1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
|
(* -*- coding: utf-8 -*- *)
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * Copyright INRIA, CNRS and contributors *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
Require Import Rfunctions.
Require Import SeqSeries.
Require Import Ranalysis_reg.
Require Import Rbase.
Require Import RiemannInt_SF.
Require Import Max.
Require Import RList.
Local Open Scope R_scope.
Set Implicit Arguments.
(********************************************)
(** Riemann's Integral *)
(********************************************)
Definition Riemann_integrable (f:R -> R) (a b:R) : Type :=
forall eps:posreal,
{ phi:StepFun a b &
{ psi:StepFun a b |
(forall t:R,
Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t) /\
Rabs (RiemannInt_SF psi) < eps } }.
Definition phi_sequence (un:nat -> posreal) (f:R -> R)
(a b:R) (pr:Riemann_integrable f a b) (n:nat) :=
projT1 (pr (un n)).
Lemma phi_sequence_prop :
forall (un:nat -> posreal) (f:R -> R) (a b:R) (pr:Riemann_integrable f a b)
(N:nat),
{ psi:StepFun a b |
(forall t:R,
Rmin a b <= t <= Rmax a b ->
Rabs (f t - phi_sequence un pr N t) <= psi t) /\
Rabs (RiemannInt_SF psi) < un N }.
Proof.
intros; apply (projT2 (pr (un N))).
Qed.
Lemma RiemannInt_P1 :
forall (f:R -> R) (a b:R),
Riemann_integrable f a b -> Riemann_integrable f b a.
Proof.
unfold Riemann_integrable; intros; elim (X eps); clear X; intros.
elim p; clear p; intros x0 p; exists (mkStepFun (StepFun_P6 (pre x)));
exists (mkStepFun (StepFun_P6 (pre x0)));
elim p; clear p; intros; split.
intros; apply (H t); elim H1; clear H1; intros; split;
[ apply Rle_trans with (Rmin b a); try assumption; right;
unfold Rmin
| apply Rle_trans with (Rmax b a); try assumption; right;
unfold Rmax ];
(case (Rle_dec a b); case (Rle_dec b a); intros;
try reflexivity || apply Rle_antisym;
[ assumption | assumption | auto with real | auto with real ]).
generalize H0; unfold RiemannInt_SF; case (Rle_dec a b);
case (Rle_dec b a); intros;
(replace
(Int_SF (subdivision_val (mkStepFun (StepFun_P6 (pre x0))))
(subdivision (mkStepFun (StepFun_P6 (pre x0))))) with
(Int_SF (subdivision_val x0) (subdivision x0));
[ idtac
| apply StepFun_P17 with (fe x0) a b;
[ apply StepFun_P1
| apply StepFun_P2;
apply (StepFun_P1 (mkStepFun (StepFun_P6 (pre x0)))) ] ]).
apply H1.
rewrite Rabs_Ropp; apply H1.
rewrite Rabs_Ropp in H1; apply H1.
apply H1.
Qed.
Lemma RiemannInt_P2 :
forall (f:R -> R) (a b:R) (un:nat -> posreal) (vn wn:nat -> StepFun a b),
Un_cv un 0 ->
a <= b ->
(forall n:nat,
(forall t:R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n t) <= wn n t) /\
Rabs (RiemannInt_SF (wn n)) < un n) ->
{ l:R | Un_cv (fun N:nat => RiemannInt_SF (vn N)) l }.
Proof.
intros; apply R_complete; unfold Un_cv in H; unfold Cauchy_crit;
intros; assert (H3 : 0 < eps / 2).
unfold Rdiv; apply Rmult_lt_0_compat;
[ assumption | apply Rinv_0_lt_compat; prove_sup0 ].
elim (H _ H3); intros N0 H4; exists N0; intros; unfold R_dist;
unfold R_dist in H4; elim (H1 n); elim (H1 m); intros;
replace (RiemannInt_SF (vn n) - RiemannInt_SF (vn m)) with
(RiemannInt_SF (vn n) + -1 * RiemannInt_SF (vn m));
[ idtac | ring ]; rewrite <- StepFun_P30;
apply Rle_lt_trans with
(RiemannInt_SF
(mkStepFun (StepFun_P32 (mkStepFun (StepFun_P28 (-1) (vn n) (vn m)))))).
apply StepFun_P34; assumption.
apply Rle_lt_trans with
(RiemannInt_SF (mkStepFun (StepFun_P28 1 (wn n) (wn m)))).
apply StepFun_P37; try assumption.
intros; simpl;
apply Rle_trans with (Rabs (vn n x - f x) + Rabs (f x - vn m x)).
replace (vn n x + -1 * vn m x) with (vn n x - f x + (f x - vn m x));
[ apply Rabs_triang | ring ].
assert (H12 : Rmin a b = a).
unfold Rmin; decide (Rle_dec a b) with H0; reflexivity.
assert (H13 : Rmax a b = b).
unfold Rmax; decide (Rle_dec a b) with H0; reflexivity.
rewrite <- H12 in H11; rewrite <- H13 in H11 at 2;
rewrite Rmult_1_l; apply Rplus_le_compat.
rewrite <- Rabs_Ropp; rewrite Ropp_minus_distr; apply H9.
elim H11; intros; split; left; assumption.
apply H7.
elim H11; intros; split; left; assumption.
rewrite StepFun_P30; rewrite Rmult_1_l; apply Rlt_trans with (un n + un m).
apply Rle_lt_trans with
(Rabs (RiemannInt_SF (wn n)) + Rabs (RiemannInt_SF (wn m))).
apply Rplus_le_compat; apply RRle_abs.
apply Rplus_lt_compat; assumption.
apply Rle_lt_trans with (Rabs (un n) + Rabs (un m)).
apply Rplus_le_compat; apply RRle_abs.
replace (pos (un n)) with (un n - 0); [ idtac | ring ];
replace (pos (un m)) with (un m - 0); [ idtac | ring ];
rewrite (double_var eps); apply Rplus_lt_compat; apply H4;
assumption.
Qed.
Lemma RiemannInt_P3 :
forall (f:R -> R) (a b:R) (un:nat -> posreal) (vn wn:nat -> StepFun a b),
Un_cv un 0 ->
(forall n:nat,
(forall t:R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n t) <= wn n t) /\
Rabs (RiemannInt_SF (wn n)) < un n) ->
{ l:R | Un_cv (fun N:nat => RiemannInt_SF (vn N)) l }.
Proof.
intros; destruct (Rle_dec a b) as [Hle|Hnle].
apply RiemannInt_P2 with f un wn; assumption.
assert (H1 : b <= a); auto with real.
set (vn' := fun n:nat => mkStepFun (StepFun_P6 (pre (vn n))));
set (wn' := fun n:nat => mkStepFun (StepFun_P6 (pre (wn n))));
assert
(H2 :
forall n:nat,
(forall t:R,
Rmin b a <= t <= Rmax b a -> Rabs (f t - vn' n t) <= wn' n t) /\
Rabs (RiemannInt_SF (wn' n)) < un n).
intro; elim (H0 n); intros; split.
intros t (H4,H5); apply (H2 t); split;
[ apply Rle_trans with (Rmin b a); try assumption; right;
unfold Rmin
| apply Rle_trans with (Rmax b a); try assumption; right;
unfold Rmax ];
decide (Rle_dec a b) with Hnle; decide (Rle_dec b a) with H1; reflexivity.
generalize H3; unfold RiemannInt_SF; destruct (Rle_dec a b) as [Hleab|Hnleab];
destruct (Rle_dec b a) as [Hle'|Hnle']; unfold wn'; intros;
(replace
(Int_SF (subdivision_val (mkStepFun (StepFun_P6 (pre (wn n)))))
(subdivision (mkStepFun (StepFun_P6 (pre (wn n)))))) with
(Int_SF (subdivision_val (wn n)) (subdivision (wn n)));
[ idtac
| apply StepFun_P17 with (fe (wn n)) a b;
[ apply StepFun_P1
| apply StepFun_P2;
apply (StepFun_P1 (mkStepFun (StepFun_P6 (pre (wn n))))) ] ]).
apply H4.
rewrite Rabs_Ropp; apply H4.
rewrite Rabs_Ropp in H4; apply H4.
apply H4.
assert (H3 := RiemannInt_P2 _ _ _ _ H H1 H2); elim H3; intros x p;
exists (- x); unfold Un_cv; unfold Un_cv in p;
intros; elim (p _ H4); intros; exists x0; intros;
generalize (H5 _ H6); unfold R_dist, RiemannInt_SF;
destruct (Rle_dec b a) as [Hle'|Hnle']; destruct (Rle_dec a b) as [Hle''|Hnle''];
intros.
elim Hnle; assumption.
unfold vn' in H7;
replace (Int_SF (subdivision_val (vn n)) (subdivision (vn n))) with
(Int_SF (subdivision_val (mkStepFun (StepFun_P6 (pre (vn n)))))
(subdivision (mkStepFun (StepFun_P6 (pre (vn n))))));
[ unfold Rminus; rewrite Ropp_involutive; rewrite <- Rabs_Ropp;
rewrite Ropp_plus_distr; rewrite Ropp_involutive;
apply H7
| symmetry ; apply StepFun_P17 with (fe (vn n)) a b;
[ apply StepFun_P1
| apply StepFun_P2;
apply (StepFun_P1 (mkStepFun (StepFun_P6 (pre (vn n))))) ] ].
elim Hnle'; assumption.
elim Hnle'; assumption.
