1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
|
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * Copyright INRIA, CNRS and contributors *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
Require Import OrderedType.
Require Import ZArith_base.
Require Import PeanoNat.
Require Import Ascii String.
Require Import NArith Ndec.
Require Import Compare_dec.
(** * Examples of Ordered Type structures. *)
(** First, a particular case of [OrderedType] where
the equality is the usual one of Coq. *)
Module Type UsualOrderedType.
Parameter Inline t : Type.
Definition eq := @eq t.
Parameter Inline lt : t -> t -> Prop.
Definition eq_refl := @eq_refl t.
Definition eq_sym := @eq_sym t.
Definition eq_trans := @eq_trans t.
Axiom lt_trans : forall x y z : t, lt x y -> lt y z -> lt x z.
Axiom lt_not_eq : forall x y : t, lt x y -> ~ eq x y.
Parameter compare : forall x y : t, Compare lt eq x y.
Parameter eq_dec : forall x y : t, { eq x y } + { ~ eq x y }.
End UsualOrderedType.
(** a [UsualOrderedType] is in particular an [OrderedType]. *)
Module UOT_to_OT (U:UsualOrderedType) <: OrderedType := U.
(** [nat] is an ordered type with respect to the usual order on natural numbers. *)
Module Nat_as_OT <: UsualOrderedType.
Definition t := nat.
Definition eq := @eq nat.
Definition eq_refl := @eq_refl t.
Definition eq_sym := @eq_sym t.
Definition eq_trans := @eq_trans t.
Definition lt := lt.
Lemma lt_trans : forall x y z : t, lt x y -> lt y z -> lt x z.
Proof. unfold lt; intros; apply lt_trans with y; auto. Qed.
Lemma lt_not_eq : forall x y : t, lt x y -> ~ eq x y.
Proof. unfold lt, eq; intros ? ? LT ->; revert LT; apply Nat.lt_irrefl. Qed.
Definition compare x y : Compare lt eq x y.
Proof.
case_eq (Nat.compare x y); intro.
- apply EQ. now apply nat_compare_eq.
- apply LT. now apply nat_compare_Lt_lt.
- apply GT. now apply nat_compare_Gt_gt.
Defined.
Definition eq_dec := eq_nat_dec.
End Nat_as_OT.
(** [Z] is an ordered type with respect to the usual order on integers. *)
Local Open Scope Z_scope.
Module Z_as_OT <: UsualOrderedType.
Definition t := Z.
Definition eq := @eq Z.
Definition eq_refl := @eq_refl t.
Definition eq_sym := @eq_sym t.
Definition eq_trans := @eq_trans t.
Definition lt (x y:Z) := (x<y).
Lemma lt_trans : forall x y z, x<y -> y<z -> x<z.
Proof. exact Z.lt_trans. Qed.
Lemma lt_not_eq : forall x y, x<y -> ~ x=y.
Proof. intros x y LT ->; revert LT; apply Z.lt_irrefl. Qed.
Definition compare x y : Compare lt eq x y.
Proof.
case_eq (x ?= y); intro.
- apply EQ. now apply Z.compare_eq.
- apply LT. assumption.
- apply GT. now apply Z.gt_lt.
Defined.
Definition eq_dec := Z.eq_dec.
End Z_as_OT.
(** [positive] is an ordered type with respect to the usual order on natural numbers. *)
Local Open Scope positive_scope.
Module Positive_as_OT <: UsualOrderedType.
Definition t:=positive.
Definition eq:=@eq positive.
Definition eq_refl := @eq_refl t.
Definition eq_sym := @eq_sym t.
Definition eq_trans := @eq_trans t.
Definition lt := Pos.lt.
Definition lt_trans := Pos.lt_trans.
Lemma lt_not_eq : forall x y : t, lt x y -> ~ eq x y.
Proof.
intros x y H. contradict H. rewrite H. apply Pos.lt_irrefl.
Qed.
Definition compare x y : Compare lt eq x y.
Proof.
case_eq (x ?= y); intros H.
- apply EQ. now apply Pos.compare_eq.
- apply LT; assumption.
- apply GT. now apply Pos.gt_lt.
Defined.
Definition eq_dec := Pos.eq_dec.
End Positive_as_OT.
(** [N] is an ordered type with respect to the usual order on natural numbers. *)
Module N_as_OT <: UsualOrderedType.
Definition t:=N.
Definition eq:=@eq N.
Definition eq_refl := @eq_refl t.
Definition eq_sym := @eq_sym t.
Definition eq_trans := @eq_trans t.
Definition lt := N.lt.
Definition lt_trans := N.lt_trans.
Definition lt_not_eq := N.lt_neq.
Definition compare x y : Compare lt eq x y.
