State = HAL_CRYP_STATE_READY;
+
+ /* Process unlocked */
+ __HAL_UNLOCK(hcryp);
+ return HAL_ERROR;
+ }
+ }
+ while(HAL_IS_BIT_CLR(hcryp->Instance->SR, CRYP_FLAG_IFEM));
+ }
+ }
+ else
+ {
+ /*Write header block in the IN FIFO without last block */
+ for(loopcounter = 0U; (loopcounter < ((hcryp->Init.HeaderSize)-(hcryp->Init.HeaderSize %4U ))); loopcounter+=4U)
+ {
+ hcryp->Instance->DIN = *(uint32_t*)(hcryp->Init.Header + hcryp->CrypHeaderCount);
+ hcryp->CrypHeaderCount++ ;
+ hcryp->Instance->DIN = *(uint32_t*)(hcryp->Init.Header + hcryp->CrypHeaderCount);
+ hcryp->CrypHeaderCount++ ;
+ hcryp->Instance->DIN = *(uint32_t*)(hcryp->Init.Header + hcryp->CrypHeaderCount);
+ hcryp->CrypHeaderCount++ ;
+ hcryp->Instance->DIN = *(uint32_t*)(hcryp->Init.Header + hcryp->CrypHeaderCount);
+ hcryp->CrypHeaderCount++ ;
+
+ /* Wait for IFEM to be raised */
+ count = CRYP_TIMEOUT_GCMCCMHEADERPHASE;
+ do
+ {
+ count-- ;
+ if(count == 0U)
+ {
+ /* Disable the CRYP peripheral clock */
+ __HAL_CRYP_DISABLE(hcryp);
+
+ /* Change state */
+ hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
+ hcryp->State = HAL_CRYP_STATE_READY;
+
+ /* Process unlocked */
+ __HAL_UNLOCK(hcryp);
+ return HAL_ERROR;
+ }
+ }
+ while(HAL_IS_BIT_CLR(hcryp->Instance->SR, CRYP_FLAG_IFEM));
+ }
+ /* Last block optionally pad the data with zeros*/
+ for(loopcounter = 0U; (loopcounter < (hcryp->Init.HeaderSize %4U )); loopcounter++)
+ {
+ hcryp->Instance->DIN = *(uint32_t*)(hcryp->Init.Header + hcryp->CrypHeaderCount);
+ hcryp->CrypHeaderCount++ ;
+ }
+ while(loopcounter < 4U )
+ {
+ /* Pad the data with zeros to have a complete block */
+ hcryp->Instance->DIN = 0x0U;
+ loopcounter++;
+ }
+ /* Wait for IFEM to be raised */
+ count = CRYP_TIMEOUT_GCMCCMHEADERPHASE;
+ do
+ {
+ count-- ;
+ if(count == 0U)
+ {
+ /* Disable the CRYP peripheral clock */
+ __HAL_CRYP_DISABLE(hcryp);
+
+ /* Change state */
+ hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
+ hcryp->State = HAL_CRYP_STATE_READY;
+
+ /* Process unlocked */
+ __HAL_UNLOCK(hcryp);
+ return HAL_ERROR;
+ }
+ }
+ while(HAL_IS_BIT_CLR(hcryp->Instance->SR, CRYP_FLAG_IFEM));
+ }
+ /* Wait until the complete message has been processed */
+ count = CRYP_TIMEOUT_GCMCCMHEADERPHASE;
+ do
+ {
+ count-- ;
+ if(count == 0U)
+ {
+ /* Disable the CRYP peripheral clock */
+ __HAL_CRYP_DISABLE(hcryp);
+
+ /* Change state */
+ hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
+ hcryp->State = HAL_CRYP_STATE_READY;
+
+ /* Process unlocked */
+ __HAL_UNLOCK(hcryp);
+ return HAL_ERROR;
+ }
+ }
+ while(HAL_IS_BIT_SET(hcryp->Instance->SR, CRYP_FLAG_BUSY));
+
+#else /* AES */
+
+ if(hcryp->Init.Algorithm == CRYP_AES_GCM_GMAC)
+ {
+ /* Workaround 1: only AES, before re-enabling the IP, datatype can be configured.*/
+ MODIFY_REG(hcryp->Instance->CR, AES_CR_DATATYPE, hcryp->Init.DataType);
+
+ /* Select header phase */
+ CRYP_SET_PHASE(hcryp, CRYP_PHASE_HEADER);
+
+ /* Enable the CRYP peripheral */
+ __HAL_CRYP_ENABLE(hcryp);
+ }
+ if ((hcryp->Init.HeaderSize %4U )== 0U)
+ {
+ /* HeaderSize %4, no padding */
+ for(loopcounter = 0U; (loopcounter < hcryp->Init.HeaderSize); loopcounter+=4U)
+ {
+ /* Write the input block in the data input register */
+ hcryp->Instance->DINR = *(uint32_t*)(hcryp->Init.Header + hcryp->CrypHeaderCount);
+ hcryp->CrypHeaderCount++ ;
+ hcryp->Instance->DINR = *(uint32_t*)(hcryp->Init.Header + hcryp->CrypHeaderCount);
+ hcryp->CrypHeaderCount++ ;
+ hcryp->Instance->DINR = *(uint32_t*)(hcryp->Init.Header + hcryp->CrypHeaderCount);
+ hcryp->CrypHeaderCount++ ;
+ hcryp->Instance->DINR = *(uint32_t*)(hcryp->Init.Header + hcryp->CrypHeaderCount);
+ hcryp->CrypHeaderCount++ ;
+
+ /*Wait on CCF flag*/
+ count = CRYP_TIMEOUT_GCMCCMHEADERPHASE;
+ do
+ {
+ count-- ;
+ if(count == 0U)
+ {
+ /* Disable the CRYP peripheral clock */
+ __HAL_CRYP_DISABLE(hcryp);
+