Qed.
Lemma RiemannInt_exists :
forall (f:R -> R) (a b:R) (pr:Riemann_integrable f a b)
(un:nat -> posreal),
Un_cv un 0 ->
{ l:R | Un_cv (fun N:nat => RiemannInt_SF (phi_sequence un pr N)) l }.
Proof.
intros f; intros;
apply RiemannInt_P3 with
f un (fun n:nat => proj1_sig (phi_sequence_prop un pr n));
[ apply H | intro; apply (proj2_sig (phi_sequence_prop un pr n)) ].
Qed.
Lemma RiemannInt_P4 :
forall (f:R -> R) (a b l:R) (pr1 pr2:Riemann_integrable f a b)
(un vn:nat -> posreal),
Un_cv un 0 ->
Un_cv vn 0 ->
Un_cv (fun N:nat => RiemannInt_SF (phi_sequence un pr1 N)) l ->
Un_cv (fun N:nat => RiemannInt_SF (phi_sequence vn pr2 N)) l.
Proof.
unfold Un_cv; unfold R_dist; intros f; intros;
assert (H3 : 0 < eps / 3).
unfold Rdiv; apply Rmult_lt_0_compat;
[ assumption | apply Rinv_0_lt_compat; prove_sup0 ].
elim (H _ H3); clear H; intros N0 H; elim (H0 _ H3); clear H0; intros N1 H0;
elim (H1 _ H3); clear H1; intros N2 H1; set (N := max (max N0 N1) N2);
exists N; intros;
apply Rle_lt_trans with
(Rabs
(RiemannInt_SF (phi_sequence vn pr2 n) -
RiemannInt_SF (phi_sequence un pr1 n)) +
Rabs (RiemannInt_SF (phi_sequence un pr1 n) - l)).
replace (RiemannInt_SF (phi_sequence vn pr2 n) - l) with
(RiemannInt_SF (phi_sequence vn pr2 n) -
RiemannInt_SF (phi_sequence un pr1 n) +
(RiemannInt_SF (phi_sequence un pr1 n) - l)); [ apply Rabs_triang | ring ].
replace eps with (2 * (eps / 3) + eps / 3).
apply Rplus_lt_compat.
elim (phi_sequence_prop vn pr2 n); intros psi_vn H5;
elim (phi_sequence_prop un pr1 n); intros psi_un H6;
replace
(RiemannInt_SF (phi_sequence vn pr2 n) -
RiemannInt_SF (phi_sequence un pr1 n)) with
(RiemannInt_SF (phi_sequence vn pr2 n) +
-1 * RiemannInt_SF (phi_sequence un pr1 n)); [ idtac | ring ];
rewrite <- StepFun_P30.
destruct (Rle_dec a b) as [Hle|Hnle].
apply Rle_lt_trans with
(RiemannInt_SF
(mkStepFun
(StepFun_P32
(mkStepFun
(StepFun_P28 (-1) (phi_sequence vn pr2 n)
(phi_sequence un pr1 n)))))).
apply StepFun_P34; assumption.
apply Rle_lt_trans with
(RiemannInt_SF (mkStepFun (StepFun_P28 1 psi_un psi_vn))).
apply StepFun_P37; try assumption; intros; simpl; rewrite Rmult_1_l;
apply Rle_trans with
(Rabs (phi_sequence vn pr2 n x - f x) +
Rabs (f x - phi_sequence un pr1 n x)).
replace (phi_sequence vn pr2 n x + -1 * phi_sequence un pr1 n x) with
(phi_sequence vn pr2 n x - f x + (f x - phi_sequence un pr1 n x));
[ apply Rabs_triang | ring ].
assert (H10 : Rmin a b = a).
unfold Rmin; decide (Rle_dec a b) with Hle; reflexivity.
assert (H11 : Rmax a b = b).
unfold Rmax; decide (Rle_dec a b) with Hle; reflexivity.
rewrite (Rplus_comm (psi_un x)); apply Rplus_le_compat.
rewrite <- Rabs_Ropp; rewrite Ropp_minus_distr; destruct H5 as (H8,H9); apply H8.
rewrite H10; rewrite H11; elim H7; intros; split; left; assumption.
elim H6; intros; apply H8.
rewrite H10; rewrite H11; elim H7; intros; split; left; assumption.
rewrite StepFun_P30; rewrite Rmult_1_l; rewrite double; apply Rplus_lt_compat.
apply Rlt_trans with (pos (un n)).
elim H6; intros; apply Rle_lt_trans with (Rabs (RiemannInt_SF psi_un)).
apply RRle_abs.
assumption.
replace (pos (un n)) with (Rabs (un n - 0));
[ apply H; unfold ge; apply le_trans with N; try assumption;
unfold N; apply le_trans with (max N0 N1);
apply le_max_l
| unfold Rminus; rewrite Ropp_0; rewrite Rplus_0_r; apply Rabs_right;
apply Rle_ge; left; apply (cond_pos (un n)) ].
apply Rlt_trans with (pos (vn n)).
elim H5; intros; apply Rle_lt_trans with (Rabs (RiemannInt_SF psi_vn)).
apply RRle_abs; assumption.
assumption.
replace (pos (vn n)) with (Rabs (vn n - 0));
[ apply H0; unfold ge; apply le_trans with N; try assumption;
unfold N; apply le_trans with (max N0 N1);
[ apply le_max_r | apply le_max_l ]
| unfold Rminus; rewrite Ropp_0; rewrite Rplus_0_r; apply Rabs_right;
apply Rle_ge; left; apply (cond_pos (vn n)) ].
rewrite StepFun_P39; rewrite Rabs_Ropp;
apply Rle_lt_trans with
(RiemannInt_SF
(mkStepFun
(StepFun_P32
(mkStepFun
(StepFun_P6
(pre
(mkStepFun
(StepFun_P28 (-1) (phi_sequence vn pr2 n)
(phi_sequence un pr1 n))))))))).
apply StepFun_P34; try auto with real.
apply Rle_lt_trans with
(RiemannInt_SF
(mkStepFun (StepFun_P6 (pre (mkStepFun (StepFun_P28 1 psi_vn psi_un)))))).
apply StepFun_P37.
auto with real.
intros; simpl; rewrite Rmult_1_l;
apply Rle_trans with
(Rabs (phi_sequence vn pr2 n x - f x) +
Rabs (f x - phi_sequence un pr1 n x)).
replace (phi_sequence vn pr2 n x + -1 * phi_sequence un pr1 n x) with
(phi_sequence vn pr2 n x - f x + (f x - phi_sequence un pr1 n x));
[ apply Rabs_triang | ring ].
assert (H10 : Rmin a b = b).
unfold Rmin; decide (Rle_dec a b) with Hnle; reflexivity.
assert (H11 : Rmax a b = a).
unfold Rmax; decide (Rle_dec a b) with Hnle; reflexivity.
apply Rplus_le_compat.
rewrite <- Rabs_Ropp; rewrite Ropp_minus_distr; elim H5; intros; apply H8.
rewrite H10; rewrite H11; elim H7; intros; split; left; assumption.
elim H6; intros; apply H8.
rewrite H10; rewrite H11; elim H7; intros; split; left; assumption.
rewrite <-
(Ropp_involutive
(RiemannInt_SF
(mkStepFun
(StepFun_P6 (pre (mkStepFun (StepFun_P28 1 psi_vn psi_un)))))))
; rewrite <- StepFun_P39; rewrite StepFun_P30; rewrite Rmult_1_l;
rewrite double; rewrite Ropp_plus_distr; apply Rplus_lt_compat.
apply Rlt_trans with (pos (vn n)).
elim H5; intros; apply Rle_lt_trans with (Rabs (RiemannInt_SF psi_vn)).
rewrite <- Rabs_Ropp; apply RRle_abs.
assumption.
replace (pos (vn n)) with (Rabs (vn n - 0));
[ apply H0; unfold ge; apply le_trans with N; try assumption;
unfold N; apply le_trans with (max N0 N1);
[ apply le_max_r | apply le_max_l ]
| unfold R_dist; unfold Rminus; rewrite Ropp_0;
rewrite Rplus_0_r; apply Rabs_right; apply Rle_ge;
left; apply (cond_pos (vn n)) ].
apply Rlt_trans with (pos (un n)).
elim H6; intros; apply Rle_lt_trans with (Rabs (RiemannInt_SF psi_un)).
rewrite <- Rabs_Ropp; apply RRle_abs; assumption.
assumption.
replace (pos (un n)) with (Rabs (un n - 0));
[ apply H; unfold ge; apply le_trans with N; try assumption;
unfold N; apply le_trans with (max N0 N1);
apply le_max_l
| unfold Rminus; rewrite Ropp_0; rewrite Rplus_0_r; apply Rabs_right;
apply Rle_ge; left; apply (cond_pos (un n)) ].
apply H1; unfold ge; apply le_trans with N; try assumption;
unfold N; apply le_max_r.
apply Rmult_eq_reg_l with 3;
[ unfold Rdiv; rewrite Rmult_plus_distr_l;
do 2 rewrite (Rmult_comm 3); repeat rewrite Rmult_assoc;
rewrite <- Rinv_l_sym; [ ring | discrR ]
| discrR ].
