aboutsummaryrefslogtreecommitdiff
path: root/theories/Relations/Relations.v
blob: dea76694f3a4924ccf6d9623ae5676b6e02cf749 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
(************************************************************************)
(*         *   The Coq Proof Assistant / The Coq Development Team       *)
(*  v      *         Copyright INRIA, CNRS and contributors             *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)

Require Export Relation_Definitions.
Require Export Relation_Operators.
Require Export Operators_Properties.

Lemma inverse_image_of_equivalence :
  forall (A B:Type) (f:A -> B) (r:relation B),
    equivalence B r -> equivalence A (fun x y:A => r (f x) (f y)).
Proof.
  intros A B f r H; split; elim H; red; auto.
  intros _ equiv_trans _ x y z H0 H1; apply equiv_trans with (f y); assumption.
Qed.

Lemma inverse_image_of_eq :
  forall (A B:Type) (f:A -> B), equivalence A (fun x y:A => f x = f y).
Proof.
  intros A B f; split; red;
    [  (* reflexivity *) reflexivity
      |  (* transitivity *) intros x y z; transitivity (f y); assumption
      |  (* symmetry *) intros; symmetry ; assumption ].
Qed.