aboutsummaryrefslogtreecommitdiff
path: root/theories/micromega/Tauto.v
blob: e4129f83824afb213bd3aa7910ce7a513ca056fe (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
(************************************************************************)
(*         *   The Coq Proof Assistant / The Coq Development Team       *)
(*  v      *         Copyright INRIA, CNRS and contributors             *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)
(*                                                                      *)
(* Micromega: A reflexive tactic using the Positivstellensatz           *)
(*                                                                      *)
(*  Frédéric Besson (Irisa/Inria) 2006-20019                            *)
(*                                                                      *)
(************************************************************************)

Require Import List.
Require Import Refl.
Require Import Bool.
Require Import Relation_Definitions Setoid.

Set Implicit Arguments.

(** Formulae are either interpreted over Prop or bool. *)
Inductive kind : Type :=
|isProp
|isBool.

Register isProp as micromega.kind.isProp.
Register isBool as micromega.kind.isBool.


Section S.
  Context {TA  : Type}. (* type of interpreted atoms *)
  Context {TX  : kind -> Type}. (* type of uninterpreted terms (Prop) *)
  Context {AA  : Type}. (* type of annotations for atoms *)
  Context {AF  : Type}. (* type of formulae identifiers *)

  Inductive GFormula  : kind -> Type :=
  | TT   : forall (k: kind), GFormula k
  | FF   : forall (k: kind), GFormula k
  | X    : forall (k: kind), TX k -> GFormula k
  | A    : forall (k: kind), TA -> AA -> GFormula k
  | AND  : forall (k: kind), GFormula k -> GFormula k -> GFormula k
  | OR   : forall (k: kind), GFormula k -> GFormula k -> GFormula k
  | NOT  : forall (k: kind), GFormula k -> GFormula k
  | IMPL : forall (k: kind), GFormula k -> option AF -> GFormula k -> GFormula k
  | IFF  : forall (k: kind), GFormula k -> GFormula k -> GFormula k
  | EQ   : GFormula isBool -> GFormula isBool -> GFormula isProp.

  Register TT as micromega.GFormula.TT.
  Register FF as micromega.GFormula.FF.
  Register X  as micromega.GFormula.X.
  Register A  as micromega.GFormula.A.
  Register AND as micromega.GFormula.AND.
  Register OR  as micromega.GFormula.OR.
  Register NOT  as micromega.GFormula.NOT.
  Register IMPL  as micromega.GFormula.IMPL.
  Register IFF  as micromega.GFormula.IFF.
  Register EQ  as micromega.GFormula.EQ.


  Section MAPX.
    Variable F : forall k, TX k -> TX k.

    Fixpoint mapX (k:kind) (f : GFormula k) : GFormula k :=
      match f with
      | TT k => TT k
      | FF k => FF k
      | X x => X (F  x)
      | A k a an => A k a an
      | AND f1 f2 => AND (mapX f1) (mapX f2)
      | OR f1 f2  => OR (mapX f1) (mapX f2)
      | NOT f     => NOT (mapX f)
      | IMPL f1 o f2 => IMPL (mapX f1) o (mapX f2)
      | IFF f1 f2    => IFF (mapX f1) (mapX f2)
      | EQ f1 f2           => EQ (mapX f1) (mapX f2)
      end.

  End MAPX.

  Section FOLDANNOT.
    Variable ACC : Type.
    Variable F : ACC -> AA -> ACC.

    Fixpoint foldA (k: kind) (f : GFormula k) (acc : ACC) : ACC :=
      match f with
      | TT _ => acc
      | FF _ => acc
      | X x => acc
      | A _ a an => F acc an
      | AND f1 f2
      | OR f1 f2
      | IFF f1 f2
      | IMPL f1 _ f2 | EQ f1 f2 => foldA f1 (foldA f2 acc)
      | NOT f     => foldA f acc
      end.

  End FOLDANNOT.


  Definition cons_id (id : option AF) (l : list AF) :=
    match id with
    | None => l
    | Some id => id :: l
    end.

  Fixpoint ids_of_formula (k: kind) (f:GFormula k) :=
    match f with
    | IMPL f id f' => cons_id id (ids_of_formula f')
    |  _           => nil
    end.

  Fixpoint collect_annot (k: kind) (f : GFormula k) : list AA :=
    match f with
    | TT _ | FF _ | X _ => nil
    | A _ _ a => a ::nil
    | AND f1 f2
    | OR  f1 f2
    | IFF f1 f2 | EQ f1 f2
    | IMPL f1 _ f2  => collect_annot f1 ++ collect_annot f2
    | NOT  f  => collect_annot f
    end.

  Definition rtyp (k: kind) : Type := if k then Prop else bool.

  Variable ex : forall (k: kind), TX k -> rtyp k. (* [ex] will be the identity *)

  Section EVAL.

    Variable ea : forall (k: kind), TA -> rtyp k.

    Definition eTT (k: kind) : rtyp k :=
      if k as k' return  rtyp k' then True else true.

    Definition eFF (k: kind) : rtyp k :=
      if k as k' return  rtyp k' then False else false.

    Definition eAND (k: kind) : rtyp k -> rtyp k -> rtyp k :=
      if k as k' return rtyp k' -> rtyp k' -> rtyp k'
      then and else andb.

    Definition eOR (k: kind) : rtyp k -> rtyp k -> rtyp k :=
      if k as k' return rtyp k' -> rtyp k' -> rtyp k'
      then or else orb.

    Definition eIMPL (k: kind) : rtyp k -> rtyp k -> rtyp k :=
      if k as k' return rtyp k' -> rtyp k' -> rtyp k'
      then (fun x y => x -> y) else implb.

    Definition eIFF (k: kind) : rtyp k -> rtyp k -> rtyp k :=
      if k as k' return rtyp k' -> rtyp k' -> rtyp k'
      then iff else eqb.

    Definition eNOT (k: kind) : rtyp k -> rtyp k :=
      if k as k' return rtyp k' -> rtyp k'
      then not else negb.

    Fixpoint eval_f (k: kind) (f:GFormula k) {struct f}: rtyp k :=
      match f in GFormula k' return rtyp k' with
      | TT tk => eTT tk
      | FF tk => eFF tk
      | A k a _ =>  ea k a
      | X p => ex  p
      | @AND k e1 e2 => eAND k (eval_f  e1) (eval_f e2)
      | @OR k e1 e2  => eOR k (eval_f e1) (eval_f e2)
      | @NOT k e     => eNOT k (eval_f e)
      | @IMPL k f1 _ f2 => eIMPL k (eval_f f1)  (eval_f f2)
      | @IFF k f1 f2    => eIFF k (eval_f f1) (eval_f f2)
      | EQ f1 f2    => (eval_f f1) = (eval_f f2)
      end.

    Lemma eval_f_rew : forall k (f:GFormula k),
        eval_f f =
        match f in GFormula k' return rtyp k' with
        | TT tk => eTT tk
        | FF tk => eFF tk
        | A k a _ =>  ea k a
        | X p => ex  p
        | @AND k e1 e2 => eAND k (eval_f  e1) (eval_f e2)
        | @OR k e1 e2  => eOR k (eval_f e1) (eval_f e2)
        | @NOT k e     => eNOT k (eval_f e)
        | @IMPL k f1 _ f2 => eIMPL k (eval_f f1)  (eval_f f2)
        | @IFF k f1 f2    => eIFF k (eval_f f1) (eval_f f2)
        | EQ f1 f2    => (eval_f f1) = (eval_f f2)
        end.
    Proof.
      intros k f; destruct f ; reflexivity.
    Qed.

  End EVAL.


  Definition hold (k: kind) : rtyp k ->  Prop :=
    if k as k0 return (rtyp k0 -> Prop) then fun x  => x else is_true.

  Definition eiff (k: kind) : rtyp k -> rtyp k -> Prop :=
    if k as k' return rtyp k' -> rtyp k' -> Prop then iff else @eq bool.

  Lemma eiff_refl (k: kind) (x : rtyp k) :
      eiff k x x.
  Proof.
    destruct k ; simpl; tauto.
  Qed.

  Lemma eiff_sym k (x y : rtyp k) : eiff k x y -> eiff k y x.
  Proof.
    destruct k ; simpl; intros ; intuition.
  Qed.

  Lemma eiff_trans k (x y z : rtyp k) : eiff k x y -> eiff k y z -> eiff k x z.
  Proof.
    destruct k ; simpl; intros ; intuition congruence.
  Qed.

  Lemma hold_eiff (k: kind) (x y : rtyp k) :
      (hold k x <-> hold k y) <-> eiff k x y.
  Proof.
    destruct k ; simpl.
    - tauto.
    - unfold is_true.
      destruct x,y ; intuition congruence.
  Qed.

  Instance eiff_eq (k: kind) : Equivalence (eiff k).
  Proof.
    constructor.
    - exact (eiff_refl k).
    - exact (eiff_sym k).
    - exact (eiff_trans k).
  Qed.

  Add Parametric Morphism (k: kind) : (@eAND k) with signature eiff k ==> eiff k ==> eiff k as eAnd_morph.
  Proof.
    intros.
    destruct k ; simpl in *; intuition congruence.
  Qed.

  Add Parametric Morphism (k: kind) : (@eOR k) with signature eiff k ==> eiff k ==> eiff k as eOR_morph.
  Proof.
    intros.
    destruct k ; simpl in *; intuition congruence.
  Qed.

  Add Parametric Morphism (k: kind) : (@eIMPL k) with signature eiff k ==> eiff k ==> eiff k as eIMPL_morph.
  Proof.
    intros.
    destruct k ; simpl in *; intuition congruence.
  Qed.

  Add Parametric Morphism (k: kind) : (@eIFF k) with signature eiff k ==> eiff k ==> eiff k as eIFF_morph.
  Proof.
    intros.
    destruct k ; simpl in *; intuition congruence.
  Qed.