Proof.
case_eq (x ?= y)%N; intro.
- apply EQ. now apply N.compare_eq.
- apply LT. assumption.
- apply GT. now apply N.gt_lt.
Defined.
Definition eq_dec := N.eq_dec.
End N_as_OT.
(** From two ordered types, we can build a new OrderedType
over their cartesian product, using the lexicographic order. *)
Module PairOrderedType(O1 O2:OrderedType) <: OrderedType.
Module MO1:=OrderedTypeFacts(O1).
Module MO2:=OrderedTypeFacts(O2).
Definition t := prod O1.t O2.t.
Definition eq x y := O1.eq (fst x) (fst y) /\ O2.eq (snd x) (snd y).
Definition lt x y :=
O1.lt (fst x) (fst y) \/
(O1.eq (fst x) (fst y) /\ O2.lt (snd x) (snd y)).
Lemma eq_refl : forall x : t, eq x x.
Proof.
intros (x1,x2); red; simpl; auto with ordered_type.
Qed.
Lemma eq_sym : forall x y : t, eq x y -> eq y x.
Proof.
intros (x1,x2) (y1,y2); unfold eq; simpl; intuition.
Qed.
Lemma eq_trans : forall x y z : t, eq x y -> eq y z -> eq x z.
Proof.
intros (x1,x2) (y1,y2) (z1,z2); unfold eq; simpl; intuition eauto with ordered_type.
Qed.
Lemma lt_trans : forall x y z : t, lt x y -> lt y z -> lt x z.
Proof.
intros (x1,x2) (y1,y2) (z1,z2); unfold eq, lt; simpl; intuition.
left; eauto with ordered_type.
left; eapply MO1.lt_eq; eauto.
left; eapply MO1.eq_lt; eauto.
right; split; eauto with ordered_type.
Qed.
Lemma lt_not_eq : forall x y : t, lt x y -> ~ eq x y.
Proof.
intros (x1,x2) (y1,y2); unfold eq, lt; simpl; intuition.
apply (O1.lt_not_eq H0 H1).
apply (O2.lt_not_eq H3 H2).
Qed.
Definition compare : forall x y : t, Compare lt eq x y.
intros (x1,x2) (y1,y2).
destruct (O1.compare x1 y1).
apply LT; unfold lt; auto.
destruct (O2.compare x2 y2).
apply LT; unfold lt; auto.
apply EQ; unfold eq; auto.
apply GT; unfold lt; auto with ordered_type.
apply GT; unfold lt; auto.
Defined.
Definition eq_dec : forall x y : t, {eq x y} + {~ eq x y}.
Proof.
intros; elim (compare x y); intro H; [ right | left | right ]; auto.
auto using lt_not_eq.
assert (~ eq y x); auto using lt_not_eq, eq_sym.
Defined.
End PairOrderedType.
(** Even if [positive] can be seen as an ordered type with respect to the
usual order (see above), we can also use a lexicographic order over bits
(lower bits are considered first). This is more natural when using
[positive] as indexes for sets or maps (see FSetPositive and FMapPositive. *)
Module PositiveOrderedTypeBits <: UsualOrderedType.
Definition t:=positive.
Definition eq:=@eq positive.
Definition eq_refl := @eq_refl t.
Definition eq_sym := @eq_sym t.
Definition eq_trans := @eq_trans t.
Fixpoint bits_lt (p q:positive) : Prop :=
match p, q with
| xH, xI _ => True
| xH, _ => False
| xO p, xO q => bits_lt p q
| xO _, _ => True
| xI p, xI q => bits_lt p q
| xI _, _ => False
end.
Definition lt:=bits_lt.
Lemma bits_lt_trans :
forall x y z : positive, bits_lt x y -> bits_lt y z -> bits_lt x z.
Proof.
induction x.
induction y; destruct z; simpl; eauto; intuition.
induction y; destruct z; simpl; eauto; intuition.
induction y; destruct z; simpl; eauto; intuition.
Qed.
Lemma lt_trans : forall x y z : t, lt x y -> lt y z -> lt x z.
Proof.
exact bits_lt_trans.
Qed.
Lemma bits_lt_antirefl : forall x : positive, ~ bits_lt x x.
Proof.
induction x; simpl; auto.
Qed.
Lemma lt_not_eq : forall x y : t, lt x y -> ~ eq x y.
Proof.
intros; intro.
rewrite <- H0 in H; clear H0 y.
unfold lt in H.
exact (bits_lt_antirefl x H).
Qed.
Definition compare : forall x y : t, Compare lt eq x y.
Proof.
induction x; destruct y.
- (* I I *)
destruct (IHx y) as [l|e|g].
apply LT; auto.
apply EQ; rewrite e; red; auto.
apply GT; auto.
