aboutsummaryrefslogtreecommitdiff
path: root/theories/setoid_ring/Rings_Z.v
blob: 372bba79260d29bd2ee4fe95c9e51174bcdd7eea (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
(************************************************************************)
(*         *   The Coq Proof Assistant / The Coq Development Team       *)
(*  v      *         Copyright INRIA, CNRS and contributors             *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)

Require Export Cring.
Require Export Integral_domain.
Require Export Ncring_initial.

Instance Zcri: (Cring (Rr:=Zr)).
red. exact Z.mul_comm. Defined.

Lemma Z_one_zero: 1%Z <> 0%Z.
Proof. discriminate. Qed.

Instance Zdi : (Integral_domain (Rcr:=Zcri)). 
constructor. 
exact Zmult_integral. exact Z_one_zero. Defined.