  Add Parametric Morphism (k: kind) : (@eNOT k) with signature eiff k ==> eiff k as eNOT_morph.
  Proof.
    intros.
    destruct k ; simpl in *; intuition congruence.
  Qed.

  Lemma eval_f_morph :
    forall  (ev ev' : forall (k: kind), TA -> rtyp k),
      (forall k a, eiff k (ev k a) (ev' k a)) ->
      forall (k: kind)(f : GFormula k),
        (eiff k (eval_f ev f) (eval_f ev' f)).
  Proof.
    intros ev ev' H k f;
     induction f as [| | | |? ? IHf1 ? IHf2|? ? IHf1 ? IHf2|? ? IHf
                    |? ? IHf1 ? ? IHf2|? ? IHf1 ? IHf2|];
     simpl.
    - reflexivity.
    - reflexivity.
    - reflexivity.
    - apply H.
    - rewrite IHf1. rewrite IHf2. reflexivity.
    - rewrite IHf1. rewrite IHf2. reflexivity.
    - rewrite IHf. reflexivity.
    - rewrite IHf1. rewrite IHf2. reflexivity.
    - rewrite IHf1. rewrite IHf2. reflexivity.
    - simpl in *. intuition congruence.
  Qed.

End S.



(** Typical boolean formulae *)
Definition eKind (k: kind) := if k then Prop else bool.
Register eKind as micromega.eKind.

Definition BFormula (A : Type) := @GFormula A eKind unit unit.

Register BFormula as micromega.BFormula.type.

Section MAPATOMS.
  Context {TA TA':Type}.
  Context {TX  : kind -> Type}.
  Context {AA  : Type}.
  Context {AF  : Type}.


  Fixpoint map_bformula (k: kind)(fct : TA -> TA') (f : @GFormula TA TX AA AF k) : @GFormula TA' TX AA AF k:=
    match f with
    | TT k => TT k
    | FF k => FF k
    | X k p => X k p
    | A k a t => A k (fct a) t
    | AND f1 f2 => AND (map_bformula fct f1) (map_bformula fct f2)
    | OR f1 f2 => OR (map_bformula fct f1) (map_bformula fct f2)
    | NOT f     => NOT (map_bformula fct f)
    | IMPL f1 a f2 => IMPL (map_bformula fct f1) a (map_bformula fct f2)
    | IFF f1 f2 => IFF (map_bformula fct f1) (map_bformula fct f2)
    | EQ f1 f2  => EQ (map_bformula fct f1) (map_bformula fct f2)
    end.

End MAPATOMS.

Lemma map_simpl : forall A B f l, @map A B f l = match l with
                                                 | nil => nil
                                                 | a :: l=> (f a) :: (@map A B f l)
                                                 end.
Proof.
  intros A B f l; destruct l ; reflexivity.
Qed.


Section S.
  (** A cnf tracking annotations of atoms. *)

  (** Type parameters *)
  Variable Env   : Type.
  Variable Term  : Type.
  Variable Term' : Type.
  Variable Annot : Type.

  Variable unsat : Term'  -> bool. (* see [unsat_prop] *)
  Variable deduce : Term' -> Term' -> option Term'. (* see [deduce_prop] *)

  Definition clause := list  (Term' * Annot).
  Definition cnf := list clause.

  Variable normalise : Term -> Annot -> cnf.
  Variable negate : Term -> Annot -> cnf.


  Definition cnf_tt : cnf := @nil clause.
  Definition cnf_ff : cnf :=  cons (@nil (Term' * Annot)) nil.

  (** Our cnf is optimised and detects contradictions on the fly. *)

  Fixpoint add_term (t: Term' * Annot) (cl : clause) : option clause :=
    match cl with
    | nil =>
      match deduce (fst t) (fst t) with
      | None =>  Some (t ::nil)
      | Some u => if unsat u then None else Some (t::nil)
      end
    | t'::cl =>
      match deduce (fst t) (fst t') with
      | None =>
        match add_term t cl with
        | None => None
        | Some cl' => Some (t' :: cl')
        end
      | Some u =>
        if unsat u then None else
          match add_term t cl with
          | None => None
          | Some cl' => Some (t' :: cl')
          end
      end
    end.

  Fixpoint or_clause (cl1 cl2 : clause) : option clause :=
    match cl1 with
    | nil => Some cl2
    | t::cl => match add_term t cl2 with
               | None => None
               | Some cl' => or_clause cl cl'
               end
    end.

  Definition xor_clause_cnf (t:clause) (f:cnf) : cnf :=
    List.fold_left (fun acc e =>
                      match or_clause t e with
                      | None => acc
                      | Some cl => cl :: acc
                      end) f nil .

  Definition or_clause_cnf (t: clause) (f:cnf) : cnf :=
    match t with
    | nil => f
    | _   => xor_clause_cnf t f
    end.


  Fixpoint or_cnf (f : cnf) (f' : cnf) {struct f}: cnf :=
    match f with
    | nil => cnf_tt
    | e :: rst => (or_cnf rst f') +++ (or_clause_cnf e f')
    end.


  Definition and_cnf (f1 : cnf) (f2 : cnf) : cnf :=
    f1 +++ f2.

  (** TX is Prop in Coq and EConstr.constr in Ocaml.
      AF is unit in Coq and Names.Id.t in Ocaml
   *)
  Definition TFormula (TX: kind -> Type) (AF: Type) := @GFormula Term TX Annot AF.


  Definition is_cnf_tt (c : cnf) : bool :=
    match c with
    | nil => true
    | _  => false
    end.

  Definition is_cnf_ff (c : cnf) : bool :=
    match c with
    | nil::nil => true
    | _        => false
    end.

  Definition and_cnf_opt (f1 : cnf) (f2 : cnf) : cnf :=
    if is_cnf_ff f1 || is_cnf_ff f2
    then cnf_ff
    else
      if is_cnf_tt f2
      then f1
      else and_cnf f1 f2.


  Definition or_cnf_opt (f1 : cnf) (f2 : cnf) : cnf :=
    if is_cnf_tt f1 || is_cnf_tt f2
    then cnf_tt
    else if is_cnf_ff f2
         then f1 else or_cnf f1 f2.

  Section REC.
    Context {TX : kind -> Type}.
    Context {AF : Type}.

    Variable REC : forall (pol : bool) (k: kind) (f : TFormula TX AF k), cnf.

    Definition mk_and (k: kind) (pol:bool) (f1 f2 : TFormula TX AF k):=
      (if pol then and_cnf_opt else or_cnf_opt) (REC pol f1) (REC pol f2).

    Definition mk_or (k: kind) (pol:bool) (f1 f2 : TFormula TX AF k):=
      (if pol then or_cnf_opt else and_cnf_opt) (REC pol f1) (REC pol f2).

    Definition mk_impl (k: kind) (pol:bool) (f1 f2 : TFormula TX AF k):=
      (if pol then or_cnf_opt else and_cnf_opt) (REC (negb pol) f1) (REC pol f2).


    Definition mk_iff (k: kind) (pol:bool) (f1 f2: TFormula TX AF k):=
      or_cnf_opt (and_cnf_opt (REC (negb pol) f1) (REC false f2))
                 (and_cnf_opt (REC pol f1) (REC true f2)).


  End REC.

  Definition is_bool {TX : kind -> Type} {AF: Type} (k: kind) (f : TFormula TX AF k) :=
    match f with
    | TT _ => Some true
    | FF _ => Some false
    | _    => None
    end.

  Lemma is_bool_inv : forall {TX : kind -> Type} {AF: Type} (k: kind) (f : TFormula  TX AF k) res,
      is_bool f = Some res -> f = if res then TT _ else FF _.
  Proof.
    intros TX AF k f res H.
    destruct f ; inversion H; reflexivity.
  Qed.


  Fixpoint xcnf {TX : kind -> Type} {AF: Type} (pol : bool) (k: kind) (f : TFormula TX AF k)  {struct f}: cnf :=
    match f with
    | TT _ => if pol then cnf_tt else cnf_ff
    | FF _ => if pol then cnf_ff else cnf_tt
    | X _ p => if pol then cnf_ff else cnf_ff (* This is not complete - cannot negate any proposition *)
    | A _ x t => if pol then normalise x  t else negate x  t
    | NOT e  => xcnf (negb pol) e
    | AND e1 e2 => mk_and xcnf pol e1 e2
    | OR e1 e2  => mk_or xcnf pol e1 e2
    | IMPL e1 _ e2 => mk_impl xcnf pol e1 e2
    | IFF e1 e2 => match is_bool e2 with
                   | Some isb => xcnf (if isb then pol else negb pol) e1
                   | None  => mk_iff xcnf pol e1 e2
                   end
    | EQ e1 e2 =>
      match is_bool e2 with
      | Some isb => xcnf (if isb then pol else negb pol) e1
      | None  => mk_iff xcnf pol e1 e2
      end
    end.

  Section CNFAnnot.

    (** Records annotations used to optimise the cnf.
          Those need to be kept when pruning the formula.
          For efficiency, this is a separate function.
     *)

    Fixpoint radd_term (t : Term' * Annot) (cl : clause) : clause + list Annot :=
      match cl with
      | nil => (* if t is unsat, the clause is empty BUT t is needed. *)
        match deduce (fst t) (fst t) with
        | Some u => if unsat u then inr ((snd t)::nil) else inl (t::nil)
        | None   => inl (t::nil)
        end
      | t'::cl => (* if t /\ t' is unsat, the clause is empty BUT t & t' are needed *)
        match deduce (fst t) (fst t') with
        | Some u => if unsat u then inr ((snd t)::(snd t')::nil)
                    else match radd_term t cl with
                         | inl cl' => inl (t'::cl')
                         | inr l   => inr l
                         end
        | None  => match radd_term t cl  with
                   | inl cl' => inl (t'::cl')
                   | inr l   => inr l
                   end
        end
      end.