Qed.
Lemma RinvN_pos : forall n:nat, 0 < / (INR n + 1).
Proof.
intro; apply Rinv_0_lt_compat; apply Rplus_le_lt_0_compat;
[ apply pos_INR | apply Rlt_0_1 ].
Qed.
Definition RinvN (N:nat) : posreal := mkposreal _ (RinvN_pos N).
Lemma RinvN_cv : Un_cv RinvN 0.
Proof.
unfold Un_cv; intros; assert (H0 := archimed (/ eps)); elim H0;
clear H0; intros; assert (H2 : (0 <= up (/ eps))%Z).
apply le_IZR; left; apply Rlt_trans with (/ eps);
[ apply Rinv_0_lt_compat; assumption | assumption ].
elim (IZN _ H2); intros; exists x; intros; unfold R_dist;
simpl; unfold Rminus; rewrite Ropp_0;
rewrite Rplus_0_r; assert (H5 : 0 < INR n + 1).
apply Rplus_le_lt_0_compat; [ apply pos_INR | apply Rlt_0_1 ].
rewrite Rabs_right;
[ idtac
| left; change (0 < / (INR n + 1)); apply Rinv_0_lt_compat;
assumption ]; apply Rle_lt_trans with (/ (INR x + 1)).
apply Rinv_le_contravar.
apply Rplus_le_lt_0_compat; [ apply pos_INR | apply Rlt_0_1 ].
apply Rplus_le_compat_r; apply le_INR; apply H4.
rewrite <- (Rinv_involutive eps).
apply Rinv_lt_contravar.
apply Rmult_lt_0_compat.
apply Rinv_0_lt_compat; assumption.
apply Rplus_le_lt_0_compat; [ apply pos_INR | apply Rlt_0_1 ].
apply Rlt_trans with (INR x);
[ rewrite INR_IZR_INZ; rewrite <- H3; apply H0
| pattern (INR x) at 1; rewrite <- Rplus_0_r;
apply Rplus_lt_compat_l; apply Rlt_0_1 ].
red; intro; rewrite H6 in H; elim (Rlt_irrefl _ H).
Qed.
Lemma Riemann_integrable_ext :
forall f g a b,
(forall x, Rmin a b <= x <= Rmax a b -> f x = g x) ->
Riemann_integrable f a b -> Riemann_integrable g a b.
intros f g a b fg rif eps; destruct (rif eps) as [phi [psi [P1 P2]]].
exists phi; exists psi;split;[ | assumption ].
intros t intt; rewrite <- fg;[ | assumption].
apply P1; assumption.
Qed.
(**********)
Definition RiemannInt (f:R -> R) (a b:R) (pr:Riemann_integrable f a b) : R :=
let (a,_) := RiemannInt_exists pr RinvN RinvN_cv in a.
Lemma RiemannInt_P5 :
forall (f:R -> R) (a b:R) (pr1 pr2:Riemann_integrable f a b),
RiemannInt pr1 = RiemannInt pr2.
Proof.
intros; unfold RiemannInt;
case (RiemannInt_exists pr1 RinvN RinvN_cv) as (x,HUn);
case (RiemannInt_exists pr2 RinvN RinvN_cv) as (x0,HUn0);
eapply UL_sequence;
[ apply HUn
| apply RiemannInt_P4 with pr2 RinvN; apply RinvN_cv || assumption ].
Qed.
(***************************************)
(** C°([a,b]) is included in L1([a,b]) *)
(***************************************)
Lemma maxN :
forall (a b:R) (del:posreal),
a < b -> { n:nat | a + INR n * del < b /\ b <= a + INR (S n) * del }.
Proof.
intros; set (I := fun n:nat => a + INR n * del < b);
assert (H0 : exists n : nat, I n).
exists 0%nat; unfold I; rewrite Rmult_0_l; rewrite Rplus_0_r;
assumption.
cut (Nbound I).
intro; assert (H2 := Nzorn H0 H1); elim H2; intros x p; exists x; elim p; intros;
split.
apply H3.
destruct (total_order_T (a + INR (S x) * del) b) as [[Hlt|Heq]|Hgt].
assert (H5 := H4 (S x) Hlt); elim (le_Sn_n _ H5).
right; symmetry ; assumption.
left; apply Hgt.
assert (H1 : 0 <= (b - a) / del).
unfold Rdiv; apply Rmult_le_pos;
[ apply Rge_le; apply Rge_minus; apply Rle_ge; left; apply H
| left; apply Rinv_0_lt_compat; apply (cond_pos del) ].
elim (archimed ((b - a) / del)); intros;
assert (H4 : (0 <= up ((b - a) / del))%Z).
apply le_IZR; simpl; left; apply Rle_lt_trans with ((b - a) / del);
assumption.
assert (H5 := IZN _ H4); elim H5; clear H5; intros N H5;
unfold Nbound; exists N; intros; unfold I in H6;
apply INR_le; rewrite H5 in H2; rewrite <- INR_IZR_INZ in H2;
left; apply Rle_lt_trans with ((b - a) / del); try assumption;
apply Rmult_le_reg_l with (pos del);
[ apply (cond_pos del)
| unfold Rdiv; rewrite <- (Rmult_comm (/ del));
rewrite <- Rmult_assoc; rewrite <- Rinv_r_sym;
[ rewrite Rmult_1_l; rewrite Rmult_comm; apply Rplus_le_reg_l with a;
replace (a + (b - a)) with b; [ left; assumption | ring ]
| assert (H7 := cond_pos del); red; intro; rewrite H8 in H7;
elim (Rlt_irrefl _ H7) ] ].
Qed.
Fixpoint SubEquiN (N:nat) (x y:R) (del:posreal) : list R :=
match N with
| O => cons y nil
| S p => cons x (SubEquiN p (x + del) y del)
end.
Definition max_N (a b:R) (del:posreal) (h:a < b) : nat :=
let (N,_) := maxN del h in N.
Definition SubEqui (a b:R) (del:posreal) (h:a < b) : list R :=
SubEquiN (S (max_N del h)) a b del.
Lemma Heine_cor1 :
forall (f:R -> R) (a b:R),
a < b ->
(forall x:R, a <= x <= b -> continuity_pt f x) ->
forall eps:posreal,
{ delta:posreal |
delta <= b - a /\
(forall x y:R,
a <= x <= b ->
a <= y <= b -> Rabs (x - y) < delta -> Rabs (f x - f y) < eps) }.
Proof.
intro f; intros;
set
(E :=
fun l:R =>
0 < l <= b - a /\
(forall x y:R,
a <= x <= b ->
a <= y <= b -> Rabs (x - y) < l -> Rabs (f x - f y) < eps));
assert (H1 : bound E).
unfold bound; exists (b - a); unfold is_upper_bound; intros;
unfold E in H1; elim H1; clear H1; intros H1 _; elim H1;
intros; assumption.
assert (H2 : exists x : R, E x).
assert (H2 := Heine f (fun x:R => a <= x <= b) (compact_P3 a b) H0 eps);
elim H2; intros; exists (Rmin x (b - a)); unfold E;
split;
[ split;
[ unfold Rmin; case (Rle_dec x (b - a)); intro;
[ apply (cond_pos x) | apply Rlt_Rminus; assumption ]
| apply Rmin_r ]
| intros; apply H3; try assumption; apply Rlt_le_trans with (Rmin x (b - a));
[ assumption | apply Rmin_l ] ].
assert (H3 := completeness E H1 H2); elim H3; intros x p; cut (0 < x <= b - a).
intro; elim H4; clear H4; intros; exists (mkposreal _ H4); split.
apply H5.
unfold is_lub in p; elim p; intros; unfold is_upper_bound in H6;
set (D := Rabs (x0 - y)).
assert (H11: ((exists y : R, D < y /\ E y) \/ (forall y : R, not (D < y /\ E y)) -> False) -> False).
clear; intros H; apply H.
right; intros y0 H0; apply H.
left; now exists y0.
apply Rnot_le_lt; intros H30.
apply H11; clear H11; intros H11.
revert H30; apply Rlt_not_le.
destruct H11 as [H11|H12].
elim H11; intros; elim H12; clear H12; intros; unfold E in H13; elim H13;
intros; apply H15; assumption.
assert (H13 : is_upper_bound E D).
unfold is_upper_bound; intros; assert (H14 := H12 x1);
apply Rnot_lt_le; contradict H14; now split.
assert (H14 := H7 _ H13); elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H14 H10)).
unfold is_lub in p; unfold is_upper_bound in p; elim p; clear p; intros;
split.
elim H2; intros; assert (H7 := H4 _ H6); unfold E in H6; elim H6; clear H6;
intros H6 _; elim H6; intros; apply Rlt_le_trans with x0;
assumption.
apply H5; intros; unfold E in H6; elim H6; clear H6; intros H6 _; elim H6;
intros; assumption.