+ /* Change state */
+ hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
+ hcryp->State = HAL_CRYP_STATE_READY;
+
+ /* Process unlocked */
+ __HAL_UNLOCK(hcryp);
+ return HAL_ERROR;
+ }
+ }
+ while(HAL_IS_BIT_CLR(hcryp->Instance->SR, AES_SR_CCF));
+
+ /* Clear CCF flag */
+ __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
+ }
+ }
+ else
+ {
+ /*Write header block in the IN FIFO without last block */
+ for(loopcounter = 0U; (loopcounter < ((hcryp->Init.HeaderSize)-(hcryp->Init.HeaderSize %4U ))); loopcounter+=4U)
+ {
+ /* Write the Input block in the Data Input register */
+ hcryp->Instance->DINR = *(uint32_t*)(hcryp->Init.Header + hcryp->CrypHeaderCount);
+ hcryp->CrypHeaderCount++ ;
+ hcryp->Instance->DINR = *(uint32_t*)(hcryp->Init.Header + hcryp->CrypHeaderCount);
+ hcryp->CrypHeaderCount++ ;
+ hcryp->Instance->DINR = *(uint32_t*)(hcryp->Init.Header + hcryp->CrypHeaderCount);
+ hcryp->CrypHeaderCount++ ;
+ hcryp->Instance->DINR = *(uint32_t*)(hcryp->Init.Header + hcryp->CrypHeaderCount);
+ hcryp->CrypHeaderCount++ ;
+
+ /*Wait on CCF flag*/
+ count = CRYP_TIMEOUT_GCMCCMHEADERPHASE;
+ do
+ {
+ count-- ;
+ if(count == 0U)
+ {
+ /* Disable the CRYP peripheral clock */
+ __HAL_CRYP_DISABLE(hcryp);
+
+ /* Change state */
+ hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
+ hcryp->State = HAL_CRYP_STATE_READY;
+
+ /* Process unlocked */
+ __HAL_UNLOCK(hcryp);
+ return HAL_ERROR;
+ }
+ }
+ while(HAL_IS_BIT_CLR(hcryp->Instance->SR, AES_SR_CCF));
+
+ /* Clear CCF flag */
+ __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
+ }
+ /* Last block optionally pad the data with zeros*/
+ for(loopcounter = 0U; (loopcounter < (hcryp->Init.HeaderSize %4U )); loopcounter++)
+ {
+ hcryp->Instance->DINR = *(uint32_t*)(hcryp->Init.Header + hcryp->CrypHeaderCount);
+ hcryp->CrypHeaderCount++ ;
+ }
+ while(loopcounter <4U )
+ {
+ /* Pad the data with zeros to have a complete block */
+ hcryp->Instance->DINR = 0x0U;
+ loopcounter++;
+ }
+
+ /*Wait on CCF flag*/
+ count = CRYP_TIMEOUT_GCMCCMHEADERPHASE;
+ do
+ {
+ count-- ;
+ if(count == 0U)
+ {
+ /* Disable the CRYP peripheral clock */
+ __HAL_CRYP_DISABLE(hcryp);
+
+ /* Change state */
+ hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
+ hcryp->State = HAL_CRYP_STATE_READY;
+
+ /* Process unlocked */
+ __HAL_UNLOCK(hcryp);
+ return HAL_ERROR;
+ }
+ }
+ while(HAL_IS_BIT_CLR(hcryp->Instance->SR, AES_SR_CCF));
+
+ /* Clear CCF flag */
+ __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
+ }
+#endif /* End AES or CRYP */
+ }
+ else
+ {
+#if defined(AES)
+ if(hcryp->Init.Algorithm == CRYP_AES_GCM_GMAC)
+ {
+ /*Workaround 1: only AES, before re-enabling the IP, datatype can be configured.*/
+ MODIFY_REG(hcryp->Instance->CR, AES_CR_DATATYPE, hcryp->Init.DataType);
+
+ /* Select header phase */
+ CRYP_SET_PHASE(hcryp, CRYP_PHASE_HEADER);
+
+ /* Enable the CRYP peripheral */
+ __HAL_CRYP_ENABLE(hcryp);
+ }
+#endif /* AES */
+ }
+ /* Return function status */
+ return HAL_OK;
+}
+
+/**
+ * @brief Sets the header phase in interrupt mode
+ * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
+ * the configuration information for CRYP module(Header & HeaderSize)
+ * @retval None
+ */
+static void CRYP_GCMCCM_SetHeaderPhase_IT(CRYP_HandleTypeDef *hcryp)
+{
+ uint32_t loopcounter;
+#if defined(AES)
+ uint32_t lastwordsize;
+ uint32_t npblb;
+#endif
+ /***************************** Header phase *********************************/
+
+#if defined(CRYP)
+ if(hcryp->Init.HeaderSize == hcryp->CrypHeaderCount)
+ {
+ /* Disable interrupts */
+ __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_INI );
+
+ /* Disable the CRYP peripheral */
+ __HAL_CRYP_DISABLE(hcryp);
+
+ /* Set the phase */
+ hcryp->Phase = CRYP_PHASE_PROCESS;
+
+ /* Select payload phase once the header phase is performed */
+ CRYP_SET_PHASE(hcryp, CRYP_PHASE_PAYLOAD);