- (* I O *)
apply GT; simpl; auto.
- (* I H *)
apply GT; simpl; auto.
- (* O I *)
apply LT; simpl; auto.
- (* O O *)
destruct (IHx y) as [l|e|g].
apply LT; auto.
apply EQ; rewrite e; red; auto.
apply GT; auto.
- (* O H *)
apply LT; simpl; auto.
- (* H I *)
apply LT; simpl; auto.
- (* H O *)
apply GT; simpl; auto.
- (* H H *)
apply EQ; red; auto.
Qed.
Lemma eq_dec (x y: positive): {x = y} + {x <> y}.
Proof.
intros. case_eq (x ?= y); intros.
- left. now apply Pos.compare_eq.
- right. intro. subst y. now rewrite (Pos.compare_refl x) in *.
- right. intro. subst y. now rewrite (Pos.compare_refl x) in *.
Qed.
End PositiveOrderedTypeBits.
Module Ascii_as_OT <: UsualOrderedType.
Definition t := ascii.
Definition eq := @eq ascii.
Definition eq_refl := @eq_refl t.
Definition eq_sym := @eq_sym t.
Definition eq_trans := @eq_trans t.
Definition cmp (a b : ascii) : comparison :=
N.compare (N_of_ascii a) (N_of_ascii b).
Lemma cmp_eq (a b : ascii):
cmp a b = Eq <-> a = b.
Proof.
unfold cmp.
rewrite N.compare_eq_iff.
split. 2:{ intro. now subst. }
intro H.
rewrite<- (ascii_N_embedding a).
rewrite<- (ascii_N_embedding b).
now rewrite H.
Qed.
Lemma cmp_lt_nat (a b : ascii):
cmp a b = Lt <-> (nat_of_ascii a < nat_of_ascii b)%nat.
Proof.
unfold cmp. unfold nat_of_ascii.
rewrite N2Nat.inj_compare.
rewrite Nat.compare_lt_iff.
reflexivity.
Qed.
Lemma cmp_antisym (a b : ascii):
cmp a b = CompOpp (cmp b a).
Proof.
unfold cmp.
apply N.compare_antisym.
Qed.
Definition lt (x y : ascii) := (N_of_ascii x < N_of_ascii y)%N.
Lemma lt_trans (x y z : ascii):
lt x y -> lt y z -> lt x z.
Proof.
apply N.lt_trans.
Qed.
Lemma lt_not_eq (x y : ascii):
lt x y -> x <> y.
Proof.
intros L H. subst.
exact (N.lt_irrefl _ L).
Qed.
Local Lemma compare_helper_eq {a b : ascii} (E : cmp a b = Eq):
a = b.
Proof.
now apply cmp_eq.
Qed.
Local Lemma compare_helper_gt {a b : ascii} (G : cmp a b = Gt):
lt b a.
Proof.
now apply N.compare_gt_iff.
Qed.
Definition compare (a b : ascii) : Compare lt eq a b :=
match cmp a b as z return _ = z -> _ with
| Lt => fun E => LT E
| Gt => fun E => GT (compare_helper_gt E)
| Eq => fun E => EQ (compare_helper_eq E)
end Logic.eq_refl.
Definition eq_dec (x y : ascii): {x = y} + { ~ (x = y)} := ascii_dec x y.
End Ascii_as_OT.
(** [String] is an ordered type with respect to the usual lexical order. *)
Module String_as_OT <: UsualOrderedType.
Definition t := string.
Definition eq := @eq string.
Definition eq_refl := @eq_refl t.
Definition eq_sym := @eq_sym t.
Definition eq_trans := @eq_trans t.
Inductive lts : string -> string -> Prop :=
| lts_empty : forall a s, lts EmptyString (String a s)
| lts_tail : forall a s1 s2, lts s1 s2 -> lts (String a s1) (String a s2)
| lts_head : forall (a b : ascii) s1 s2,
lt (nat_of_ascii a) (nat_of_ascii b) ->
lts (String a s1) (String b s2).
Definition lt := lts.
Lemma nat_of_ascii_inverse a b : nat_of_ascii a = nat_of_ascii b -> a = b.
Proof.
intro H.
rewrite <- (ascii_nat_embedding a).
rewrite <- (ascii_nat_embedding b).
apply f_equal; auto.
Qed.
Lemma lts_tail_unique a s1 s2 : lt (String a s1) (String a s2) ->
lt s1 s2.
Proof.
intro H; inversion H; subst; auto.
remember (nat_of_ascii a) as x.
apply lt_irrefl in H1; inversion H1.
Qed.
Lemma lt_trans : forall x y z : t, lt x y -> lt y z -> lt x z.