Qed.
Lemma Heine_cor2 :
forall (f:R -> R) (a b:R),
(forall x:R, a <= x <= b -> continuity_pt f x) ->
forall eps:posreal,
{ delta:posreal |
forall x y:R,
a <= x <= b ->
a <= y <= b -> Rabs (x - y) < delta -> Rabs (f x - f y) < eps }.
Proof.
intro f; intros; destruct (total_order_T a b) as [[Hlt|Heq]|Hgt].
assert (H0 := Heine_cor1 Hlt H eps); elim H0; intros x p; exists x;
elim p; intros; apply H2; assumption.
exists (mkposreal _ Rlt_0_1); intros; assert (H3 : x = y);
[ elim H0; elim H1; intros; rewrite Heq in H3, H5;
apply Rle_antisym; apply Rle_trans with b; assumption
| rewrite H3; unfold Rminus; rewrite Rplus_opp_r; rewrite Rabs_R0;
apply (cond_pos eps) ].
exists (mkposreal _ Rlt_0_1); intros; elim H0; intros;
elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ (Rle_trans _ _ _ H3 H4) Hgt)).
Qed.
Lemma SubEqui_P1 :
forall (a b:R) (del:posreal) (h:a < b), pos_Rl (SubEqui del h) 0 = a.
Proof.
intros; unfold SubEqui; case (maxN del h); intros; reflexivity.
Qed.
Lemma SubEqui_P2 :
forall (a b:R) (del:posreal) (h:a < b),
pos_Rl (SubEqui del h) (pred (length (SubEqui del h))) = b.
Proof.
intros; unfold SubEqui; destruct (maxN del h)as (x,_).
cut
(forall (x:nat) (a:R) (del:posreal),
pos_Rl (SubEquiN (S x) a b del)
(pred (length (SubEquiN (S x) a b del))) = b);
[ intro; apply H
| simple induction x0;
[ intros; reflexivity
| intros;
change
(pos_Rl (SubEquiN (S n) (a0 + del0) b del0)
(pred (length (SubEquiN (S n) (a0 + del0) b del0))) = b)
; apply H ] ].
Qed.
Lemma SubEqui_P3 :
forall (N:nat) (a b:R) (del:posreal), length (SubEquiN N a b del) = S N.
Proof.
simple induction N; intros;
[ reflexivity | simpl; rewrite H; reflexivity ].
Qed.
Lemma SubEqui_P4 :
forall (N:nat) (a b:R) (del:posreal) (i:nat),
(i < S N)%nat -> pos_Rl (SubEquiN (S N) a b del) i = a + INR i * del.
Proof.
simple induction N;
[ intros; inversion H; [ simpl; ring | elim (le_Sn_O _ H1) ]
| intros; induction i as [| i Hreci];
[ simpl; ring
| change
(pos_Rl (SubEquiN (S n) (a + del) b del) i = a + INR (S i) * del)
; rewrite H; [ rewrite S_INR; ring | apply lt_S_n; apply H0 ] ] ].
Qed.
Lemma SubEqui_P5 :
forall (a b:R) (del:posreal) (h:a < b),
length (SubEqui del h) = S (S (max_N del h)).
Proof.
intros; unfold SubEqui; apply SubEqui_P3.
Qed.
Lemma SubEqui_P6 :
forall (a b:R) (del:posreal) (h:a < b) (i:nat),
(i < S (max_N del h))%nat -> pos_Rl (SubEqui del h) i = a + INR i * del.
Proof.
intros; unfold SubEqui; apply SubEqui_P4; assumption.
Qed.
Lemma SubEqui_P7 :
forall (a b:R) (del:posreal) (h:a < b), ordered_Rlist (SubEqui del h).
Proof.
intros; unfold ordered_Rlist; intros; rewrite SubEqui_P5 in H;
simpl in H; inversion H.
rewrite (SubEqui_P6 del h (i:=(max_N del h))).
replace (S (max_N del h)) with (pred (length (SubEqui del h))).
rewrite SubEqui_P2; unfold max_N; case (maxN del h) as (?&?&?); left;
assumption.
rewrite SubEqui_P5; reflexivity.
apply lt_n_Sn.
repeat rewrite SubEqui_P6.
3: assumption.
2: apply le_lt_n_Sm; assumption.
apply Rplus_le_compat_l; rewrite S_INR; rewrite Rmult_plus_distr_r;
pattern (INR i * del) at 1; rewrite <- Rplus_0_r;
apply Rplus_le_compat_l; rewrite Rmult_1_l; left;
apply (cond_pos del).
Qed.
Lemma SubEqui_P8 :
forall (a b:R) (del:posreal) (h:a < b) (i:nat),
(i < length (SubEqui del h))%nat -> a <= pos_Rl (SubEqui del h) i <= b.
Proof.
intros; split.
pattern a at 1; rewrite <- (SubEqui_P1 del h); apply RList_P5.
apply SubEqui_P7.
elim (RList_P3 (SubEqui del h) (pos_Rl (SubEqui del h) i)); intros; apply H1;
exists i; split; [ reflexivity | assumption ].
pattern b at 2; rewrite <- (SubEqui_P2 del h); apply RList_P7;
[ apply SubEqui_P7
| elim (RList_P3 (SubEqui del h) (pos_Rl (SubEqui del h) i)); intros;
apply H1; exists i; split; [ reflexivity | assumption ] ].
Qed.
Lemma SubEqui_P9 :
forall (a b:R) (del:posreal) (f:R -> R) (h:a < b),
{ g:StepFun a b |
g b = f b /\
(forall i:nat,
(i < pred (length (SubEqui del h)))%nat ->
constant_D_eq g
(co_interval (pos_Rl (SubEqui del h) i)
(pos_Rl (SubEqui del h) (S i)))
(f (pos_Rl (SubEqui del h) i))) }.
Proof.
intros; apply StepFun_P38;
[ apply SubEqui_P7 | apply SubEqui_P1 | apply SubEqui_P2 ].
Qed.
Lemma RiemannInt_P6 :
forall (f:R -> R) (a b:R),
a < b ->
(forall x:R, a <= x <= b -> continuity_pt f x) -> Riemann_integrable f a b.
Proof.
intros; unfold Riemann_integrable; intro;
assert (H1 : 0 < eps / (2 * (b - a))).
unfold Rdiv; apply Rmult_lt_0_compat;
[ apply (cond_pos eps)
| apply Rinv_0_lt_compat; apply Rmult_lt_0_compat;
[ prove_sup0 | apply Rlt_Rminus; assumption ] ].
assert (H2 : Rmin a b = a).
apply Rlt_le in H.
unfold Rmin; decide (Rle_dec a b) with H; reflexivity.
assert (H3 : Rmax a b = b).
apply Rlt_le in H.
unfold Rmax; decide (Rle_dec a b) with H; reflexivity.
elim (Heine_cor2 H0 (mkposreal _ H1)); intros del H4;
elim (SubEqui_P9 del f H); intros phi [H5 H6]; split with phi;
split with (mkStepFun (StepFun_P4 a b (eps / (2 * (b - a)))));
split.
2: rewrite StepFun_P18; unfold Rdiv; rewrite Rinv_mult_distr.
2: do 2 rewrite Rmult_assoc; rewrite <- Rinv_l_sym.
2: rewrite Rmult_1_r; rewrite Rabs_right.
2: apply Rmult_lt_reg_l with 2.
2: prove_sup0.
2: rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc;
rewrite <- Rinv_r_sym.
2: rewrite Rmult_1_l; pattern (pos eps) at 1; rewrite <- Rplus_0_r;
rewrite double; apply Rplus_lt_compat_l; apply (cond_pos eps).
2: discrR.
2: apply Rle_ge; left; apply Rmult_lt_0_compat.
2: apply (cond_pos eps).
2: apply Rinv_0_lt_compat; prove_sup0.
2: apply Rminus_eq_contra; red; intro; clear H6; rewrite H7 in H;
elim (Rlt_irrefl _ H).
2: discrR.