+
+ /* Enable Interrupts */
+ __HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_INI | CRYP_IT_OUTI );
+
+ /* Enable the CRYP peripheral */
+ __HAL_CRYP_ENABLE(hcryp);
+ }
+ else if (((hcryp->Init.HeaderSize) - (hcryp->CrypHeaderCount)) >= 4U)
+
+ { /* HeaderSize %4, no padding */
+ hcryp->Instance->DIN = *(uint32_t*)(hcryp->Init.Header + hcryp->CrypHeaderCount );
+ hcryp->CrypHeaderCount++ ;
+ hcryp->Instance->DIN = *(uint32_t*)(hcryp->Init.Header + hcryp->CrypHeaderCount);
+ hcryp->CrypHeaderCount++ ;
+ hcryp->Instance->DIN = *(uint32_t*)(hcryp->Init.Header + hcryp->CrypHeaderCount);
+ hcryp->CrypHeaderCount++ ;
+ hcryp->Instance->DIN = *(uint32_t*)(hcryp->Init.Header + hcryp->CrypHeaderCount);
+ hcryp->CrypHeaderCount++ ;
+ }
+ else
+ {
+ /* Last block optionally pad the data with zeros*/
+ for(loopcounter = 0U; loopcounter < (hcryp->Init.HeaderSize %4U ); loopcounter++)
+ {
+ hcryp->Instance->DIN = *(uint32_t*)(hcryp->Init.Header+ hcryp->CrypHeaderCount);
+ hcryp->CrypHeaderCount++ ;
+ }
+ while(loopcounter <4U )
+ {
+ /* Pad the data with zeros to have a complete block */
+ hcryp->Instance->DIN = 0x0U;
+ loopcounter++;
+ }
+ }
+#else /* AES */
+
+ if(hcryp->Init.HeaderSize == hcryp->CrypHeaderCount)
+ {
+ /* Set the phase */
+ hcryp->Phase = CRYP_PHASE_PROCESS;
+
+ /* Payload phase not supported in CCM AES2 */
+ if(hcryp->Init.Algorithm == CRYP_AES_GCM_GMAC)
+ {
+ /* Select payload phase once the header phase is performed */
+ MODIFY_REG(hcryp->Instance->CR, AES_CR_GCMPH, CRYP_PHASE_PAYLOAD);
+ }
+ if(hcryp->Init.Algorithm == CRYP_AES_CCM)
+ {
+ /* Increment CrypHeaderCount to pass in CRYP_GCMCCM_SetPayloadPhase_IT */
+ hcryp->CrypHeaderCount++;
+ }
+ /* Write the payload Input block in the IN FIFO */
+ if(hcryp->Size == 0U)
+ {
+ /* Disable interrupts */
+ __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_CCFIE| CRYP_IT_ERRIE);
+
+ /* Change the CRYP state */
+ hcryp->State = HAL_CRYP_STATE_READY;
+
+ /* Process unlocked */
+ __HAL_UNLOCK(hcryp);
+ }
+ else if (hcryp->Size >= 16U)
+ {
+ hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount );
+ hcryp->CrypInCount++;
+ hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount );
+ hcryp->CrypInCount++;
+ hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount );
+ hcryp->CrypInCount++;
+ hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount );
+ hcryp->CrypInCount++;
+
+ if((hcryp->CrypInCount == (hcryp->Size/4U)) &&((hcryp->Size %16U )== 0U))
+ {
+ /* Call the input data transfer complete callback */
+#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1)
+ /*Call registered Input complete callback*/
+ hcryp->InCpltCallback(hcryp);
+#else
+ /*Call legacy weak Input complete callback*/
+ HAL_CRYP_InCpltCallback(hcryp);
+#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
+ }
+ }
+ else /* Size < 4 words : first block is the last block*/
+ {
+ /* Workaround not implemented, Size should be %4 otherwise Tag will be incorrectly
+ generated for GCM Encryption. Workaround is implemented in polling mode, so if last block of
+ payload <128bit don't use CRYP_Encrypt_IT otherwise TAG is incorrectly generated for GCM Encryption. */
+
+ /* Compute the number of padding bytes in last block of payload */
+ npblb = ((((uint32_t)(hcryp->Size)/16U)+1U)*16U) - (uint32_t)(hcryp->Size);
+
+ /* Number of valid words (lastwordsize) in last block */
+ if ((npblb % 4U) ==0U)
+ {
+ lastwordsize = (16U-npblb)/4U;
+ }
+ else
+ {
+ lastwordsize = ((16U-npblb)/4U) +1U;
+ }
+
+ /* Last block optionally pad the data with zeros*/
+ for(loopcounter = 0U; loopcounter < lastwordsize; loopcounter++)
+ {
+ hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount );
+ hcryp->CrypInCount++;
+ }
+ while(loopcounter <4U )
+ {
+ /* Pad the data with zeros to have a complete block */
+ hcryp->Instance->DINR = 0x0U;
+ loopcounter++;
