1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
|
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * Copyright INRIA, CNRS and contributors *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
open Names
open Declarations
open Univ
(* object_kind , id *)
exception AlreadyDeclared of (string option * Id.t)
let _ = CErrors.register_handler (function
| AlreadyDeclared (kind, id) ->
Some
Pp.(seq [ Pp.pr_opt_no_spc (fun s -> str s ++ spc ()) kind
; Id.print id; str " already exists."])
| _ ->
None)
type universe_source =
| BoundUniv (* polymorphic universe, bound in a function (this will go away someday) *)
| QualifiedUniv of Id.t (* global universe introduced by some global value *)
| UnqualifiedUniv (* other global universe *)
type universe_name_decl = universe_source * (Id.t * Univ.Level.UGlobal.t) list
let check_exists_universe sp =
if Nametab.exists_universe sp then
raise (AlreadyDeclared (Some "Universe", Libnames.basename sp))
else ()
let qualify_univ i dp src id =
match src with
| BoundUniv | UnqualifiedUniv ->
i, Libnames.make_path dp id
| QualifiedUniv l ->
let dp = DirPath.repr dp in
Nametab.map_visibility succ i, Libnames.make_path (DirPath.make (l::dp)) id
let do_univ_name ~check i dp src (id,univ) =
let i, sp = qualify_univ i dp src id in
if check then check_exists_universe sp;
Nametab.push_universe i sp univ
let cache_univ_names ((sp, _), (src, univs)) =
let depth = Lib.sections_depth () in
let dp = Libnames.pop_dirpath_n depth (Libnames.dirpath sp) in
List.iter (do_univ_name ~check:true (Nametab.Until 1) dp src) univs
let load_univ_names i ((sp, _), (src, univs)) =
List.iter (do_univ_name ~check:false (Nametab.Until i) (Libnames.dirpath sp) src) univs
let open_univ_names i ((sp, _), (src, univs)) =
List.iter (do_univ_name ~check:false (Nametab.Exactly i) (Libnames.dirpath sp) src) univs
let discharge_univ_names = function
| _, (BoundUniv, _) -> None
| _, ((QualifiedUniv _ | UnqualifiedUniv), _ as x) -> Some x
let input_univ_names : universe_name_decl -> Libobject.obj =
let open Libobject in
declare_object
{ (default_object "Global universe name state") with
cache_function = cache_univ_names;
load_function = load_univ_names;
open_function = simple_open open_univ_names;
discharge_function = discharge_univ_names;
subst_function = (fun (subst, a) -> (* Actually the name is generated once and for all. *) a);
classify_function = (fun a -> Substitute a) }
let input_univ_names (src, l) =
if CList.is_empty l then ()
else Lib.add_anonymous_leaf (input_univ_names (src, l))
let invent_name (named,cnt) u =
let rec aux i =
let na = Id.of_string ("u"^(string_of_int i)) in
if Id.Map.mem na named then aux (i+1)
else na, (Id.Map.add na u named, i+1)
in
aux cnt
let label_and_univs_of = let open GlobRef in function
| ConstRef c ->
let l = Label.to_id @@ Constant.label c in
let univs = (Global.lookup_constant c).const_universes in
l, univs
| IndRef (c,_) ->
let l = Label.to_id @@ MutInd.label c in
let univs = (Global.lookup_mind c).mind_universes in
l, univs
| VarRef id ->
CErrors.anomaly ~label:"declare_univ_binders"
Pp.(str "declare_univ_binders on variable " ++ Id.print id ++ str".")
| ConstructRef _ ->
CErrors.anomaly ~label:"declare_univ_binders"
Pp.(str "declare_univ_binders on a constructor reference")
let declare_univ_binders gr pl =
let l, univs = label_and_univs_of gr in
match univs with
| Polymorphic _ -> ()
| Monomorphic (levels,_) ->
(* First the explicitly named universes *)
let named, univs = Id.Map.fold (fun id univ (named,univs) ->
let univs = match Univ.Level.name univ with
| None -> assert false (* having Prop/Set/Var as binders is nonsense *)
| Some univ -> (id,univ)::univs
in
let named = LSet.add univ named in
named, univs)
pl (LSet.empty,[])
in
(* then invent names for the rest *)
let _, univs = LSet.fold (fun univ (aux,univs) ->
let id, aux = invent_name aux univ in
let univ = Option.get (Level.name univ) in
aux, (id,univ) :: univs)
(LSet.diff levels named) ((pl,0),univs)
in
input_univ_names (QualifiedUniv l, univs)
let do_universe ~poly l =
let in_section = Global.sections_are_opened () in
let () =
if poly && not in_section then
CErrors.user_err ~hdr:"Constraint"
(Pp.str"Cannot declare polymorphic universes outside sections")
in
let l = List.map (fun {CAst.v=id} -> (id, UnivGen.new_univ_global ())) l in
let ctx = List.fold_left (fun ctx (_,qid) -> Univ.LSet.add (Univ.Level.make qid) ctx)
Univ.LSet.empty l, Univ.Constraint.empty
in
let src = if poly then BoundUniv else UnqualifiedUniv in
let () = input_univ_names (src, l) in
DeclareUctx.declare_universe_context ~poly ctx
let do_constraint ~poly l =
let open Univ in
let evd = Evd.from_env (Global.env ()) in
let u_of_id x = Constrintern.interp_known_level evd x in
let constraints = List.fold_left (fun acc (l, d, r) ->
let lu = u_of_id l and ru = u_of_id r in
Constraint.add (lu, d, ru) acc)
Constraint.empty l
in
let uctx = ContextSet.add_constraints constraints ContextSet.empty in
DeclareUctx.declare_universe_context ~poly uctx
|