2: apply Rminus_eq_contra; red; intro; clear H6; rewrite H7 in H;
elim (Rlt_irrefl _ H).
intros; rewrite H2 in H7; rewrite H3 in H7; simpl;
unfold fct_cte;
cut
(forall t:R,
a <= t <= b ->
t = b \/
(exists i : nat,
(i < pred (length (SubEqui del H)))%nat /\
co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))
t)).
intro; elim (H8 _ H7); intro.
rewrite H9; rewrite H5; unfold Rminus; rewrite Rplus_opp_r;
rewrite Rabs_R0; left; assumption.
elim H9; clear H9; intros I [H9 H10]; assert (H11 := H6 I H9 t H10);
rewrite H11; left; apply H4.
assumption.
apply SubEqui_P8; apply lt_trans with (pred (length (SubEqui del H))).
assumption.
apply lt_pred_n_n; apply neq_O_lt; red; intro; rewrite <- H12 in H9;
elim (lt_n_O _ H9).
unfold co_interval in H10; elim H10; clear H10; intros; rewrite Rabs_right.
rewrite SubEqui_P5 in H9; simpl in H9; inversion H9.
apply Rplus_lt_reg_l with (pos_Rl (SubEqui del H) (max_N del H)).
replace
(pos_Rl (SubEqui del H) (max_N del H) +
(t - pos_Rl (SubEqui del H) (max_N del H))) with t;
[ idtac | ring ]; apply Rlt_le_trans with b.
rewrite H14 in H12;
assert (H13 : S (max_N del H) = pred (length (SubEqui del H))).
rewrite SubEqui_P5; reflexivity.
rewrite H13 in H12; rewrite SubEqui_P2 in H12; apply H12.
rewrite SubEqui_P6.
2: apply lt_n_Sn.
unfold max_N; destruct (maxN del H) as (?&?&H13);
replace (a + INR x * del + del) with (a + INR (S x) * del);
[ assumption | rewrite S_INR; ring ].
apply Rplus_lt_reg_l with (pos_Rl (SubEqui del H) I);
replace (pos_Rl (SubEqui del H) I + (t - pos_Rl (SubEqui del H) I)) with t;
[ idtac | ring ];
replace (pos_Rl (SubEqui del H) I + del) with (pos_Rl (SubEqui del H) (S I)).
assumption.
repeat rewrite SubEqui_P6.
rewrite S_INR; ring.
assumption.
apply le_lt_n_Sm; assumption.
apply Rge_minus; apply Rle_ge; assumption.
intros; clear H0 H1 H4 phi H5 H6 t H7; case (Req_dec t0 b); intro.
left; assumption.
right; set (I := fun j:nat => a + INR j * del <= t0);
assert (H1 : exists n : nat, I n).
exists 0%nat; unfold I; rewrite Rmult_0_l; rewrite Rplus_0_r; elim H8;
intros; assumption.
assert (H4 : Nbound I).
unfold Nbound; exists (S (max_N del H)); intros; unfold max_N;
destruct (maxN del H) as (?&_&H5);
apply INR_le; apply Rmult_le_reg_l with (pos del).
apply (cond_pos del).
apply Rplus_le_reg_l with a; do 2 rewrite (Rmult_comm del);
apply Rle_trans with t0; unfold I in H4; try assumption;
apply Rle_trans with b; try assumption; elim H8; intros;
assumption.
elim (Nzorn H1 H4); intros N [H5 H6]; assert (H7 : (N < S (max_N del H))%nat).
unfold max_N; case (maxN del H) as (?&?&?); apply INR_lt;
apply Rmult_lt_reg_l with (pos del).
apply (cond_pos del).
apply Rplus_lt_reg_l with a; do 2 rewrite (Rmult_comm del);
apply Rle_lt_trans with t0; unfold I in H5; try assumption;
apply Rlt_le_trans with b; try assumption;
elim H8; intros.
elim H11; intro.
assumption.
elim H0; assumption.
exists N; split.
rewrite SubEqui_P5; simpl; assumption.
unfold co_interval; split.
rewrite SubEqui_P6.
apply H5.
assumption.
inversion H7.
replace (S (max_N del H)) with (pred (length (SubEqui del H))).
rewrite (SubEqui_P2 del H); elim H8; intros.
elim H11; intro.
assumption.
elim H0; assumption.
rewrite SubEqui_P5; reflexivity.
rewrite SubEqui_P6.
destruct (Rle_dec (a + INR (S N) * del) t0) as [Hle|Hnle].
assert (H11 := H6 (S N) Hle); elim (le_Sn_n _ H11).
auto with real.
apply le_lt_n_Sm; assumption.
Qed.
Lemma RiemannInt_P7 : forall (f:R -> R) (a:R), Riemann_integrable f a a.
Proof.
unfold Riemann_integrable; intro f; intros;
split with (mkStepFun (StepFun_P4 a a (f a)));
split with (mkStepFun (StepFun_P4 a a 0)); split.
intros; simpl; unfold fct_cte; replace t with a.
unfold Rminus; rewrite Rplus_opp_r; rewrite Rabs_R0; right;
reflexivity.
generalize H; unfold Rmin, Rmax; decide (Rle_dec a a) with (Rle_refl a).
intros (?,?); apply Rle_antisym; assumption.
rewrite StepFun_P18; rewrite Rmult_0_l; rewrite Rabs_R0; apply (cond_pos eps).
Qed.
Lemma continuity_implies_RiemannInt :
forall (f:R -> R) (a b:R),
a <= b ->
(forall x:R, a <= x <= b -> continuity_pt f x) -> Riemann_integrable f a b.
Proof.
intros; destruct (total_order_T a b) as [[Hlt| -> ]|Hgt];
[ apply RiemannInt_P6; assumption | apply RiemannInt_P7
| elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H Hgt)) ].
Qed.
Lemma RiemannInt_P8 :
forall (f:R -> R) (a b:R) (pr1:Riemann_integrable f a b)
(pr2:Riemann_integrable f b a), RiemannInt pr1 = - RiemannInt pr2.
Proof.
intro f; intros; eapply UL_sequence.
unfold RiemannInt; destruct (RiemannInt_exists pr1 RinvN RinvN_cv) as (?,HUn);
apply HUn.
unfold RiemannInt; destruct (RiemannInt_exists pr2 RinvN RinvN_cv) as (?,HUn);
intros;
cut
(exists psi1 : nat -> StepFun a b,
(forall n:nat,
(forall t:R,
Rmin a b <= t /\ t <= Rmax a b ->
Rabs (f t - phi_sequence RinvN pr1 n t) <= psi1 n t) /\
Rabs (RiemannInt_SF (psi1 n)) < RinvN n)).
cut
(exists psi2 : nat -> StepFun b a,
(forall n:nat,
(forall t:R,
Rmin a b <= t /\ t <= Rmax a b ->
Rabs (f t - phi_sequence RinvN pr2 n t) <= psi2 n t) /\
Rabs (RiemannInt_SF (psi2 n)) < RinvN n)).
intros; elim H; clear H; intros psi2 H; elim H0; clear H0; intros psi1 H0;
assert (H1 := RinvN_cv); unfold Un_cv; intros;
assert (H3 : 0 < eps / 3).
unfold Rdiv; apply Rmult_lt_0_compat;
[ assumption | apply Rinv_0_lt_compat; prove_sup0 ].
unfold Un_cv in H1; elim (H1 _ H3); clear H1; intros N0 H1;
unfold R_dist in H1; simpl in H1;
assert (H4 : forall n:nat, (n >= N0)%nat -> RinvN n < eps / 3).
intros; assert (H5 := H1 _ H4);
replace (pos (RinvN n)) with (Rabs (/ (INR n + 1) - 0));
[ assumption
| unfold Rminus; rewrite Ropp_0; rewrite Rplus_0_r; apply Rabs_right;
left; apply (cond_pos (RinvN n)) ].
clear H1; destruct (HUn _ H3) as (N1,H1);
exists (max N0 N1); intros; unfold R_dist;
apply Rle_lt_trans with
(Rabs
(RiemannInt_SF (phi_sequence RinvN pr1 n) +
RiemannInt_SF (phi_sequence RinvN pr2 n)) +
Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n) - x)).
rewrite <- (Rabs_Ropp (RiemannInt_SF (phi_sequence RinvN pr2 n) - x));
replace (RiemannInt_SF (phi_sequence RinvN pr1 n) - - x) with
(RiemannInt_SF (phi_sequence RinvN pr1 n) +
RiemannInt_SF (phi_sequence RinvN pr2 n) +
- (RiemannInt_SF (phi_sequence RinvN pr2 n) - x));
[ apply Rabs_triang | ring ].
replace eps with (2 * (eps / 3) + eps / 3).
apply Rplus_lt_compat.
rewrite (StepFun_P39 (phi_sequence RinvN pr2 n));
replace
(RiemannInt_SF (phi_sequence RinvN pr1 n) +
- RiemannInt_SF (mkStepFun (StepFun_P6 (pre (phi_sequence RinvN pr2 n)))))
with
(RiemannInt_SF (phi_sequence RinvN pr1 n) +
-1 *
RiemannInt_SF (mkStepFun (StepFun_P6 (pre (phi_sequence RinvN pr2 n)))));
[ idtac | ring ]; rewrite <- StepFun_P30.