+ }
+ }
+ }
+ else if (((hcryp->Init.HeaderSize) - (hcryp->CrypHeaderCount)) >= 4U)
+ {
+ /* Write the input block in the IN FIFO */
+ hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount );
+ hcryp->CrypHeaderCount++;
+ hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount );
+ hcryp->CrypHeaderCount++;
+ hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount );
+ hcryp->CrypHeaderCount++;
+ hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount );
+ hcryp->CrypHeaderCount++;
+ }
+ else /*HeaderSize < 4 or HeaderSize >4 & HeaderSize %4 != 0*/
+ {
+ /* Last block optionally pad the data with zeros*/
+ for(loopcounter = 0U; loopcounter < (hcryp->Init.HeaderSize %4U ); loopcounter++)
+ {
+ hcryp->Instance->DINR = *(uint32_t*)(hcryp->Init.Header + hcryp->CrypHeaderCount);
+ hcryp->CrypHeaderCount++ ;
+ }
+ while(loopcounter <4U )
+ {
+ /* pad the data with zeros to have a complete block */
+ hcryp->Instance->DINR = 0x0U;
+ loopcounter++;
+ }
+ }
+#endif /* End AES or CRYP */
+}
+
+
+/**
+ * @brief Workaround used for GCM/CCM mode.
+ * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
+ * the configuration information for CRYP module
+ * @param Timeout: specify Timeout value
+ * @retval None
+ */
+static void CRYP_Workaround(CRYP_HandleTypeDef *hcryp, uint32_t Timeout )
+{
+ uint32_t lastwordsize;
+ uint32_t npblb;
+#if defined(CRYP)
+ uint32_t iv1temp;
+ uint32_t temp[4] = {0};
+ uint32_t temp2[4]= {0};
+#endif /* CRYP */
+ uint32_t intermediate_data[4]={0};
+ uint32_t index;
+
+ /* Compute the number of padding bytes in last block of payload */
+ npblb = ((((uint32_t)(hcryp->Size)/16U)+1U)*16U)- (uint32_t)(hcryp->Size);
+
+ /* Number of valid words (lastwordsize) in last block */
+ if ((npblb%4U) ==0U)
+ { lastwordsize = (16U-npblb)/4U;
+ }
+ else
+ {lastwordsize = ((16U-npblb)/4U) +1U;
+ }
+
+#if defined(CRYP)
+
+ /* Workaround 2, case GCM encryption */
+ if (hcryp->Init.Algorithm == CRYP_AES_GCM)
+ {
+ if((hcryp->Instance->CR & CRYP_CR_ALGODIR) == CRYP_OPERATINGMODE_ENCRYPT)
+ {/*Workaround in order to properly compute authentication tags while doing
+ a GCM encryption with the last block of payload size inferior to 128 bits*/
+ /* Disable CRYP to start the final phase */
+ __HAL_CRYP_DISABLE(hcryp);
+
+ /*Update CRYP_IV1R register and ALGOMODE*/
+ hcryp->Instance->IV1RR = ((hcryp->Instance->CSGCMCCM7R)-1);
+ MODIFY_REG(hcryp->Instance->CR, CRYP_CR_ALGOMODE, CRYP_AES_CTR);
+
+ /* Enable CRYP to start the final phase */
+ __HAL_CRYP_ENABLE(hcryp);
+ }
+ /* Last block optionally pad the data with zeros*/
+ for(index=0; index < lastwordsize; index ++)
+ {
+ /* Write the last input block in the IN FIFO */
+ hcryp->Instance->DIN = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount );
+ hcryp->CrypInCount++;
+ }
+ while(index < 4U)
+ {
+ /* Pad the data with zeros to have a complete block */
+ hcryp->Instance->DIN = 0U;
+ index++;
+ }
+ /* Wait for OFNE flag to be raised */
+ if(CRYP_WaitOnOFNEFlag(hcryp, Timeout) != HAL_OK)
+ {
+ /* Disable the CRYP peripheral clock */
+ __HAL_CRYP_DISABLE(hcryp);
+
+ /* Change state */
+ hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
+ hcryp->State = HAL_CRYP_STATE_READY;
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(hcryp);
+#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1)
+ /*Call registered error callback*/
+ hcryp->ErrorCallback(hcryp);
+#else
+ /*Call legacy weak error callback*/
+ HAL_CRYP_ErrorCallback(hcryp);
+#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
+ }
+ if((hcryp->Instance->SR & CRYP_FLAG_OFNE ) != 0x0U)
+ {
+ for(index=0U; index< 4U;index++)
+ {
+ /* Read the output block from the output FIFO */
+ intermediate_data[index] = hcryp->Instance->DOUT;
+
+ /* Intermediate data buffer to be used in for the workaround*/
+ *(uint32_t *)(hcryp->pCrypOutBuffPtr + (hcryp->CrypOutCount))=intermediate_data[index];