    Fixpoint ror_clause cl1 cl2 :=
      match cl1 with
      | nil => inl cl2
      | t::cl => match radd_term t cl2 with
                 | inl cl' => ror_clause cl cl'
                 | inr l   => inr l
                 end
      end.

    Definition xror_clause_cnf t f :=
      List.fold_left (fun '(acc,tg) e  =>
                        match ror_clause t e with
                        | inl cl => (cl :: acc,tg)
                        | inr l => (acc,tg+++l)
                        end) f (nil,nil).

    Definition ror_clause_cnf t f :=
      match t with
      | nil => (f,nil)
      | _   => xror_clause_cnf t f
      end.


    Fixpoint ror_cnf (f f':list clause) :=
      match f with
      | nil => (cnf_tt,nil)
      | e :: rst =>
        let (rst_f',t) := ror_cnf rst f' in
        let (e_f', t') := ror_clause_cnf e f' in
        (rst_f' +++ e_f', t +++ t')
      end.

    Definition annot_of_clause (l : clause) : list Annot :=
      List.map snd l.

    Definition annot_of_cnf (f : cnf) : list Annot :=
      List.fold_left (fun acc e => annot_of_clause e +++ acc ) f nil.


    Definition ror_cnf_opt f1 f2 :=
      if is_cnf_tt f1
      then (cnf_tt ,  nil)
      else if is_cnf_tt f2
           then (cnf_tt, nil)
           else if is_cnf_ff f2
                then (f1,nil)
                else ror_cnf f1 f2.


    Definition ocons {A : Type} (o : option A) (l : list A) : list A :=
      match o with
      | None => l
      | Some e => e ::l
      end.

    Definition ratom (c : cnf) (a : Annot) : cnf * list Annot :=
      if is_cnf_ff c || is_cnf_tt c
      then (c,a::nil)
      else (c,nil). (* t is embedded in c *)

    Section REC.
      Context {TX : kind -> Type} {AF : Type}.

      Variable RXCNF : forall (polarity: bool) (k: kind) (f: TFormula TX AF k) , cnf * list Annot.

      Definition rxcnf_and (polarity:bool) (k: kind) (e1 e2 : TFormula TX AF k) :=
        let '(e1,t1) := RXCNF polarity e1 in
        let '(e2,t2) := RXCNF polarity e2 in
        if polarity
        then  (and_cnf_opt e1  e2, t1 +++ t2)
        else let (f',t') := ror_cnf_opt e1 e2 in
             (f', t1 +++ t2 +++ t').

      Definition rxcnf_or (polarity:bool) (k: kind) (e1 e2 : TFormula TX AF k) :=
        let '(e1,t1) := RXCNF polarity e1 in
        let '(e2,t2) := RXCNF polarity e2 in
        if polarity
        then let (f',t') := ror_cnf_opt e1 e2 in
             (f', t1 +++ t2 +++ t')
        else (and_cnf_opt e1 e2, t1 +++ t2).

      Definition rxcnf_impl (polarity:bool) (k: kind) (e1 e2 : TFormula TX AF k) :=
        let '(e1 , t1) := (RXCNF (negb polarity) e1) in
        if polarity
        then
          if is_cnf_tt e1
          then (e1,t1)
          else if is_cnf_ff e1
            then
              RXCNF polarity e2
            else (* compute disjunction *)
              let '(e2 , t2) := (RXCNF polarity e2) in
              let (f',t') := ror_cnf_opt e1 e2 in
              (f', t1 +++ t2 +++ t') (* record the hypothesis *)
        else
          let '(e2 , t2) := (RXCNF polarity e2) in
          (and_cnf_opt e1 e2, t1 +++ t2).

      Definition rxcnf_iff (polarity:bool) (k: kind) (e1 e2 : TFormula TX AF k) :=
        let '(c1,t1) := RXCNF (negb polarity) e1 in
        let '(c2,t2) := RXCNF false e2 in
        let '(c3,t3) := RXCNF polarity e1 in
        let '(c4,t4) := RXCNF true e2 in
        let (f',t') := ror_cnf_opt (and_cnf_opt c1 c2) (and_cnf_opt c3 c4) in
        (f', t1+++ t2+++t3 +++ t4 +++ t')
      .

    End REC.

    Fixpoint rxcnf {TX : kind -> Type} {AF: Type}(polarity : bool) (k: kind) (f : TFormula TX AF k) : cnf * list Annot :=

      match f with
      | TT _ => if polarity then (cnf_tt,nil) else (cnf_ff,nil)
      | FF _  => if polarity then (cnf_ff,nil) else (cnf_tt,nil)
      | X b p => if polarity then (cnf_ff,nil) else (cnf_ff,nil)
      | A _ x t  => ratom (if polarity then normalise x t else negate x t) t
      | NOT e  => rxcnf (negb polarity) e
      | AND e1 e2 => rxcnf_and rxcnf polarity e1 e2
      | OR e1 e2  => rxcnf_or rxcnf polarity e1 e2
      | IMPL e1 a e2 => rxcnf_impl rxcnf polarity e1 e2
      | IFF e1 e2 => rxcnf_iff rxcnf polarity e1 e2
      | EQ e1 e2  => rxcnf_iff rxcnf polarity e1 e2
      end.

    Section Abstraction.
      Variable TX : kind -> Type.
      Variable AF : Type.

      Class to_constrT : Type :=
        {
          mkTT   : forall (k: kind), TX k;
          mkFF   : forall (k: kind), TX k;
          mkA    : forall (k: kind), Term -> Annot -> TX k;
          mkAND  : forall (k: kind), TX k -> TX k -> TX k;
          mkOR   : forall (k: kind), TX k -> TX k -> TX k;
          mkIMPL : forall (k: kind), TX k -> TX k -> TX k;
          mkIFF  : forall (k: kind), TX k -> TX k -> TX k;
          mkNOT  : forall (k: kind), TX k -> TX k;
          mkEQ   : TX isBool -> TX isBool -> TX isProp

        }.

      Context {to_constr : to_constrT}.

      Fixpoint aformula (k: kind) (f : TFormula TX AF k) : TX k :=
        match f with
        | TT b => mkTT b
        | FF b => mkFF b
        | X b p => p
        | A b x t => mkA b x t
        | AND f1 f2 => mkAND  (aformula f1) (aformula f2)
        | OR  f1 f2 => mkOR (aformula f1) (aformula f2)
        | IMPL f1 o f2 => mkIMPL  (aformula f1) (aformula f2)
        | IFF f1 f2 => mkIFF  (aformula f1) (aformula f2)
        | NOT f     => mkNOT  (aformula f)
        | EQ f1 f2  => mkEQ (aformula f1) (aformula f2)
        end.


      Definition is_X (k: kind) (f : TFormula TX AF k) : option (TX k) :=
        match f with
        | X _ p => Some p
        | _   => None
        end.

      Definition is_X_inv : forall (k: kind) (f: TFormula TX AF k) x,
          is_X f = Some x -> f = X k x.
      Proof.
        intros k f; destruct f ; simpl ; try congruence.
      Qed.

      Variable needA : Annot -> bool.

      Definition abs_and (k: kind) (f1 f2 : TFormula TX AF k)
                 (c : forall (k: kind), TFormula TX AF k -> TFormula TX AF k -> TFormula TX AF k) :=
        match is_X f1 , is_X f2 with
        | Some _  , _ | _ , Some _ => X k (aformula  (c k f1  f2))
        |   _     , _ => c k f1 f2
        end.

      Definition abs_or (k: kind) (f1 f2 : TFormula TX AF k)
                 (c : forall (k: kind), TFormula TX AF k -> TFormula TX AF k -> TFormula TX AF k) :=
        match is_X f1 , is_X f2 with
        | Some _  , Some _ => X k (aformula (c k f1  f2))
        |   _     , _ => c k f1 f2
        end.

      Definition abs_not (k: kind) (f1 : TFormula TX AF k)
                 (c : forall (k: kind), TFormula TX AF k -> TFormula TX AF k) :=
        match is_X f1 with
        | Some _   => X k (aformula (c k f1 ))
        |   _  => c k f1
        end.


      Definition mk_arrow (o : option AF) (k: kind) (f1 f2: TFormula TX AF k) :=
        match o with
        | None => IMPL f1 None f2
        | Some _ => if is_X f1 then f2 else IMPL f1 o f2
        end.

      Fixpoint abst_simpl  (k: kind) (f : TFormula TX AF k) : TFormula TX AF k:=
        match f  with
        | TT k => TT k
        | FF k =>  FF k
        | X k p => X k p
        | A k x t => if needA t then A k x t else X k (mkA k x t)
        | AND f1 f2 => AND (abst_simpl f1) (abst_simpl f2)
        | OR f1 f2 =>  OR (abst_simpl f1) (abst_simpl f2)
        | IMPL f1 o f2 => IMPL (abst_simpl f1) o (abst_simpl f2)
        | NOT f => NOT (abst_simpl f)
        | IFF f1 f2 => IFF (abst_simpl f1) (abst_simpl f2)
        | EQ f1 f2  => EQ (abst_simpl f1) (abst_simpl f2)
        end.

      Section REC.
        Variable REC : forall (pol : bool) (k: kind) (f : TFormula TX AF k), TFormula TX AF k.

        Definition abst_and (pol : bool) (k: kind) (f1 f2:TFormula TX AF k) : TFormula TX AF k:=
          (if pol then abs_and else abs_or) k (REC pol f1) (REC pol f2) AND.

        Definition abst_or (pol : bool) (k: kind) (f1 f2:TFormula TX AF k) : TFormula TX AF k:=
          (if pol then abs_or else abs_and) k (REC pol f1) (REC pol f2) OR.

        Definition abst_impl (pol : bool) (o :option AF) (k: kind) (f1 f2:TFormula TX AF k) : TFormula TX AF k:=
          (if pol then abs_or else abs_and) k (REC (negb pol) f1) (REC pol f2) (mk_arrow o).