destruct (Rle_dec a b) as [Hle|Hnle].
apply Rle_lt_trans with
(RiemannInt_SF
(mkStepFun
(StepFun_P32
(mkStepFun
(StepFun_P28 (-1) (phi_sequence RinvN pr1 n)
(mkStepFun (StepFun_P6 (pre (phi_sequence RinvN pr2 n))))))))).
apply StepFun_P34; assumption.
apply Rle_lt_trans with
(RiemannInt_SF
(mkStepFun
(StepFun_P28 1 (psi1 n) (mkStepFun (StepFun_P6 (pre (psi2 n))))))).
apply StepFun_P37; try assumption.
intros; simpl; rewrite Rmult_1_l;
apply Rle_trans with
(Rabs (phi_sequence RinvN pr1 n x0 - f x0) +
Rabs (f x0 - phi_sequence RinvN pr2 n x0)).
replace (phi_sequence RinvN pr1 n x0 + -1 * phi_sequence RinvN pr2 n x0) with
(phi_sequence RinvN pr1 n x0 - f x0 + (f x0 - phi_sequence RinvN pr2 n x0));
[ apply Rabs_triang | ring ].
assert (H7 : Rmin a b = a).
unfold Rmin; decide (Rle_dec a b) with Hle; reflexivity.
assert (H8 : Rmax a b = b).
unfold Rmax; decide (Rle_dec a b) with Hle; reflexivity.
apply Rplus_le_compat.
elim (H0 n); intros; rewrite <- Rabs_Ropp; rewrite Ropp_minus_distr; apply H9;
rewrite H7; rewrite H8.
elim H6; intros; split; left; assumption.
elim (H n); intros; apply H9; rewrite H7; rewrite H8.
elim H6; intros; split; left; assumption.
rewrite StepFun_P30; rewrite Rmult_1_l; rewrite double; apply Rplus_lt_compat.
elim (H0 n); intros; apply Rle_lt_trans with (Rabs (RiemannInt_SF (psi1 n)));
[ apply RRle_abs
| apply Rlt_trans with (pos (RinvN n));
[ assumption
| apply H4; unfold ge; apply le_trans with (max N0 N1);
[ apply le_max_l | assumption ] ] ].
elim (H n); intros;
rewrite <-
(Ropp_involutive (RiemannInt_SF (mkStepFun (StepFun_P6 (pre (psi2 n))))))
; rewrite <- StepFun_P39;
apply Rle_lt_trans with (Rabs (RiemannInt_SF (psi2 n)));
[ rewrite <- Rabs_Ropp; apply RRle_abs
| apply Rlt_trans with (pos (RinvN n));
[ assumption
| apply H4; unfold ge; apply le_trans with (max N0 N1);
[ apply le_max_l | assumption ] ] ].
assert (Hyp : b <= a).
auto with real.
rewrite StepFun_P39; rewrite Rabs_Ropp;
apply Rle_lt_trans with
(RiemannInt_SF
(mkStepFun
(StepFun_P32
(mkStepFun
(StepFun_P6
(StepFun_P28 (-1) (phi_sequence RinvN pr1 n)
(mkStepFun (StepFun_P6 (pre (phi_sequence RinvN pr2 n)))))))))).
apply StepFun_P34; assumption.
apply Rle_lt_trans with
(RiemannInt_SF
(mkStepFun
(StepFun_P28 1 (mkStepFun (StepFun_P6 (pre (psi1 n)))) (psi2 n)))).
apply StepFun_P37; try assumption.
intros; simpl; rewrite Rmult_1_l;
apply Rle_trans with
(Rabs (phi_sequence RinvN pr1 n x0 - f x0) +
Rabs (f x0 - phi_sequence RinvN pr2 n x0)).
replace (phi_sequence RinvN pr1 n x0 + -1 * phi_sequence RinvN pr2 n x0) with
(phi_sequence RinvN pr1 n x0 - f x0 + (f x0 - phi_sequence RinvN pr2 n x0));
[ apply Rabs_triang | ring ].
assert (H7 : Rmin a b = b).
unfold Rmin; decide (Rle_dec a b) with Hnle; reflexivity.
assert (H8 : Rmax a b = a).
unfold Rmax; decide (Rle_dec a b) with Hnle; reflexivity.
apply Rplus_le_compat.
elim (H0 n); intros; rewrite <- Rabs_Ropp; rewrite Ropp_minus_distr; apply H9;
rewrite H7; rewrite H8.
elim H6; intros; split; left; assumption.
elim (H n); intros; apply H9; rewrite H7; rewrite H8; elim H6; intros; split;
left; assumption.
rewrite StepFun_P30; rewrite Rmult_1_l; rewrite double; apply Rplus_lt_compat.
elim (H0 n); intros;
rewrite <-
(Ropp_involutive (RiemannInt_SF (mkStepFun (StepFun_P6 (pre (psi1 n))))))
; rewrite <- StepFun_P39;
apply Rle_lt_trans with (Rabs (RiemannInt_SF (psi1 n)));
[ rewrite <- Rabs_Ropp; apply RRle_abs
| apply Rlt_trans with (pos (RinvN n));
[ assumption
| apply H4; unfold ge; apply le_trans with (max N0 N1);
[ apply le_max_l | assumption ] ] ].
elim (H n); intros; apply Rle_lt_trans with (Rabs (RiemannInt_SF (psi2 n)));
[ apply RRle_abs
| apply Rlt_trans with (pos (RinvN n));
[ assumption
| apply H4; unfold ge; apply le_trans with (max N0 N1);
[ apply le_max_l | assumption ] ] ].
unfold R_dist in H1; apply H1; unfold ge;
apply le_trans with (max N0 N1); [ apply le_max_r | assumption ].
apply Rmult_eq_reg_l with 3;
[ unfold Rdiv; rewrite Rmult_plus_distr_l;
do 2 rewrite (Rmult_comm 3); repeat rewrite Rmult_assoc;
rewrite <- Rinv_l_sym; [ ring | discrR ]
| discrR ].
split with (fun n:nat => proj1_sig (phi_sequence_prop RinvN pr2 n)); intro;
rewrite Rmin_comm; rewrite RmaxSym;
apply (proj2_sig (phi_sequence_prop RinvN pr2 n)).
split with (fun n:nat => proj1_sig (phi_sequence_prop RinvN pr1 n)); intro;
apply (proj2_sig (phi_sequence_prop RinvN pr1 n)).
Qed.
Lemma RiemannInt_P9 :
forall (f:R -> R) (a:R) (pr:Riemann_integrable f a a), RiemannInt pr = 0.
Proof.
intros; assert (H := RiemannInt_P8 pr pr); apply Rmult_eq_reg_l with 2;
[ rewrite Rmult_0_r; rewrite double; pattern (RiemannInt pr) at 2;
rewrite H; apply Rplus_opp_r
| discrR ].
Qed.
(* L1([a,b]) is a vectorial space *)
Lemma RiemannInt_P10 :
forall (f g:R -> R) (a b l:R),
Riemann_integrable f a b ->
Riemann_integrable g a b ->
Riemann_integrable (fun x:R => f x + l * g x) a b.
Proof.
unfold Riemann_integrable; intros f g; intros; destruct (Req_EM_T l 0) as [Heq|Hneq].
elim (X eps); intros x p; split with x; elim p; intros x0 p0; split with x0; elim p0;
intros; split; try assumption; rewrite Heq; intros;
rewrite Rmult_0_l; rewrite Rplus_0_r; apply H; assumption.
assert (H : 0 < eps / 2).
unfold Rdiv; apply Rmult_lt_0_compat;
[ apply (cond_pos eps) | apply Rinv_0_lt_compat; prove_sup0 ].
assert (H0 : 0 < eps / (2 * Rabs l)).
unfold Rdiv; apply Rmult_lt_0_compat;
[ apply (cond_pos eps)
| apply Rinv_0_lt_compat; apply Rmult_lt_0_compat;
[ prove_sup0 | apply Rabs_pos_lt; assumption ] ].
elim (X (mkposreal _ H)); intros x p; elim (X0 (mkposreal _ H0)); intros x0 p0;
split with (mkStepFun (StepFun_P28 l x x0)); elim p0;
elim p; intros x1 p1 x2 p2. split with (mkStepFun (StepFun_P28 (Rabs l) x1 x2));
elim p1; elim p2; clear p1 p2 p0 p X X0; intros; split.
intros; simpl;
apply Rle_trans with (Rabs (f t - x t) + Rabs (l * (g t - x0 t))).
replace (f t + l * g t - (x t + l * x0 t)) with
(f t - x t + l * (g t - x0 t)); [ apply Rabs_triang | ring ].
apply Rplus_le_compat;
[ apply H3; assumption
| rewrite Rabs_mult; apply Rmult_le_compat_l;
[ apply Rabs_pos | apply H1; assumption ] ].
rewrite StepFun_P30;
apply Rle_lt_trans with
(Rabs (RiemannInt_SF x1) + Rabs (Rabs l * RiemannInt_SF x2)).
apply Rabs_triang.
rewrite (double_var eps); apply Rplus_lt_compat.
apply H4.
rewrite Rabs_mult; rewrite Rabs_Rabsolu; apply Rmult_lt_reg_l with (/ Rabs l).
apply Rinv_0_lt_compat; apply Rabs_pos_lt; assumption.
rewrite <- Rmult_assoc; rewrite <- Rinv_l_sym;
[ rewrite Rmult_1_l;
replace (/ Rabs l * (eps / 2)) with (eps / (2 * Rabs l));
[ apply H2
| unfold Rdiv; rewrite Rinv_mult_distr;
[ ring | discrR | apply Rabs_no_R0; assumption ] ]
| apply Rabs_no_R0; assumption ].