+ hcryp->CrypOutCount++;
+ }
+ }
+
+ if((hcryp->Instance->CR & CRYP_CR_ALGODIR) == CRYP_OPERATINGMODE_ENCRYPT)
+ {
+ /*workaround in order to properly compute authentication tags while doing
+ a GCM encryption with the last block of payload size inferior to 128 bits*/
+ /* Change the AES mode to GCM mode and Select Final phase */
+ /* configured CHMOD GCM */
+ MODIFY_REG(hcryp->Instance->CR, CRYP_CR_ALGOMODE, CRYP_AES_GCM);
+
+ /* configured final phase */
+ MODIFY_REG(hcryp->Instance->CR, CRYP_CR_GCM_CCMPH, CRYP_PHASE_FINAL);
+
+ if ( (hcryp->Instance->CR & CRYP_CR_DATATYPE) == CRYP_DATATYPE_32B)
+ {
+ if ((npblb %4U)==1U)
+ {
+ intermediate_data[lastwordsize-1U] &= 0xFFFFFF00U;
+ }
+ if ((npblb %4U)==2U)
+ {
+ intermediate_data[lastwordsize-1U] &= 0xFFFF0000U;
+ }
+ if ((npblb %4U)==3U)
+ {
+ intermediate_data[lastwordsize-1U] &= 0xFF000000U;
+ }
+ }
+ else if ((hcryp->Instance->CR & CRYP_CR_DATATYPE) == CRYP_DATATYPE_8B)
+ {
+ if ((npblb %4U)==1U)
+ {
+ intermediate_data[lastwordsize-1U] &= __REV(0xFFFFFF00U);
+ }
+ if ((npblb %4U)==2U)
+ {
+ intermediate_data[lastwordsize-1U] &= __REV(0xFFFF0000U);
+ }
+ if ((npblb %4U)==3U)
+ {
+ intermediate_data[lastwordsize-1U] &= __REV(0xFF000000U);
+ }
+ }
+ else if ((hcryp->Instance->CR & CRYP_CR_DATATYPE) == CRYP_DATATYPE_16B)
+ {
+ if ((npblb %4U)==1U)
+ {
+ intermediate_data[lastwordsize-1U] &= __ROR((0xFFFFFF00U), 16);
+ }
+ if ((npblb %4U)==2U)
+ {
+ intermediate_data[lastwordsize-1U] &= __ROR((0xFFFF0000U), 16);
+ }
+ if ((npblb %4U)==3U)
+ {
+ intermediate_data[lastwordsize-1U] &= __ROR((0xFF000000U), 16);
+ }
+ }
+ else /*CRYP_DATATYPE_1B*/
+ {
+ if ((npblb %4U)==1U)
+ {
+ intermediate_data[lastwordsize-1U] &= __RBIT(0xFFFFFF00U);
+ }
+ if ((npblb %4U)==2U)
+ {
+ intermediate_data[lastwordsize-1U] &= __RBIT(0xFFFF0000U);
+ }
+ if ((npblb %4U)==3U)
+ {
+ intermediate_data[lastwordsize-1U] &= __RBIT(0xFF000000U);
+ }
+ }
+ for (index=0U; index < lastwordsize; index ++)
+ {
+ /*Write the intermediate_data in the IN FIFO */
+ hcryp->Instance->DIN=intermediate_data[index];
+ }
+ while(index < 4U)
+ {
+ /* Pad the data with zeros to have a complete block */
+ hcryp->Instance->DIN = 0x0U;
+ index++;
+ }
+ /* Wait for OFNE flag to be raised */
+ if(CRYP_WaitOnOFNEFlag(hcryp, Timeout) != HAL_OK)
+ {
+ /* Disable the CRYP peripheral clock */
+ __HAL_CRYP_DISABLE(hcryp);
+
+ /* Change state */
+ hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
+ hcryp->State = HAL_CRYP_STATE_READY;
+
+ /* Process unlocked */
+ __HAL_UNLOCK(hcryp);
+#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1)
+ /*Call registered error callback*/
+ hcryp->ErrorCallback(hcryp);
+#else
+ /*Call legacy weak error callback*/
+ HAL_CRYP_ErrorCallback(hcryp);
+#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
+ }
+
+ if((hcryp->Instance->SR & CRYP_FLAG_OFNE ) != 0x0U)
+ {
+ for( index=0U; index< 4U;index++)
+ {
+ intermediate_data[index]=hcryp->Instance->DOUT;
+ }
+ }
+ }
+ } /* End of GCM encryption */
+ else{ /* Workaround 2, case CCM decryption, in order to properly compute
+ authentication tags while doing a CCM decryption with the last block
+ of payload size inferior to 128 bits*/
+
+ if((hcryp->Instance->CR & CRYP_CR_ALGODIR) == CRYP_OPERATINGMODE_DECRYPT)
+ {
+ iv1temp = hcryp->Instance->CSGCMCCM7R;
+
+ /* Disable CRYP to start the final phase */
+ __HAL_CRYP_DISABLE(hcryp);
+
+ temp[0]= hcryp->Instance->CSGCMCCM0R;
+ temp[1]= hcryp->Instance->CSGCMCCM1R;
+ temp[2]= hcryp->Instance->CSGCMCCM2R;
+ temp[3]= hcryp->Instance->CSGCMCCM3R;
+
+ hcryp->Instance->IV1RR= iv1temp;
+
+ /* Configured CHMOD CTR */
+ MODIFY_REG(hcryp->Instance->CR, CRYP_CR_ALGOMODE, CRYP_AES_CTR);
+
+ /* Enable CRYP to start the final phase */
+ __HAL_CRYP_ENABLE(hcryp);
+ }
+ /* Last block optionally pad the data with zeros*/