        Definition or_is_X (k: kind) (f1 f2: TFormula TX AF k) : bool :=
          match is_X f1 , is_X f2 with
          | Some _ , _
          | _ , Some _ => true
          |  _ , _     => false
          end.

        Definition abs_iff  (k: kind) (nf1  ff2 f1 tf2 : TFormula TX AF k) (r: kind) (def : TFormula TX AF r) : TFormula TX AF r :=
          if andb (or_is_X nf1 ff2) (or_is_X f1 tf2)
          then X r (aformula def)
          else def.


        Definition abst_iff (pol : bool) (k: kind) (f1 f2: TFormula TX AF k) : TFormula TX AF k :=
          abs_iff   (REC (negb pol) f1) (REC false f2) (REC pol f1) (REC true f2) (IFF (abst_simpl f1) (abst_simpl f2)).

        Definition abst_eq (pol : bool)  (f1 f2: TFormula TX AF isBool) : TFormula TX AF isProp :=
          abs_iff   (REC (negb pol) f1) (REC false f2) (REC pol f1) (REC true f2) (EQ (abst_simpl f1) (abst_simpl f2)).

      End REC.

      Fixpoint abst_form  (pol : bool) (k: kind) (f : TFormula TX AF k) : TFormula TX AF k:=
        match f  with
        | TT k => if pol then TT k else X k (mkTT k)
        | FF k => if pol then X k (mkFF k) else FF k
        | X k p => X k p
        | A k x t => if needA t then A k x t else X k (mkA k x t)
        | AND f1 f2 => abst_and abst_form pol f1 f2
        | OR f1 f2 =>  abst_or abst_form pol f1 f2
        | IMPL f1 o f2 => abst_impl abst_form pol o f1 f2
        | NOT f => abs_not  (abst_form (negb pol) f) NOT
        | IFF f1 f2 => abst_iff abst_form  pol f1 f2
        | EQ f1 f2  => abst_eq abst_form pol f1 f2
        end.

      Lemma if_same : forall {A: Type} (b: bool) (t:A),
          (if b then t else t) = t.
      Proof.
        intros A b; destruct b ; reflexivity.
      Qed.

      Lemma is_cnf_tt_cnf_ff :
        is_cnf_tt cnf_ff = false.
      Proof.
        reflexivity.
      Qed.

      Lemma is_cnf_ff_cnf_ff :
        is_cnf_ff cnf_ff = true.
      Proof.
        reflexivity.
      Qed.


      Lemma is_cnf_tt_inv : forall f1,
          is_cnf_tt f1 = true -> f1 = cnf_tt.
      Proof.
        unfold cnf_tt.
        intros f1; destruct f1 ; simpl ; try congruence.
      Qed.

      Lemma is_cnf_ff_inv : forall f1,
          is_cnf_ff f1 = true -> f1 = cnf_ff.
      Proof.
        unfold cnf_ff.
        intros f1 ; destruct f1 as [|c f1] ; simpl ; try congruence.
        destruct c ; simpl ; try congruence.
        destruct f1 ; try congruence.
        reflexivity.
      Qed.


      Lemma if_cnf_tt : forall f, (if is_cnf_tt f then cnf_tt else f) = f.
      Proof.
        intros f.
        destruct (is_cnf_tt f) eqn:EQ.
        apply is_cnf_tt_inv in EQ;auto.
        reflexivity.
      Qed.

      Lemma or_cnf_opt_cnf_ff : forall f,
          or_cnf_opt cnf_ff f = f.
      Proof.
        intros f.
        unfold or_cnf_opt.
        rewrite is_cnf_tt_cnf_ff.
        simpl.
        destruct (is_cnf_tt f) eqn:EQ.
        apply is_cnf_tt_inv in EQ.
        congruence.
        destruct (is_cnf_ff f) eqn:EQ1.
        apply is_cnf_ff_inv in EQ1.
        congruence.
        reflexivity.
      Qed.

      Lemma abs_and_pol : forall (k: kind) (f1 f2: TFormula TX AF k) pol,
          and_cnf_opt (xcnf pol f1) (xcnf pol f2) =
          xcnf pol (abs_and f1 f2 (if pol then AND else OR)).
      Proof.
        unfold abs_and; intros k f1 f2 pol.
        destruct (is_X f1) eqn:EQ1.
        apply is_X_inv in EQ1.
        subst.
        simpl.
        rewrite if_same. reflexivity.
        destruct (is_X f2) eqn:EQ2.
        apply is_X_inv in EQ2.
        subst.
        simpl.
        rewrite if_same.
        unfold and_cnf_opt.
        rewrite orb_comm. reflexivity.
        destruct pol ; simpl; auto.
      Qed.

      Lemma abs_or_pol : forall (k: kind) (f1 f2:TFormula TX AF k) pol,
          or_cnf_opt (xcnf pol f1) (xcnf pol f2) =
          xcnf pol (abs_or f1 f2 (if pol then OR else AND)).
      Proof.
        unfold abs_or; intros k f1 f2 pol.
        destruct (is_X f1) eqn:EQ1.
        apply is_X_inv in EQ1.
        subst.
        destruct (is_X f2) eqn:EQ2.
        apply is_X_inv in EQ2.
        subst.
        simpl.
        rewrite if_same.
        reflexivity.
        simpl.
        rewrite if_same.
        destruct pol ; simpl; auto.
        destruct pol ; simpl ; auto.
      Qed.

      Variable needA_all : forall a, needA a = true.

      Lemma xcnf_true_mk_arrow_l : forall b o t (f:TFormula TX AF b),
          xcnf true (mk_arrow o (X b t) f) = xcnf true f.
      Proof.
        intros b o; destruct o ; simpl; auto.
        intros. rewrite or_cnf_opt_cnf_ff. reflexivity.
      Qed.

      Lemma or_cnf_opt_cnf_ff_r : forall f,
          or_cnf_opt f  cnf_ff = f.
      Proof.
        unfold or_cnf_opt.
        intros.
        rewrite is_cnf_tt_cnf_ff.
        rewrite orb_comm.
        simpl.
        apply if_cnf_tt.
      Qed.

      Lemma xcnf_true_mk_arrow_r : forall b o t (f:TFormula TX AF b),
          xcnf true (mk_arrow o  f (X b t)) = xcnf false f.
      Proof.
        intros b o; destruct o ; simpl; auto.
        - intros t f.
          destruct (is_X f) eqn:EQ.
          apply is_X_inv in EQ. subst. reflexivity.
          simpl.
          apply or_cnf_opt_cnf_ff_r.
        - intros.
          apply or_cnf_opt_cnf_ff_r.
      Qed.

      Lemma and_cnf_opt_cnf_ff_r : forall f,
          and_cnf_opt f cnf_ff = cnf_ff.
      Proof.
        intros.
        unfold and_cnf_opt.
        rewrite is_cnf_ff_cnf_ff.
        rewrite orb_comm. reflexivity.
      Qed.

      Lemma and_cnf_opt_cnf_ff : forall f,
          and_cnf_opt cnf_ff f  = cnf_ff.
      Proof.
        intros.
        unfold and_cnf_opt.
        rewrite is_cnf_ff_cnf_ff.
        reflexivity.
      Qed.


      Lemma and_cnf_opt_cnf_tt : forall f,
          and_cnf_opt f cnf_tt   = f.
      Proof.
        intros f.
        unfold and_cnf_opt.
        simpl. rewrite orb_comm.
        simpl.
        destruct (is_cnf_ff f) eqn:EQ ; auto.
        apply is_cnf_ff_inv in EQ.
        auto.
      Qed.

      Lemma is_bool_abst_simpl : forall b (f:TFormula TX AF b),
          is_bool (abst_simpl f) = is_bool f.
      Proof.
        intros b f; induction f ; simpl ; auto.
        rewrite needA_all.
        reflexivity.
      Qed.

      Lemma abst_simpl_correct : forall b (f:TFormula TX AF b) pol,
          xcnf pol f = xcnf pol (abst_simpl f).
      Proof.
        intros b f;
          induction f as [| | | |? ? IHf1 f2 IHf2|? ? IHf1 f2 IHf2
            |? ? IHf|? ? IHf1 ? f2 IHf2|? ? IHf1 f2 IHf2|f1 IHf1 f2 IHf2];
          simpl;intros;
          unfold mk_and,mk_or,mk_impl, mk_iff;
          rewrite <- ?IHf;
          try (rewrite <- !IHf1; rewrite <- !IHf2);
          try reflexivity.
        - rewrite needA_all.
          reflexivity.
        - rewrite is_bool_abst_simpl.
          destruct (is_bool f2); auto.
        - rewrite is_bool_abst_simpl.
          destruct (is_bool f2); auto.
      Qed.

      Ltac is_X t :=
        match goal with
        | |-context[is_X ?X] =>
          let f := fresh "EQ" in
          destruct (is_X X) as [t|] eqn:f ;
          [apply is_X_inv in f|]
        end.

      Ltac cnf_simpl :=
        repeat match goal with
               | |- context[and_cnf_opt cnf_ff _ ] => rewrite and_cnf_opt_cnf_ff
               | |- context[and_cnf_opt _ cnf_ff] => rewrite and_cnf_opt_cnf_ff_r
               | |- context[and_cnf_opt _ cnf_tt] => rewrite and_cnf_opt_cnf_tt
               | |- context[or_cnf_opt cnf_ff _] => rewrite or_cnf_opt_cnf_ff
               | |- context[or_cnf_opt _ cnf_ff] => rewrite or_cnf_opt_cnf_ff_r
               end.

      Lemma or_is_X_inv : forall (k: kind) (f1 f2 : TFormula TX AF k),
          or_is_X f1 f2 = true ->
          exists k1, is_X f1 = Some k1 \/ is_X f2 = Some k1.
      Proof.
        unfold or_is_X.
        intros k f1 f2.
        is_X t; is_X t0.
        exists t ; intuition.
        exists t ; intuition.
        exists t0 ; intuition.
        congruence.
      Qed.