Qed.
Lemma RiemannInt_P11 :
forall (f:R -> R) (a b l:R) (un:nat -> posreal)
(phi1 phi2 psi1 psi2:nat -> StepFun a b),
Un_cv un 0 ->
(forall n:nat,
(forall t:R,
Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\
Rabs (RiemannInt_SF (psi1 n)) < un n) ->
(forall n:nat,
(forall t:R,
Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n t) <= psi2 n t) /\
Rabs (RiemannInt_SF (psi2 n)) < un n) ->
Un_cv (fun N:nat => RiemannInt_SF (phi1 N)) l ->
Un_cv (fun N:nat => RiemannInt_SF (phi2 N)) l.
Proof.
unfold Un_cv; intro f; intros; intros.
case (Rle_dec a b); intro Hyp.
assert (H4 : 0 < eps / 3).
unfold Rdiv; apply Rmult_lt_0_compat;
[ assumption | apply Rinv_0_lt_compat; prove_sup0 ].
elim (H _ H4); clear H; intros N0 H.
elim (H2 _ H4); clear H2; intros N1 H2.
set (N := max N0 N1); exists N; intros; unfold R_dist.
apply Rle_lt_trans with
(Rabs (RiemannInt_SF (phi2 n) - RiemannInt_SF (phi1 n)) +
Rabs (RiemannInt_SF (phi1 n) - l)).
replace (RiemannInt_SF (phi2 n) - l) with
(RiemannInt_SF (phi2 n) - RiemannInt_SF (phi1 n) +
(RiemannInt_SF (phi1 n) - l)); [ apply Rabs_triang | ring ].
replace eps with (2 * (eps / 3) + eps / 3).
apply Rplus_lt_compat.
replace (RiemannInt_SF (phi2 n) - RiemannInt_SF (phi1 n)) with
(RiemannInt_SF (phi2 n) + -1 * RiemannInt_SF (phi1 n));
[ idtac | ring ].
rewrite <- StepFun_P30.
apply Rle_lt_trans with
(RiemannInt_SF
(mkStepFun (StepFun_P32 (mkStepFun (StepFun_P28 (-1) (phi2 n) (phi1 n)))))).
apply StepFun_P34; assumption.
apply Rle_lt_trans with
(RiemannInt_SF (mkStepFun (StepFun_P28 1 (psi1 n) (psi2 n)))).
apply StepFun_P37; try assumption; intros; simpl; rewrite Rmult_1_l.
apply Rle_trans with (Rabs (phi2 n x - f x) + Rabs (f x - phi1 n x)).
replace (phi2 n x + -1 * phi1 n x) with (phi2 n x - f x + (f x - phi1 n x));
[ apply Rabs_triang | ring ].
rewrite (Rplus_comm (psi1 n x)); apply Rplus_le_compat.
rewrite <- Rabs_Ropp; rewrite Ropp_minus_distr; elim (H1 n); intros; apply H7.
assert (H10 : Rmin a b = a).
unfold Rmin; decide (Rle_dec a b) with Hyp; reflexivity.
assert (H11 : Rmax a b = b).
unfold Rmax; decide (Rle_dec a b) with Hyp; reflexivity.
rewrite H10; rewrite H11; elim H6; intros; split; left; assumption.
elim (H0 n); intros; apply H7; assert (H10 : Rmin a b = a).
unfold Rmin; decide (Rle_dec a b) with Hyp; reflexivity.
assert (H11 : Rmax a b = b).
unfold Rmax; decide (Rle_dec a b) with Hyp; reflexivity.
rewrite H10; rewrite H11; elim H6; intros; split; left; assumption.
rewrite StepFun_P30; rewrite Rmult_1_l; rewrite double; apply Rplus_lt_compat.
apply Rlt_trans with (pos (un n)).
elim (H0 n); intros; apply Rle_lt_trans with (Rabs (RiemannInt_SF (psi1 n))).
apply RRle_abs.
assumption.
replace (pos (un n)) with (R_dist (un n) 0).
apply H; unfold ge; apply le_trans with N; try assumption.
unfold N; apply le_max_l.
unfold R_dist; unfold Rminus; rewrite Ropp_0;
rewrite Rplus_0_r; apply Rabs_right.
apply Rle_ge; left; apply (cond_pos (un n)).
apply Rlt_trans with (pos (un n)).
elim (H1 n); intros; apply Rle_lt_trans with (Rabs (RiemannInt_SF (psi2 n))).
apply RRle_abs; assumption.
assumption.
replace (pos (un n)) with (R_dist (un n) 0).
apply H; unfold ge; apply le_trans with N; try assumption;
unfold N; apply le_max_l.
unfold R_dist; unfold Rminus; rewrite Ropp_0;
rewrite Rplus_0_r; apply Rabs_right; apply Rle_ge;
left; apply (cond_pos (un n)).
unfold R_dist in H2; apply H2; unfold ge; apply le_trans with N;
try assumption; unfold N; apply le_max_r.
apply Rmult_eq_reg_l with 3;
[ unfold Rdiv; rewrite Rmult_plus_distr_l;
do 2 rewrite (Rmult_comm 3); repeat rewrite Rmult_assoc;
rewrite <- Rinv_l_sym; [ ring | discrR ]
| discrR ].
assert (H4 : 0 < eps / 3).
unfold Rdiv; apply Rmult_lt_0_compat;
[ assumption | apply Rinv_0_lt_compat; prove_sup0 ].
elim (H _ H4); clear H; intros N0 H.
elim (H2 _ H4); clear H2; intros N1 H2.
set (N := max N0 N1); exists N; intros; unfold R_dist.
apply Rle_lt_trans with
(Rabs (RiemannInt_SF (phi2 n) - RiemannInt_SF (phi1 n)) +
Rabs (RiemannInt_SF (phi1 n) - l)).
replace (RiemannInt_SF (phi2 n) - l) with
(RiemannInt_SF (phi2 n) - RiemannInt_SF (phi1 n) +
(RiemannInt_SF (phi1 n) - l)); [ apply Rabs_triang | ring ].
assert (Hyp_b : b <= a).
auto with real.
replace eps with (2 * (eps / 3) + eps / 3).
apply Rplus_lt_compat.
replace (RiemannInt_SF (phi2 n) - RiemannInt_SF (phi1 n)) with
(RiemannInt_SF (phi2 n) + -1 * RiemannInt_SF (phi1 n));
[ idtac | ring ].
rewrite <- StepFun_P30.
rewrite StepFun_P39.
rewrite Rabs_Ropp.
apply Rle_lt_trans with
(RiemannInt_SF
(mkStepFun
(StepFun_P32
(mkStepFun
(StepFun_P6
(pre (mkStepFun (StepFun_P28 (-1) (phi2 n) (phi1 n))))))))).
apply StepFun_P34; try assumption.
apply Rle_lt_trans with
(RiemannInt_SF
(mkStepFun
(StepFun_P6 (pre (mkStepFun (StepFun_P28 1 (psi1 n) (psi2 n))))))).
apply StepFun_P37; try assumption.
intros; simpl; rewrite Rmult_1_l.
apply Rle_trans with (Rabs (phi2 n x - f x) + Rabs (f x - phi1 n x)).
replace (phi2 n x + -1 * phi1 n x) with (phi2 n x - f x + (f x - phi1 n x));
[ apply Rabs_triang | ring ].
rewrite (Rplus_comm (psi1 n x)); apply Rplus_le_compat.
rewrite <- Rabs_Ropp; rewrite Ropp_minus_distr; elim (H1 n); intros; apply H7.
assert (H10 : Rmin a b = b).
unfold Rmin; case (Rle_dec a b); intro;
[ elim Hyp; assumption | reflexivity ].
assert (H11 : Rmax a b = a).
unfold Rmax; case (Rle_dec a b); intro;
[ elim Hyp; assumption | reflexivity ].