Proof.
induction x; intros y z H1 H2.
- destruct y as [| b y']; inversion H1.
destruct z as [| c z']; inversion H2; constructor.
- destruct y as [| b y']; inversion H1; subst;
destruct z as [| c z']; inversion H2; subst.
+ constructor. eapply IHx; eauto.
+ constructor; assumption.
+ constructor; assumption.
+ constructor. eapply lt_trans; eassumption.
Qed.
Lemma lt_not_eq : forall x y : t, lt x y -> ~ eq x y.
Proof.
induction x; intros y LT.
- inversion LT. intro. inversion H.
- inversion LT; subst; intros EQ.
* specialize (IHx s2 H2).
inversion EQ; subst; auto.
apply IHx; unfold eq; auto.
* inversion EQ; subst; auto.
apply Nat.lt_irrefl in H2; auto.
Qed.
Fixpoint cmp (a b : string) : comparison :=
match a, b with
| EmptyString, EmptyString => Eq
| EmptyString, _ => Lt
| String _ _, EmptyString => Gt
| String a_head a_tail, String b_head b_tail =>
match Ascii_as_OT.cmp a_head b_head with
| Lt => Lt
| Gt => Gt
| Eq => cmp a_tail b_tail
end
end.
Lemma cmp_eq (a b : string):
cmp a b = Eq <-> a = b.
Proof.
revert b.
induction a, b; try easy.
cbn.
remember (Ascii_as_OT.cmp _ _) as c eqn:Heqc. symmetry in Heqc.
destruct c; split; try discriminate;
try rewrite Ascii_as_OT.cmp_eq in Heqc; try subst;
try rewrite IHa; intro H.
{ now subst. }
{ now inversion H. }
{ inversion H; subst. rewrite<- Heqc. now rewrite Ascii_as_OT.cmp_eq. }
{ inversion H; subst. rewrite<- Heqc. now rewrite Ascii_as_OT.cmp_eq. }
Qed.
Lemma cmp_antisym (a b : string):
cmp a b = CompOpp (cmp b a).
Proof.
revert b.
induction a, b; try easy.
cbn. rewrite IHa. clear IHa.
remember (Ascii_as_OT.cmp _ _) as c eqn:Heqc. symmetry in Heqc.
destruct c; rewrite Ascii_as_OT.cmp_antisym in Heqc;
destruct Ascii_as_OT.cmp; cbn in *; easy.
Qed.
Lemma cmp_lt (a b : string):
cmp a b = Lt <-> lt a b.
Proof.
revert b.
induction a as [ | a_head a_tail ], b; try easy; cbn.
{ split; trivial. intro. apply lts_empty. }
remember (Ascii_as_OT.cmp _ _) as c eqn:Heqc. symmetry in Heqc.
destruct c; split; intro H; try discriminate; trivial.
{
rewrite Ascii_as_OT.cmp_eq in Heqc. subst.
apply String_as_OT.lts_tail.
apply IHa_tail.
assumption.
}
{
rewrite Ascii_as_OT.cmp_eq in Heqc. subst.
inversion H; subst. { rewrite IHa_tail. assumption. }
exfalso. apply (Nat.lt_irrefl (nat_of_ascii a)). assumption.
}
{
apply String_as_OT.lts_head.
rewrite<- Ascii_as_OT.cmp_lt_nat.
assumption.
}
{
exfalso. inversion H; subst.
{
assert(X: Ascii_as_OT.cmp a a = Eq). { apply Ascii_as_OT.cmp_eq. trivial. }
rewrite Heqc in X. discriminate.
}
rewrite<- Ascii_as_OT.cmp_lt_nat in *. rewrite Heqc in *. discriminate.
}
Qed.
Local Lemma compare_helper_lt {a b : string} (L : cmp a b = Lt):
lt a b.
Proof.
now apply cmp_lt.
Qed.
Local Lemma compare_helper_gt {a b : string} (G : cmp a b = Gt):
lt b a.
Proof.
rewrite cmp_antisym in G.
rewrite CompOpp_iff in G.
now apply cmp_lt.
Qed.
Local Lemma compare_helper_eq {a b : string} (E : cmp a b = Eq):
a = b.
Proof.
now apply cmp_eq.
Qed.
Definition compare (a b : string) : Compare lt eq a b :=
match cmp a b as z return _ = z -> _ with
| Lt => fun E => LT (compare_helper_lt E)
| Gt => fun E => GT (compare_helper_gt E)
| Eq => fun E => EQ (compare_helper_eq E)
end Logic.eq_refl.
Definition eq_dec (x y : string): {x = y} + { ~ (x = y)} := string_dec x y.
End String_as_OT.
|