      Lemma mk_iff_is_bool : forall (k: kind) (f1 f2:TFormula TX AF k) pol,
          match is_bool f2 with
          | Some isb => xcnf (if isb then pol else negb pol) f1
          | None => mk_iff xcnf pol f1 f2
          end = mk_iff xcnf pol f1 f2.
      Proof.
        intros k f1 f2 pol.
        destruct (is_bool f2) as [b|] eqn:EQ; auto.
        apply is_bool_inv in EQ.
        subst.
        unfold mk_iff.
        destruct b ; simpl; cnf_simpl; reflexivity.
      Qed.

      Lemma abst_iff_correct : forall
          (k: kind)
          (f1 f2 : GFormula k)
          (IHf1 : forall pol : bool, xcnf pol f1 = xcnf pol (abst_form pol f1))
          (IHf2 : forall pol : bool, xcnf pol f2 = xcnf pol (abst_form pol f2))
          (pol : bool),
          xcnf pol (IFF f1 f2) = xcnf pol (abst_iff abst_form pol f1 f2).
      Proof.
        intros k f1 f2 IHf1 IHf2 pol; simpl.
        assert (D1 :mk_iff xcnf pol f1 f2 = mk_iff xcnf pol (abst_simpl f1) (abst_simpl f2)).
        {
          simpl.
          unfold mk_iff.
          rewrite <- !abst_simpl_correct.
          reflexivity.
        }
        rewrite mk_iff_is_bool.
        unfold abst_iff,abs_iff.
        destruct (      or_is_X (abst_form (negb pol) f1) (abst_form false f2) &&
                                or_is_X (abst_form pol f1) (abst_form true f2)
                 ) eqn:EQ1.
        + simpl.
          rewrite andb_true_iff in EQ1.
          destruct EQ1 as (EQ1 & EQ2).
          apply or_is_X_inv in EQ1.
          apply or_is_X_inv in EQ2.
          destruct EQ1 as (b1 & EQ1).
          destruct EQ2 as (b2 & EQ2).
          rewrite if_same.
          unfold mk_iff.
          rewrite !IHf1.
          rewrite !IHf2.
          destruct EQ1 as [EQ1 | EQ1] ; apply is_X_inv in EQ1;
            destruct EQ2 as [EQ2 | EQ2] ; apply is_X_inv in EQ2;
              rewrite EQ1; rewrite EQ2; simpl;
                repeat rewrite if_same ; cnf_simpl; auto.
        + simpl.
          rewrite mk_iff_is_bool.
          unfold mk_iff.
          rewrite <- ! abst_simpl_correct.
          reflexivity.
      Qed.

      Lemma abst_eq_correct : forall
          (f1 f2 : GFormula isBool)
          (IHf1 : forall pol : bool, xcnf pol f1 = xcnf pol (abst_form pol f1))
          (IHf2 : forall pol : bool, xcnf pol f2 = xcnf pol (abst_form pol f2))
          (pol : bool),
          xcnf pol (EQ f1 f2) = xcnf pol (abst_form pol (EQ f1 f2)).
      Proof.
        intros f1 f2 IHf1 IHf2 pol.
        change (xcnf pol (IFF f1 f2) = xcnf pol (abst_form pol (EQ f1 f2))).
        rewrite abst_iff_correct by assumption.
        simpl. unfold abst_iff, abst_eq.
        unfold abs_iff.
        destruct (or_is_X (abst_form (negb pol) f1) (abst_form false f2) &&
                          or_is_X (abst_form pol f1) (abst_form true f2)
                 ) ; auto.
      Qed.


      Lemma abst_form_correct : forall b (f:TFormula TX AF b) pol,
          xcnf pol f = xcnf pol (abst_form pol f).
      Proof.
        intros b f;
         induction f as [| | | |? ? IHf1 ? IHf2|? ? IHf1 ? IHf2|? f IHf
           |? f1 IHf1 o f2 IHf2|? IHf1 ? IHf2|];
         intros pol.
        - simpl. destruct pol ; reflexivity.
        - simpl. destruct pol ; reflexivity.
        - simpl. reflexivity.
        - simpl. rewrite needA_all.
          reflexivity.
        - simpl. unfold mk_and.
          specialize (IHf1 pol).
          specialize (IHf2 pol).
          rewrite IHf1.
          rewrite IHf2.
          destruct pol.
          + apply abs_and_pol; auto.
          + apply abs_or_pol.
        - simpl. unfold mk_or.
          specialize (IHf1 pol).
          specialize (IHf2 pol).
          rewrite IHf1.
          rewrite IHf2.
          destruct pol.
          + apply abs_or_pol; auto.
          + apply abs_and_pol; auto.
        -  simpl.
           unfold abs_not.
           specialize (IHf (negb pol)).
           destruct (is_X (abst_form (negb pol) f)) eqn:EQ1.
           + apply is_X_inv in EQ1.
             rewrite EQ1 in *.
             simpl in *.
             destruct pol ; auto.
           + simpl. congruence.
        - simpl. unfold mk_impl.
          specialize (IHf1 (negb pol)).
          specialize (IHf2 pol).
          destruct pol.
          +
            simpl in *.
            unfold abs_or.
            destruct (is_X (abst_form false f1)) eqn:EQ1;
              destruct (is_X (abst_form true f2)) eqn:EQ2 ; simpl.
            * apply is_X_inv in EQ1.
              apply is_X_inv in EQ2.
              rewrite EQ1 in *.
              rewrite EQ2 in *.
              rewrite IHf1. rewrite IHf2.
              simpl. reflexivity.
            * apply is_X_inv in EQ1.
              rewrite EQ1 in *.
              rewrite IHf1.
              simpl.
              rewrite xcnf_true_mk_arrow_l.
              rewrite or_cnf_opt_cnf_ff.
              congruence.
            * apply is_X_inv in EQ2.
              rewrite EQ2 in *.
              rewrite IHf2.
              simpl.
              rewrite xcnf_true_mk_arrow_r.
              rewrite or_cnf_opt_cnf_ff_r.
              congruence.
            * destruct o ; simpl ; try congruence.
              rewrite EQ1.
              simpl. congruence.
          +  simpl in *.
             unfold abs_and.
             destruct (is_X (abst_form true f1)) eqn:EQ1;
               destruct (is_X (abst_form false f2)) eqn:EQ2 ; simpl.
             * apply is_X_inv in EQ1.
               apply is_X_inv in EQ2.
               rewrite EQ1 in *.
               rewrite EQ2 in *.
               rewrite IHf1. rewrite IHf2.
               simpl. reflexivity.
             * apply is_X_inv in EQ1.
               rewrite EQ1 in *.
               rewrite IHf1.
               simpl. reflexivity.
             * apply is_X_inv in EQ2.
               rewrite EQ2 in *.
               rewrite IHf2.
               simpl. unfold and_cnf_opt.
               rewrite orb_comm. reflexivity.
             * destruct o; simpl.
               rewrite EQ1. simpl.
               congruence.
               congruence.
        -  apply abst_iff_correct; auto.
        -  apply abst_eq_correct; auto.
      Qed.

    End Abstraction.


  End CNFAnnot.


  Lemma radd_term_term : forall a' a cl, radd_term a a' = inl cl -> add_term a a' = Some cl.
  Proof.
    intros a'; induction a' as [|a a' IHa']; simpl.
    - intros a cl H.
      destruct (deduce (fst a) (fst a)) as [t|].
      destruct (unsat t). congruence.
      inversion H. reflexivity.
      inversion H ;reflexivity.
    - intros a0 cl H.
      destruct (deduce (fst a0) (fst a)) as [t|].
      destruct (unsat t). congruence.
      destruct (radd_term a0 a') eqn:RADD; try congruence.
      inversion H. subst.
      apply IHa' in RADD.
      rewrite RADD.
      reflexivity.
      destruct (radd_term a0 a') eqn:RADD; try congruence.
      inversion H. subst.
      apply IHa' in RADD.
      rewrite RADD.
      reflexivity.
  Qed.

  Lemma radd_term_term' : forall a' a cl, add_term a a' = Some cl -> radd_term a a' = inl cl.
  Proof.
    intros a'; induction a' as [|a a' IHa']; simpl.
    - intros a cl H.
      destruct (deduce (fst a) (fst a)) as [t|].
      destruct (unsat t). congruence.
      inversion H. reflexivity.
      inversion H ;reflexivity.
    - intros a0 cl H.
      destruct (deduce (fst a0) (fst a)) as [t|].
      destruct (unsat t). congruence.
      destruct (add_term a0 a') eqn:RADD; try congruence.
      inversion H. subst.
      apply IHa' in RADD.
      rewrite RADD.
      reflexivity.
      destruct (add_term a0 a') eqn:RADD; try congruence.
      inversion H. subst.
      apply IHa' in RADD.
      rewrite RADD.
      reflexivity.
  Qed.

  Lemma xror_clause_clause : forall a f,
      fst (xror_clause_cnf a f) = xor_clause_cnf a f.
  Proof.
    unfold xror_clause_cnf.
    unfold xor_clause_cnf.
    assert (ACC: fst (@nil clause,@nil Annot) = nil).
    reflexivity.
    intros a f.
    set (F1:= (fun '(acc, tg) (e : clause) =>
                 match ror_clause a e with
                 | inl cl => (cl :: acc, tg)
                 | inr l => (acc, tg +++ l)
                 end)).
    set (F2:= (fun (acc : list clause) (e : clause) =>
                 match or_clause a e with
                 | Some cl => cl :: acc
                 | None => acc
                 end)).
    revert ACC.
    generalize (@nil clause,@nil Annot).
    generalize (@nil clause).
    induction f as [|a0 f IHf]; simpl ; auto.
    intros ? p ?.
    apply IHf.
    unfold F1 , F2.
    destruct p ; simpl in * ; subst.
    clear.
    revert a0.
    induction a as [|a a0 IHa]; simpl; auto.
    intros a1.
    destruct (radd_term a a1) eqn:RADD.
    apply radd_term_term in RADD.
    rewrite RADD.
    auto.
    destruct (add_term a a1) eqn:RADD'.
    apply radd_term_term' in RADD'.
    congruence.
    reflexivity.
  Qed.