+ for(index=0; index < lastwordsize; index ++)
+ {
+ /* Write the last Input block in the IN FIFO */
+ hcryp->Instance->DIN = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount );
+ hcryp->CrypInCount++;
+ }
+ while(index < 4U)
+ {
+ /* Pad the data with zeros to have a complete block */
+ hcryp->Instance->DIN = 0U;
+ index++;
+ }
+ /* Wait for OFNE flag to be raised */
+ if(CRYP_WaitOnOFNEFlag(hcryp, Timeout) != HAL_OK)
+ {
+ /* Disable the CRYP peripheral clock */
+ __HAL_CRYP_DISABLE(hcryp);
+
+ /* Change state */
+ hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
+ hcryp->State = HAL_CRYP_STATE_READY;
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(hcryp);
+#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U)
+ /*Call registered error callback*/
+ hcryp->ErrorCallback(hcryp);
+#else
+ /*Call legacy weak error callback*/
+ HAL_CRYP_ErrorCallback(hcryp);
+#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
+ }
+
+ if((hcryp->Instance->SR & CRYP_FLAG_OFNE ) != 0x0U)
+ {
+ for(index=0U; index< 4U;index++)
+ {
+ /* Read the Output block from the Output FIFO */
+ intermediate_data[index] = hcryp->Instance->DOUT;
+
+ /*intermediate data buffer to be used in for the workaround*/
+ *(uint32_t *)(hcryp->pCrypOutBuffPtr + (hcryp->CrypOutCount))=intermediate_data[index];
+ hcryp->CrypOutCount++;
+ }
+ }
+
+ if((hcryp->Instance->CR & CRYP_CR_ALGODIR) == CRYP_OPERATINGMODE_DECRYPT)
+ {
+ temp2[0]= hcryp->Instance->CSGCMCCM0R;
+ temp2[1]= hcryp->Instance->CSGCMCCM1R;
+ temp2[2]= hcryp->Instance->CSGCMCCM2R;
+ temp2[3]= hcryp->Instance->CSGCMCCM3R;
+
+ /* configured CHMOD CCM */
+ MODIFY_REG(hcryp->Instance->CR, CRYP_CR_ALGOMODE, CRYP_AES_CCM);
+
+ /* configured Header phase */
+ MODIFY_REG(hcryp->Instance->CR, CRYP_CR_GCM_CCMPH, CRYP_PHASE_HEADER);
+
+ /*set to zero the bits corresponding to the padded bits*/
+ for(index = lastwordsize; index<4U; index ++)
+ {
+ intermediate_data[index] =0U;
+ }
+ if ((npblb %4U)==1U)
+ {
+ intermediate_data[lastwordsize-1U] &= 0xFFFFFF00U;
+ }
+ if ((npblb %4U)==2U)
+ {
+ intermediate_data[lastwordsize-1U] &= 0xFFFF0000U;
+ }
+ if ((npblb %4U)==3U)
+ {
+ intermediate_data[lastwordsize-1U] &= 0xFF000000U;
+ }
+ for(index=0U; index < 4U ; index ++)
+ {
+ intermediate_data[index] ^= temp[index];
+ intermediate_data[index] ^= temp2[index];
+ }
+ for(index = 0U; index < 4U; index ++)
+ {
+ /* Write the last Input block in the IN FIFO */
+ hcryp->Instance->DIN = intermediate_data[index] ;
+ }
+
+ /* Wait for BUSY flag to be raised */
+ if(CRYP_WaitOnBUSYFlag(hcryp, Timeout) != HAL_OK)
+ {
+ /* Disable the CRYP peripheral clock */
+ __HAL_CRYP_DISABLE(hcryp);
+
+ /* Change state */
+ hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
+ hcryp->State = HAL_CRYP_STATE_READY;
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(hcryp);
+#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U)
+ /*Call registered error callback*/
+ hcryp->ErrorCallback(hcryp);
+#else
+ /*Call legacy weak error callback*/
+ HAL_CRYP_ErrorCallback(hcryp);
+#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
+ }
+ }
+ } /* End of CCM WKA*/
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(hcryp);
+
+#else /* AES */
+
+ /*Workaround 2: case GCM encryption, during payload phase and before inserting
+ the last block of paylaod, which size is inferior to 128 bits */
+
+ if((hcryp->Instance->CR & AES_CR_MODE) == CRYP_OPERATINGMODE_ENCRYPT)
+ {
+ /* configured CHMOD CTR */
+ MODIFY_REG(hcryp->Instance->CR, AES_CR_CHMOD, CRYP_AES_CTR);
+ }
+ /* last block optionally pad the data with zeros*/
+ for(index = 0U; index < lastwordsize; index ++)
+ {
+ /* Write the last Input block in the IN FIFO */
+ hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount );
+ hcryp->CrypInCount++;
+ }
+ while(index < 4U)
+ {
+ /* pad the data with zeros to have a complete block */