  Lemma ror_clause_clause : forall a f,
      fst (ror_clause_cnf a f) = or_clause_cnf a f.
  Proof.
    unfold ror_clause_cnf,or_clause_cnf.
    intros a; destruct a ; auto.
    apply xror_clause_clause.
  Qed.

  Lemma ror_cnf_cnf : forall f1 f2, fst (ror_cnf f1 f2) = or_cnf f1 f2.
  Proof.
    intros f1; induction f1 as [|a f1 IHf1] ; simpl ; auto.
    intros f2.
    specialize (IHf1  f2).
    destruct(ror_cnf f1 f2).
    rewrite <- ror_clause_clause.
    destruct(ror_clause_cnf a f2).
    simpl.
    rewrite <- IHf1.
    reflexivity.
  Qed.

  Lemma ror_opt_cnf_cnf : forall f1 f2, fst (ror_cnf_opt f1 f2) = or_cnf_opt f1 f2.
  Proof.
    unfold ror_cnf_opt, or_cnf_opt.
    intros f1 f2.
    destruct (is_cnf_tt f1).
    - simpl ; auto.
    - simpl. destruct (is_cnf_tt f2) ; simpl ; auto.
      destruct (is_cnf_ff f2) eqn:EQ.
      reflexivity.
      apply ror_cnf_cnf.
  Qed.

  Lemma ratom_cnf : forall  f a,
      fst (ratom f a) = f.
  Proof.
    unfold ratom.
    intros f a.
    destruct (is_cnf_ff f || is_cnf_tt f); auto.
  Qed.

  Lemma rxcnf_and_xcnf : forall {TX : kind -> Type} {AF:Type} (k: kind) (f1 f2:TFormula TX AF k)
                                (IHf1 : forall pol : bool, fst (rxcnf pol f1) = xcnf pol f1)
                                (IHf2 : forall pol : bool, fst (rxcnf pol f2) = xcnf pol f2),
      forall pol : bool, fst (rxcnf_and rxcnf pol f1 f2) = mk_and xcnf pol f1 f2.
  Proof.
    intros TX AF k f1 f2 IHf1 IHf2 pol.
    unfold mk_and, rxcnf_and.
    specialize (IHf1 pol).
    specialize (IHf2 pol).
    destruct (rxcnf pol f1).
    destruct (rxcnf pol f2).
    simpl in *.
    subst. destruct pol ; auto.
    rewrite <- ror_opt_cnf_cnf.
    destruct (ror_cnf_opt (xcnf false f1) (xcnf false f2)).
    reflexivity.
  Qed.

  Lemma rxcnf_or_xcnf :
    forall {TX : kind -> Type} {AF:Type} (k: kind) (f1 f2:TFormula TX AF k)
           (IHf1 : forall pol : bool, fst (rxcnf pol f1) = xcnf pol f1)
           (IHf2 : forall pol : bool, fst (rxcnf pol f2) = xcnf pol f2),
    forall pol : bool, fst (rxcnf_or rxcnf pol f1 f2) = mk_or xcnf pol f1 f2.
  Proof.
    intros TX AF k f1 f2 IHf1 IHf2 pol.
    unfold rxcnf_or, mk_or.
    specialize (IHf1 pol).
    specialize (IHf2 pol).
    destruct (rxcnf pol f1).
    destruct (rxcnf pol f2).
    simpl in *.
    subst. destruct pol ; auto.
    rewrite <- ror_opt_cnf_cnf.
    destruct (ror_cnf_opt (xcnf true f1) (xcnf true f2)).
    reflexivity.
  Qed.


  Lemma rxcnf_impl_xcnf :
    forall {TX : kind -> Type} {AF:Type} (k: kind) (f1 f2:TFormula TX AF k)
           (IHf1 : forall pol : bool, fst (rxcnf pol f1) = xcnf pol f1)
           (IHf2 : forall pol : bool, fst (rxcnf pol f2) = xcnf pol f2),
    forall pol : bool, fst (rxcnf_impl rxcnf pol f1 f2) = mk_impl xcnf pol f1 f2.
  Proof.
    intros TX AF k f1 f2 IHf1 IHf2 pol.
    unfold rxcnf_impl, mk_impl, mk_or.
    specialize (IHf1 (negb pol)).
    specialize (IHf2 pol).
    rewrite <- IHf1.
    rewrite <- IHf2.
    destruct (rxcnf (negb pol) f1).
    destruct (rxcnf pol f2).
    simpl in *.
    subst.
    destruct pol;auto.
    generalize (is_cnf_tt_inv (xcnf (negb true) f1)).
    destruct (is_cnf_tt (xcnf (negb true) f1)).
    + intros H.
      rewrite H by auto.
      reflexivity.
    +
      generalize (is_cnf_ff_inv (xcnf (negb true) f1)).
    destruct (is_cnf_ff (xcnf (negb true) f1)).
    * intros H.
      rewrite H by auto.
      unfold or_cnf_opt.
      simpl.
      destruct (is_cnf_tt (xcnf true f2)) eqn:EQ;auto.
      apply is_cnf_tt_inv in EQ; auto.
      destruct (is_cnf_ff (xcnf true f2)) eqn:EQ1.
      apply is_cnf_ff_inv in EQ1. congruence.
      reflexivity.
    *
      rewrite <- ror_opt_cnf_cnf.
      destruct (ror_cnf_opt (xcnf (negb true) f1) (xcnf true f2)).
      intros.
      reflexivity.
  Qed.

  Lemma rxcnf_iff_xcnf :
    forall {TX : kind -> Type} {AF:Type} (k: kind) (f1 f2:TFormula TX AF k)
           (IHf1 : forall pol : bool, fst (rxcnf pol f1) = xcnf pol f1)
           (IHf2 : forall pol : bool, fst (rxcnf pol f2) = xcnf pol f2),
    forall pol : bool, fst (rxcnf_iff rxcnf pol f1 f2) = mk_iff xcnf pol f1 f2.
  Proof.
    intros TX AF k f1 f2 IHf1 IHf2 pol.
    unfold rxcnf_iff.
    unfold mk_iff.
    rewrite <- (IHf1 (negb pol)).
    rewrite <- (IHf1 pol).
    rewrite <- (IHf2 false).
    rewrite <- (IHf2 true).
    destruct (rxcnf (negb pol) f1) as [c ?].
    destruct (rxcnf false f2) as [c0 ?].
    destruct (rxcnf pol f1) as [c1 ?].
    destruct (rxcnf true f2) as [c2 ?].
    destruct (ror_cnf_opt (and_cnf_opt c c0) (and_cnf_opt c1 c2)) as [c3 l3] eqn:EQ.
    simpl.
    change c3 with (fst (c3,l3)).
    rewrite <- EQ. rewrite ror_opt_cnf_cnf.
    reflexivity.
  Qed.

  Lemma rxcnf_xcnf : forall {TX : kind -> Type} {AF:Type} (k: kind) (f:TFormula TX AF k) pol,
      fst (rxcnf  pol f) = xcnf pol f.
  Proof.
    intros TX AF k f; induction f ; simpl ; auto; intros pol.
    - destruct pol; simpl ; auto.
    - destruct pol; simpl ; auto.
    - destruct pol ; simpl ; auto.
    - intros. rewrite ratom_cnf. reflexivity.
    - apply rxcnf_and_xcnf; auto.
    - apply rxcnf_or_xcnf; auto.
    - apply rxcnf_impl_xcnf; auto.
    - intros.
      rewrite mk_iff_is_bool.
      apply rxcnf_iff_xcnf; auto.
    - intros.
      rewrite mk_iff_is_bool.
      apply rxcnf_iff_xcnf; auto.
  Qed.


  Variable eval'  : Env -> Term' -> Prop.

  Variable no_middle_eval' : forall env d, (eval' env d) \/ ~ (eval' env d).

  Variable unsat_prop : forall t, unsat t  = true ->
                                  forall env, eval' env t -> False.

  Variable deduce_prop : forall t t' u,
      deduce t t' = Some u -> forall env,
        eval' env t -> eval' env t' -> eval' env u.

  Definition eval_tt (env : Env) (tt : Term' * Annot) := eval' env (fst tt).

  Definition eval_clause (env : Env) (cl : clause) := ~ make_conj  (eval_tt env) cl.

  Definition eval_cnf (env : Env) (f:cnf) := make_conj  (eval_clause  env) f.

  Lemma eval_cnf_app : forall env x y, eval_cnf env (x+++y) <-> eval_cnf env x /\ eval_cnf env y.
  Proof.
    unfold eval_cnf.
    intros.
    rewrite make_conj_rapp.
    rewrite make_conj_app ; auto.
    tauto.
  Qed.

  Lemma eval_cnf_ff : forall env, eval_cnf env cnf_ff <-> False.
  Proof.
    unfold cnf_ff, eval_cnf,eval_clause.
    simpl. tauto.
  Qed.

  Lemma eval_cnf_tt : forall env, eval_cnf env cnf_tt <-> True.
  Proof.
    unfold cnf_tt, eval_cnf,eval_clause.
    simpl. tauto.
  Qed.

  Lemma eval_cnf_and_opt : forall env x y, eval_cnf env (and_cnf_opt x y) <-> eval_cnf env (and_cnf x y).
  Proof.
    unfold and_cnf_opt.
    intros env x y.
    destruct (is_cnf_ff x) eqn:F1.
    { apply is_cnf_ff_inv in F1.
      simpl. subst.
      unfold and_cnf.
      rewrite eval_cnf_app.
      rewrite eval_cnf_ff.
      tauto.
    }
    simpl.
    destruct (is_cnf_ff y) eqn:F2.
    { apply is_cnf_ff_inv in F2.
      simpl. subst.
      unfold and_cnf.
      rewrite eval_cnf_app.
      rewrite eval_cnf_ff.
      tauto.
    }
    destruct (is_cnf_tt y) eqn:F3.
    {
      apply is_cnf_tt_inv in F3.
      subst.
      unfold and_cnf.
      rewrite eval_cnf_app.
      rewrite eval_cnf_tt.
      tauto.
    }
    tauto.
  Qed.

  Definition eval_opt_clause (env : Env) (cl: option clause) :=
    match cl with
    | None => True
    | Some cl => eval_clause env cl
    end.

  Lemma add_term_correct : forall env t cl , eval_opt_clause env (add_term t cl) <-> eval_clause env (t::cl).
  Proof.
    intros env t cl; induction cl as [|a cl IHcl].
    - (* BC *)
      simpl.
      case_eq (deduce (fst t) (fst t)) ; try tauto.
      intros t0 H.
      generalize (@deduce_prop _ _ _ H env).
      case_eq (unsat t0) ; try tauto.
      { intros H0 ?.
        generalize (@unsat_prop _ H0 env).
        unfold eval_clause.
        rewrite make_conj_cons.
        simpl; intros.
        tauto.
      }
    - (* IC *)
      simpl.
      case_eq (deduce (fst t) (fst a));
        intros t0; [intros H|].
      generalize (@deduce_prop _ _ _ H env).
      case_eq (unsat t0); intros H0 H1.
      {
        generalize (@unsat_prop _ H0 env).
        simpl.
        unfold eval_clause.
        repeat rewrite make_conj_cons.
        tauto.
      }
      destruct (add_term t cl) ; simpl in * ; try tauto.
      {
        intros.
        unfold eval_clause in *.
        repeat rewrite make_conj_cons in *.
        tauto.
      }
      {
        unfold eval_clause in *.
        repeat rewrite make_conj_cons in *.
        tauto.
      }
      destruct (add_term t cl) ; simpl in *;
        unfold eval_clause in * ;
        repeat rewrite make_conj_cons in *; tauto.
  Qed.


  Lemma no_middle_eval_tt : forall env a,
      eval_tt env a \/ ~ eval_tt env a.
  Proof.
    unfold eval_tt.
    auto.
  Qed.

  #[local]
  Hint Resolve no_middle_eval_tt : tauto.

  Lemma or_clause_correct : forall cl cl' env,  eval_opt_clause env (or_clause cl cl') <-> eval_clause env cl \/ eval_clause env cl'.
  Proof.
    intros cl; induction cl as [|a cl IHcl].
    - simpl. unfold eval_clause at 2.  simpl. tauto.
    - intros cl' env.
      simpl.
      assert (HH := add_term_correct env a cl').
      assert (eval_tt env a \/ ~ eval_tt env a) by (apply no_middle_eval').
      destruct (add_term a cl'); simpl in *.
      +
        rewrite IHcl.
        unfold eval_clause in *.
        rewrite !make_conj_cons in *.
        tauto.
      + unfold eval_clause in *.
        repeat rewrite make_conj_cons in *.
        tauto.
  Qed.


  Lemma or_clause_cnf_correct : forall env t f, eval_cnf env (or_clause_cnf t f) <-> (eval_clause env t) \/ (eval_cnf env f).
  Proof.
    unfold eval_cnf.
    unfold or_clause_cnf.
    intros env t.
    set (F := (fun (acc : list clause) (e : clause)  =>
                 match or_clause t e with
                 | Some cl => cl :: acc
                 | None => acc
                 end)).
    intro f.
    assert (  make_conj (eval_clause env) (fold_left F f nil) <-> (eval_clause env t \/ make_conj (eval_clause env) f) /\ make_conj (eval_clause env) nil) as H.
    {
      generalize (@nil clause) as acc.
      induction f as [|a f IHf].
      - simpl.
        intros ; tauto.
      - intros.
        simpl fold_left.
        rewrite IHf.
        rewrite make_conj_cons.
        unfold F in *; clear F.
        generalize (or_clause_correct t a env).
        destruct (or_clause t a).
        +
          rewrite make_conj_cons.
          simpl. tauto.
        + simpl. tauto.
    }
    destruct t ; auto.
    - unfold eval_clause ; simpl. tauto.
    - unfold xor_clause_cnf.
      unfold F in H.
      rewrite H.
      unfold make_conj at 2. tauto.
  Qed.


  Lemma eval_cnf_cons : forall env a f,  (~ make_conj  (eval_tt env) a  /\ eval_cnf env f) <-> eval_cnf env (a::f).
  Proof.
    intros.
    unfold eval_cnf in *.
    rewrite make_conj_cons ; eauto.
    unfold eval_clause at 2.
    tauto.
  Qed.

  Lemma eval_cnf_cons_iff : forall env a f,  ((~ make_conj  (eval_tt env) a) /\ eval_cnf env f) <-> eval_cnf env (a::f).
  Proof.
    intros.
    unfold eval_cnf in *.
    rewrite make_conj_cons ; eauto.
    unfold eval_clause.
    tauto.
  Qed.


  Lemma or_cnf_correct : forall env f f', eval_cnf env (or_cnf f f') <-> (eval_cnf env  f) \/ (eval_cnf  env f').
  Proof.
    intros env f; induction f as [|a f IHf].
    unfold eval_cnf.
    simpl.
    tauto.
    (**)
    intros.
    simpl.
    rewrite eval_cnf_app.
    rewrite <- eval_cnf_cons_iff.
    rewrite IHf.
    rewrite or_clause_cnf_correct.
    unfold eval_clause.
    tauto.
  Qed.

  Lemma or_cnf_opt_correct : forall env f f', eval_cnf env (or_cnf_opt f f') <-> eval_cnf env (or_cnf f f').
  Proof.
    unfold or_cnf_opt.
    intros env f f'.
    destruct (is_cnf_tt f) eqn:TF.
    { simpl.
      apply is_cnf_tt_inv in TF.
      subst.
      rewrite or_cnf_correct.
      rewrite eval_cnf_tt.
      tauto.
    }
    destruct (is_cnf_tt f') eqn:TF'.
    { simpl.
      apply is_cnf_tt_inv in TF'.
      subst.
      rewrite or_cnf_correct.
      rewrite eval_cnf_tt.
      tauto.
    }
    { simpl.
      destruct (is_cnf_ff f') eqn:EQ.
      apply is_cnf_ff_inv in EQ.
      subst.
      rewrite or_cnf_correct.
      rewrite eval_cnf_ff.
      tauto.
      tauto.
    }
  Qed.

  Variable eval  : Env -> forall (k: kind), Term -> rtyp k.

  Variable normalise_correct : forall env b t tg, eval_cnf  env (normalise t tg) ->  hold b (eval env b t).

  Variable negate_correct : forall env b t tg, eval_cnf env (negate t tg) -> hold b (eNOT b (eval env b t)).

  Definition e_rtyp (k: kind) (x : rtyp k) : rtyp k := x.

  Lemma hold_eTT : forall k, hold k (eTT k).
  Proof.
    intros k; destruct k ; simpl; auto.
  Qed.

  #[local]
  Hint Resolve hold_eTT : tauto.

  Lemma hold_eFF : forall k,
      hold k (eNOT k (eFF k)).
  Proof.
    intros k; destruct k ; simpl;auto.
  Qed.

  #[local]
  Hint Resolve hold_eFF : tauto.

  Lemma hold_eAND : forall k r1 r2,
      hold k (eAND k r1 r2) <-> (hold k r1 /\ hold k r2).
  Proof.
    intros k; destruct k ; simpl.
    - intros. apply iff_refl.
    - apply andb_true_iff.
  Qed.

  Lemma hold_eOR : forall k r1 r2,
      hold k (eOR k r1 r2) <-> (hold k r1 \/ hold k r2).
  Proof.
    intros k; destruct k ; simpl.
    - intros. apply iff_refl.
    - apply orb_true_iff.
  Qed.

  Lemma hold_eNOT : forall k e,
      hold k (eNOT k e) <-> not (hold k e).
  Proof.
    intros k; destruct k ; simpl.
    - intros. apply iff_refl.
    - intros e. unfold is_true.
      rewrite negb_true_iff.
      destruct e ; intuition congruence.
  Qed.

  Lemma hold_eIMPL : forall k e1 e2,
      hold k (eIMPL k e1 e2) <-> (hold k e1 -> hold k e2).
  Proof.
    intros k; destruct k ; simpl.
    - intros. apply iff_refl.
    - intros e1 e2.
      unfold is_true.
      destruct e1,e2 ; simpl ; intuition congruence.
  Qed.

  Lemma hold_eIFF : forall k e1 e2,
      hold k (eIFF k e1 e2) <-> (hold k e1 <-> hold k e2).
  Proof.
    intros k; destruct k ; simpl.
    - intros. apply iff_refl.
    - intros e1 e2.
      unfold is_true.
      rewrite eqb_true_iff.
      destruct e1,e2 ; simpl ; intuition congruence.
  Qed.



  Lemma xcnf_impl :
    forall
      (k: kind)
      (f1 : GFormula k)
      (o : option unit)
      (f2 : GFormula k)
      (IHf1 : forall (pol : bool) (env : Env),
          eval_cnf env (xcnf pol f1) ->
          hold k (eval_f e_rtyp (eval env) (if pol then f1 else NOT f1)))
      (IHf2 : forall (pol : bool) (env : Env),
          eval_cnf env (xcnf pol f2) ->
          hold k (eval_f e_rtyp (eval env) (if pol then f2 else NOT f2))),
    forall (pol : bool) (env : Env),
      eval_cnf env (xcnf pol (IMPL f1 o f2)) ->
      hold k (eval_f e_rtyp (eval env) (if pol then IMPL f1 o f2 else NOT (IMPL f1 o f2))).
  Proof.
    simpl; intros k f1 o f2 IHf1 IHf2 pol env H. unfold mk_impl in H.
    destruct pol.
    + simpl.
      rewrite hold_eIMPL.
      intro.
      rewrite or_cnf_opt_correct in H.
      rewrite or_cnf_correct in H.
      destruct H as [H | H].
      generalize (IHf1 _ _ H).
      simpl in *.
      rewrite hold_eNOT.
      tauto.
      generalize (IHf2 _ _ H).
      auto.
    + (* pol = false *)
      rewrite eval_cnf_and_opt in H.
      unfold and_cnf in H.
      simpl in H.
      rewrite eval_cnf_app in H.
      destruct H as [H0 H1].
      generalize (IHf1 _ _ H0).
      generalize (IHf2 _ _ H1).
      simpl.
      rewrite ! hold_eNOT.
      rewrite ! hold_eIMPL.
      tauto.
  Qed.