+ hcryp->Instance->DINR = 0U;
+ index++;
+ }
+ /* Wait for CCF flag to be raised */
+ if(CRYP_WaitOnCCFlag(hcryp, Timeout) != HAL_OK)
+ {
+ hcryp->State = HAL_CRYP_STATE_READY;
+ __HAL_UNLOCK(hcryp);
+#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U)
+ /*Call registered error callback*/
+ hcryp->ErrorCallback(hcryp);
+#else
+ /*Call legacy weak error callback*/
+ HAL_CRYP_ErrorCallback(hcryp);
+#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
+ }
+
+ /* Clear CCF Flag */
+ __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
+
+ for(index = 0U; index< 4U;index++)
+ {
+ /* Read the Output block from the Output FIFO */
+ intermediate_data[index] = hcryp->Instance->DOUTR;
+
+ /*intermediate data buffer to be used in the workaround*/
+ *(uint32_t *)(hcryp->pCrypOutBuffPtr + (hcryp->CrypOutCount))= intermediate_data[index];
+ hcryp->CrypOutCount++;
+ }
+
+ if((hcryp->Instance->CR & AES_CR_MODE) == CRYP_OPERATINGMODE_ENCRYPT)
+ {
+ /* configured CHMOD GCM */
+ MODIFY_REG(hcryp->Instance->CR, AES_CR_CHMOD, CRYP_AES_GCM_GMAC);
+
+ /* Select final phase */
+ MODIFY_REG(hcryp->Instance->CR, AES_CR_GCMPH, CRYP_PHASE_FINAL);
+
+ if ( (hcryp->Instance->CR & AES_CR_DATATYPE) == CRYP_DATATYPE_32B)
+ {
+ if ((npblb %4U)==1U)
+ {
+ intermediate_data[lastwordsize-1U] &= 0xFFFFFF00U;
+ }
+ if ((npblb %4U)==2U)
+ {
+ intermediate_data[lastwordsize-1U] &= 0xFFFF0000U;
+ }
+ if ((npblb %4U)==3U)
+ {
+ intermediate_data[lastwordsize-1U] &= 0xFF000000U;
+ }
+ }
+ else if ((hcryp->Instance->CR & AES_CR_DATATYPE) == CRYP_DATATYPE_8B)
+ {
+ if ((npblb %4U)==1U)
+ {
+ intermediate_data[lastwordsize-1U] &= __REV(0xFFFFFF00U);
+ }
+ if ((npblb %4U)==2U)
+ {
+ intermediate_data[lastwordsize-1U] &= __REV(0xFFFF0000U);
+ }
+ if ((npblb %4U)==3U)
+ {
+ intermediate_data[lastwordsize-1U] &= __REV(0xFF000000U);
+ }
+ }
+ else if ((hcryp->Instance->CR & AES_CR_DATATYPE) == CRYP_DATATYPE_16B)
+ {
+ if ((npblb %4U)==1U)
+ {
+ intermediate_data[lastwordsize-1U] &= __ROR((0xFFFFFF00U), 16);
+ }
+ if ((npblb %4U)==2U)
+ {
+ intermediate_data[lastwordsize-1U] &= __ROR((0xFFFF0000U), 16);
+ }
+ if ((npblb %4U)==3U)
+ {
+ intermediate_data[lastwordsize-1U] &= __ROR((0xFF000000U), 16);
+ }
+ }
+ else /*CRYP_DATATYPE_1B*/
+ {
+ if ((npblb %4U)==1U)
+ {
+ intermediate_data[lastwordsize-1U] &= __RBIT(0xFFFFFF00U);
+ }
+ if ((npblb %4U)==2U)
+ {
+ intermediate_data[lastwordsize-1U] &= __RBIT(0xFFFF0000U);
+ }
+ if ((npblb %4U)==3U)
+ {
+ intermediate_data[lastwordsize-1U] &= __RBIT(0xFF000000U);
+ }
+ }
+
+ /*Write the intermediate_data in the IN FIFO */
+ for(index = 0U; index < lastwordsize; index ++)
+ {
+ hcryp->Instance->DINR = intermediate_data[index];
+ }
+ while(index < 4U)
+ {
+ /* pad the data with zeros to have a complete block */
+ hcryp->Instance->DINR = 0U;
+ index++;
+ }
+ /* Wait for CCF flag to be raised */
+ if(CRYP_WaitOnCCFlag(hcryp, Timeout) != HAL_OK)
+ {
+ /* Disable the CRYP peripheral clock */
+ __HAL_CRYP_DISABLE(hcryp);
+
+ /* Change state */
+ hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
+ hcryp->State = HAL_CRYP_STATE_READY;
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(hcryp);
+#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U)
+ /*Call registered error callback*/
+ hcryp->ErrorCallback(hcryp);
+#else
+ /*Call legacy weak error callback*/
+ HAL_CRYP_ErrorCallback(hcryp);
+#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
+ }
+ /* Clear CCF Flag */
+ __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
+
+ for( index = 0U; index< 4U;index++)
+ {
+ intermediate_data[index]=hcryp->Instance->DOUTR;
+ }
+ }/*End of Workaround 2*/
+#endif /* End AES or CRYP */
+}
+#endif /* AES or GCM CCM defined*/
+#if defined (CRYP)
+#if defined (CRYP_CR_ALGOMODE_AES_GCM)
+/**
+ * @brief Handle CRYP hardware block Timeout when waiting for IFEM flag to be raised.
+ * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
+ * the configuration information for CRYP module.
+ * @param Timeout: Timeout duration.
+ * @retval HAL status
+ */
+static HAL_StatusTypeDef CRYP_WaitOnIFEMFlag(CRYP_HandleTypeDef *hcryp, uint32_t Timeout)
+{
+ uint32_t tickstart;
+
+ /* Get timeout */
+ tickstart = HAL_GetTick();
+
+ while(HAL_IS_BIT_CLR(hcryp->Instance->SR, CRYP_FLAG_IFEM))
+ {
+ /* Check for the Timeout */
+ if(Timeout != HAL_MAX_DELAY)
+ {
+ if(((HAL_GetTick() - tickstart ) > Timeout)||(Timeout == 0U))
+ {
+ return HAL_ERROR;
+ }
+ }
+ }
+ return HAL_OK;
+}
+#endif /* GCM CCM defined*/
+/**
+ * @brief Handle CRYP hardware block Timeout when waiting for BUSY flag to be raised.
+ * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
+ * the configuration information for CRYP module.
+ * @param Timeout: Timeout duration.
+ * @retval HAL status
+ */
+static HAL_StatusTypeDef CRYP_WaitOnBUSYFlag(CRYP_HandleTypeDef *hcryp, uint32_t Timeout)
+{
+ uint32_t tickstart;
+
+ /* Get timeout */
+ tickstart = HAL_GetTick();
+
+ while(HAL_IS_BIT_SET(hcryp->Instance->SR, CRYP_FLAG_BUSY))
+ {
+ /* Check for the Timeout */
+ if(Timeout != HAL_MAX_DELAY)
+ {
+ if(((HAL_GetTick() - tickstart ) > Timeout)||(Timeout == 0U))
+ {
+ return HAL_ERROR;
+ }
+ }
+ }
+ return HAL_OK;
+}
+
+
+/**
+ * @brief Handle CRYP hardware block Timeout when waiting for OFNE flag to be raised.
+ * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
+ * the configuration information for CRYP module.
+ * @param Timeout: Timeout duration.
+ * @retval HAL status
+ */
+static HAL_StatusTypeDef CRYP_WaitOnOFNEFlag(CRYP_HandleTypeDef *hcryp, uint32_t Timeout)
+{
+ uint32_t tickstart;
+
+ /* Get timeout */
+ tickstart = HAL_GetTick();
+
+ while(HAL_IS_BIT_CLR(hcryp->Instance->SR, CRYP_FLAG_OFNE))
+ {
+ /* Check for the Timeout */
+ if(Timeout != HAL_MAX_DELAY)
+ {
+ if(((HAL_GetTick() - tickstart ) > Timeout)||(Timeout == 0U))
+ {
+ return HAL_ERROR;
+ }
+ }
+ }
+ return HAL_OK;
+}
+
+#else /* AES */
+
+/**
+ * @brief Handle CRYP hardware block Timeout when waiting for CCF flag to be raised.
+ * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
+ * the configuration information for CRYP module.
+ * @param Timeout: Timeout duration.
+ * @retval HAL status
+ */
+static HAL_StatusTypeDef CRYP_WaitOnCCFlag(CRYP_HandleTypeDef *hcryp, uint32_t Timeout)
+{
+ uint32_t tickstart;
+
+ /* Get timeout */
+ tickstart = HAL_GetTick();
+
+ while(HAL_IS_BIT_CLR(hcryp->Instance->SR, AES_SR_CCF))
+ {
+ /* Check for the Timeout */
+ if(Timeout != HAL_MAX_DELAY)
+ {
+ if(((HAL_GetTick() - tickstart ) > Timeout)||(Timeout == 0U) )
+ {
+ return HAL_ERROR;
+ }
+ }
+ }
+ return HAL_OK;
+}
+
+#endif /* End AES or CRYP */
+
+
+/**
+ * @}
+ */
+
+
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+#endif /* HAL_CRYP_MODULE_ENABLED */
+
+
+/**
+ * @}
+ */
+#endif /* TinyAES or CRYP*/
+/**
+ * @}
+ */
+
+/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
|