  Lemma hold_eIFF_IMPL : forall k e1 e2,
      hold k (eIFF k e1 e2) <-> (hold k (eAND k (eIMPL k e1 e2) (eIMPL k e2 e1))).
  Proof.
    intros.
    rewrite hold_eIFF.
    rewrite hold_eAND.
    rewrite! hold_eIMPL.
    tauto.
  Qed.

  Lemma hold_eEQ : forall e1 e2,
      hold isBool (eIFF isBool e1 e2) <-> e1 = e2.
  Proof.
    simpl.
    intros e1 e2; destruct e1,e2 ; simpl ; intuition congruence.
  Qed.


  Lemma xcnf_iff : forall
      (k : kind)
      (f1 f2 : @GFormula Term rtyp Annot unit k)
      (IHf1 : forall (pol : bool) (env : Env),
          eval_cnf env (xcnf pol f1) ->
          hold k (eval_f e_rtyp (eval env) (if pol then f1 else NOT f1)))
      (IHf2 : forall (pol : bool) (env : Env),
          eval_cnf env (xcnf pol f2) ->
          hold k (eval_f e_rtyp (eval env) (if pol then f2 else NOT f2))),
      forall (pol : bool) (env : Env),
        eval_cnf env (xcnf pol (IFF f1 f2)) ->
        hold k (eval_f e_rtyp (eval env) (if pol then IFF f1 f2 else NOT (IFF f1 f2))).
  Proof.
    simpl.
    intros k f1 f2 IHf1 IHf2 pol env H.
    rewrite mk_iff_is_bool in H.
    unfold mk_iff in H.
    destruct pol;
      rewrite or_cnf_opt_correct in H;
      rewrite or_cnf_correct in H;
      rewrite! eval_cnf_and_opt in H;
      unfold and_cnf in H;
      rewrite! eval_cnf_app in H;
      generalize (IHf1 false env);
      generalize (IHf1 true env);
      generalize (IHf2 false env);
      generalize (IHf2 true env);
      simpl.
    -
      rewrite hold_eIFF_IMPL.
      rewrite hold_eAND.
      rewrite! hold_eIMPL.
      rewrite! hold_eNOT.
      tauto.
    -  rewrite! hold_eNOT.
       rewrite hold_eIFF_IMPL.
       rewrite hold_eAND.
       rewrite! hold_eIMPL.
       tauto.
  Qed.

  Lemma xcnf_correct : forall (k: kind) (f : @GFormula Term rtyp Annot unit k)  pol env,
      eval_cnf env (xcnf pol f) -> hold k (eval_f e_rtyp (eval env) (if pol then f else NOT f)).
  Proof.
    intros k f;
     induction f as [| | | |? ? IHf1 ? IHf2|? ? IHf1 ? IHf2|? ? IHf
       |? ? IHf1 ? ? IHf2|? ? IHf1 f2 IHf2|f1 IHf1 f2 IHf2];
     intros pol env H.
    - (* TT *)
      unfold eval_cnf.
      simpl.
      destruct pol ; intros; simpl; auto with tauto.
      rewrite eval_cnf_ff in H. tauto.
    - (* FF *)
      destruct pol ; simpl in *; intros; auto with tauto.
      + rewrite eval_cnf_ff in H. tauto.
    - (* P *)
      simpl.
      destruct pol ; intros ;simpl.
      + rewrite eval_cnf_ff in H. tauto.
      + rewrite eval_cnf_ff in H. tauto.
    - (* A *)
      simpl.
      destruct pol ; simpl.
      intros.
      eapply normalise_correct  ; eauto.
      (* A 2 *)
      intros.
      eapply  negate_correct ; eauto.
    - (* AND *)
      destruct pol ; simpl in H.
      + (* pol = true *)
        intros.
        rewrite eval_cnf_and_opt in H.
        unfold and_cnf in H.
        rewrite eval_cnf_app  in H.
        destruct H as [H H0].
        apply hold_eAND; split.
        apply (IHf1 _ _ H).
        apply (IHf2 _ _ H0).
      +  (* pol = false *)
        intros.
        apply hold_eNOT.
        rewrite hold_eAND.
        rewrite or_cnf_opt_correct in H.
        rewrite or_cnf_correct in H.
        destruct H as [H | H].
        generalize (IHf1 false  env H).
        simpl.
        rewrite hold_eNOT.
        tauto.
        generalize (IHf2 false  env H).
        simpl.
        rewrite hold_eNOT.
        tauto.
    - (* OR *)
      simpl in H.
      destruct pol.
      + (* pol = true *)
        intros. unfold mk_or in H.
        rewrite or_cnf_opt_correct in H.
        rewrite or_cnf_correct in H.
        destruct H as [H | H].
        generalize (IHf1 _  env H).
        simpl.
        rewrite hold_eOR.
        tauto.
        generalize (IHf2 _  env H).
        simpl.
        rewrite hold_eOR.
        tauto.
      + (* pol = true *)
        intros. unfold mk_or in H.
        rewrite eval_cnf_and_opt in H.
        unfold and_cnf.
        rewrite eval_cnf_app in H.
        destruct H as [H0 H1].
        simpl.
        generalize (IHf1 _ _ H0).
        generalize (IHf2 _ _ H1).
        simpl.
        rewrite ! hold_eNOT.
        rewrite ! hold_eOR.
        tauto.
    - (**)
      simpl.
      destruct pol ; simpl.
      intros.
      apply (IHf false) ; auto.
      intros.
      generalize (IHf _ _ H).
      rewrite ! hold_eNOT.
      tauto.
    - (* IMPL *)
      apply xcnf_impl; auto.
    - apply xcnf_iff ; auto.
    - simpl in H.
      destruct (is_bool f2) as [b|] eqn:EQ.
      + apply is_bool_inv in EQ.
        destruct b; subst; intros;
          apply IHf1 in H;
          destruct pol ; simpl in * ; auto.
        * unfold is_true in H.
          rewrite negb_true_iff in H.
          congruence.
        *
          unfold is_true in H.
          rewrite negb_true_iff in H.
          congruence.
        * unfold is_true in H.
          congruence.
      + intros.
        rewrite <- mk_iff_is_bool in H.
        apply xcnf_iff in H; auto.
        simpl in H.
        destruct pol ; simpl in *.
        rewrite <- hold_eEQ.
        simpl; auto.
        rewrite <- hold_eEQ.
        simpl; auto.
        unfold is_true in *.
        rewrite negb_true_iff in H.
        congruence.
  Qed.

  Variable Witness : Type.
  Variable checker : list (Term'*Annot) -> Witness -> bool.

  Variable checker_sound : forall t  w, checker t w = true -> forall env, make_impl (eval_tt env)  t False.

  Fixpoint cnf_checker (f : cnf) (l : list Witness)  {struct f}: bool :=
    match f with
    | nil => true
    | e::f => match l with
              | nil => false
              | c::l => match checker e c with
                        | true => cnf_checker f l
                        |   _  => false
                        end
              end
    end.

  Lemma cnf_checker_sound : forall t  w, cnf_checker t w = true -> forall env, eval_cnf  env  t.
  Proof.
    unfold eval_cnf.
    intros t; induction t as [|a t IHt].
    (* bc *)
    simpl.
    auto.
    (* ic *)
    simpl.
    intros w; destruct w as [|w ?].
    intros ; discriminate.
    case_eq (checker a w) ; intros H H0 env ** ; try discriminate.
    generalize (@checker_sound _ _ H env).
    generalize (IHt _ H0 env) ; intros H1 H2.
    destruct t.
    red ; intro.
    rewrite <- make_conj_impl in H2.
    tauto.
    rewrite <- make_conj_impl in H2.
    tauto.
  Qed.

  Definition tauto_checker (f:@GFormula Term rtyp Annot unit isProp) (w:list Witness) : bool :=
    cnf_checker (xcnf true f) w.

  Lemma tauto_checker_sound : forall t  w, tauto_checker t w = true -> forall env, eval_f e_rtyp (eval env)  t.
  Proof.
    unfold tauto_checker.
    intros t w H env.
    change (eval_f e_rtyp (eval env) t) with (eval_f e_rtyp (eval env) (if true then t else TT isProp)).
    apply (xcnf_correct t true).
    eapply cnf_checker_sound ; eauto.
  Qed.

  Definition eval_bf {A : Type} (ea : forall (k: kind), A -> rtyp k) (k: kind) (f: BFormula A k) := eval_f e_rtyp ea f.

  Lemma eval_bf_map : forall T U (fct: T-> U) env (k: kind) (f:BFormula T k) ,
      eval_bf env  (map_bformula fct f)  = eval_bf (fun b x => env b (fct x)) f.
  Proof.
    intros T U fct env k f;
      induction f as [| | | |? ? IHf1 ? IHf2|? ? IHf1 ? IHf2|? ? IHf
        |? ? IHf1 ? ? IHf2|? ? IHf1 ? IHf2|? IHf1 ? IHf2];
      simpl ; try (rewrite IHf1 ; rewrite IHf2) ; auto.
    rewrite <- IHf.  auto.
  Qed.


End S.


(* Local Variables: *)
(* coding: utf-8 *)
(* End: *)