rewrite H10; rewrite H11; elim H6; intros; split; left; assumption.
elim (H0 n); intros; apply H7; assert (H10 : Rmin a b = b).
unfold Rmin; case (Rle_dec a b); intro;
[ elim Hyp; assumption | reflexivity ].
assert (H11 : Rmax a b = a).
unfold Rmax; case (Rle_dec a b); intro;
[ elim Hyp; assumption | reflexivity ].
rewrite H10; rewrite H11; elim H6; intros; split; left; assumption.
rewrite <-
(Ropp_involutive
(RiemannInt_SF
(mkStepFun
(StepFun_P6 (pre (mkStepFun (StepFun_P28 1 (psi1 n) (psi2 n))))))))
.
rewrite <- StepFun_P39.
rewrite StepFun_P30.
rewrite Rmult_1_l; rewrite double.
rewrite Ropp_plus_distr; apply Rplus_lt_compat.
apply Rlt_trans with (pos (un n)).
elim (H0 n); intros; apply Rle_lt_trans with (Rabs (RiemannInt_SF (psi1 n))).
rewrite <- Rabs_Ropp; apply RRle_abs.
assumption.
replace (pos (un n)) with (R_dist (un n) 0).
apply H; unfold ge; apply le_trans with N; try assumption.
unfold N; apply le_max_l.
unfold R_dist; unfold Rminus; rewrite Ropp_0;
rewrite Rplus_0_r; apply Rabs_right.
apply Rle_ge; left; apply (cond_pos (un n)).
apply Rlt_trans with (pos (un n)).
elim (H1 n); intros; apply Rle_lt_trans with (Rabs (RiemannInt_SF (psi2 n))).
rewrite <- Rabs_Ropp; apply RRle_abs; assumption.
assumption.
replace (pos (un n)) with (R_dist (un n) 0).
apply H; unfold ge; apply le_trans with N; try assumption;
unfold N; apply le_max_l.
unfold R_dist; unfold Rminus; rewrite Ropp_0;
rewrite Rplus_0_r; apply Rabs_right; apply Rle_ge;
left; apply (cond_pos (un n)).
unfold R_dist in H2; apply H2; unfold ge; apply le_trans with N;
try assumption; unfold N; apply le_max_r.
apply Rmult_eq_reg_l with 3;
[ unfold Rdiv; rewrite Rmult_plus_distr_l;
do 2 rewrite (Rmult_comm 3); repeat rewrite Rmult_assoc;
rewrite <- Rinv_l_sym; [ ring | discrR ]
| discrR ].
Qed.
Lemma RiemannInt_P12 :
forall (f g:R -> R) (a b l:R) (pr1:Riemann_integrable f a b)
(pr2:Riemann_integrable g a b)
(pr3:Riemann_integrable (fun x:R => f x + l * g x) a b),
a <= b -> RiemannInt pr3 = RiemannInt pr1 + l * RiemannInt pr2.
Proof.
intro f; intros; case (Req_dec l 0); intro.
pattern l at 2; rewrite H0; rewrite Rmult_0_l; rewrite Rplus_0_r;
unfold RiemannInt; destruct (RiemannInt_exists pr3 RinvN RinvN_cv) as (?,HUn_cv);
destruct (RiemannInt_exists pr1 RinvN RinvN_cv) as (?,HUn_cv0); intros.
eapply UL_sequence;
[ apply HUn_cv
| set (psi1 := fun n:nat => proj1_sig (phi_sequence_prop RinvN pr1 n));
set (psi2 := fun n:nat => proj1_sig (phi_sequence_prop RinvN pr3 n));
apply RiemannInt_P11 with f RinvN (phi_sequence RinvN pr1) psi1 psi2;
[ apply RinvN_cv
| intro; apply (proj2_sig (phi_sequence_prop RinvN pr1 n))
| intro;
assert
(H1 :
(forall t:R,
Rmin a b <= t /\ t <= Rmax a b ->
Rabs (f t + l * g t - phi_sequence RinvN pr3 n t) <= psi2 n t) /\
Rabs (RiemannInt_SF (psi2 n)) < RinvN n);
[ apply (proj2_sig (phi_sequence_prop RinvN pr3 n))
| elim H1; intros; split; try assumption; intros;
replace (f t) with (f t + l * g t);
[ apply H2; assumption | rewrite H0; ring ] ]
| assumption ] ].
eapply UL_sequence.
unfold RiemannInt; destruct (RiemannInt_exists pr3 RinvN RinvN_cv) as (?,HUn_cv);
intros; apply HUn_cv.
unfold Un_cv; intros; unfold RiemannInt;
case (RiemannInt_exists pr1 RinvN RinvN_cv) as (x0,HUn_cv0);
case (RiemannInt_exists pr2 RinvN RinvN_cv) as (x,HUn_cv); unfold Un_cv;
intros; assert (H2 : 0 < eps / 5).
unfold Rdiv; apply Rmult_lt_0_compat;
[ assumption | apply Rinv_0_lt_compat; prove_sup0 ].
elim (HUn_cv0 _ H2); clear HUn_cv0; intros N0 H3; assert (H4 := RinvN_cv);
unfold Un_cv in H4; elim (H4 _ H2); clear H4 H2; intros N1 H4;
assert (H5 : 0 < eps / (5 * Rabs l)).
unfold Rdiv; apply Rmult_lt_0_compat;
[ assumption
| apply Rinv_0_lt_compat; apply Rmult_lt_0_compat;
[ prove_sup0 | apply Rabs_pos_lt; assumption ] ].
elim (HUn_cv _ H5); clear HUn_cv; intros N2 H6; assert (H7 := RinvN_cv);
unfold Un_cv in H7; elim (H7 _ H5); clear H7 H5; intros N3 H5;
unfold R_dist in H3, H4, H5, H6; set (N := max (max N0 N1) (max N2 N3)).
assert (H7 : forall n:nat, (n >= N1)%nat -> RinvN n < eps / 5).
intros; replace (pos (RinvN n)) with (Rabs (RinvN n - 0));
[ unfold RinvN; apply H4; assumption
| unfold Rminus; rewrite Ropp_0; rewrite Rplus_0_r; apply Rabs_right;
left; apply (cond_pos (RinvN n)) ].
clear H4; assert (H4 := H7); clear H7;
assert (H7 : forall n:nat, (n >= N3)%nat -> RinvN n < eps / (5 * Rabs l)).
intros; replace (pos (RinvN n)) with (Rabs (RinvN n - 0));
[ unfold RinvN; apply H5; assumption
| unfold Rminus; rewrite Ropp_0; rewrite Rplus_0_r; apply Rabs_right;
left; apply (cond_pos (RinvN n)) ].
clear H5; assert (H5 := H7); clear H7; exists N; intros;
unfold R_dist.
apply Rle_lt_trans with
(Rabs
(RiemannInt_SF (phi_sequence RinvN pr3 n) -
(RiemannInt_SF (phi_sequence RinvN pr1 n) +
l * RiemannInt_SF (phi_sequence RinvN pr2 n))) +
Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n) - x0) +
Rabs l * Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n) - x)).
apply Rle_trans with
(Rabs
(RiemannInt_SF (phi_sequence RinvN pr3 n) -
(RiemannInt_SF (phi_sequence RinvN pr1 n) +
l * RiemannInt_SF (phi_sequence RinvN pr2 n))) +
Rabs
(RiemannInt_SF (phi_sequence RinvN pr1 n) - x0 +
l * (RiemannInt_SF (phi_sequence RinvN pr2 n) - x))).
replace (RiemannInt_SF (phi_sequence RinvN pr3 n) - (x0 + l * x)) with
(RiemannInt_SF (phi_sequence RinvN pr3 n) -
(RiemannInt_SF (phi_sequence RinvN pr1 n) +
l * RiemannInt_SF (phi_sequence RinvN pr2 n)) +
(RiemannInt_SF (phi_sequence RinvN pr1 n) - x0 +
l * (RiemannInt_SF (phi_sequence RinvN pr2 n) - x)));
[ apply Rabs_triang | ring ].
rewrite Rplus_assoc; apply Rplus_le_compat_l; rewrite <- Rabs_mult;
replace
(RiemannInt_SF (phi_sequence RinvN pr1 n) - x0 +
l * (RiemannInt_SF (phi_sequence RinvN pr2 n) - x)) with
(RiemannInt_SF (phi_sequence RinvN pr1 n) - x0 +
l * (RiemannInt_SF (phi_sequence RinvN pr2 n) - x));
[ apply Rabs_triang | ring ].
replace eps with (3 * (eps / 5) + eps / 5 + eps / 5).
repeat apply Rplus_lt_compat.
assert
(H7 :
exists psi1 : nat -> StepFun a b,
(forall n:nat,
(forall t:R,
Rmin a b <= t /\ t <= Rmax a b ->
Rabs (f t - phi_sequence RinvN pr1 n t) <= psi1 n t) /\
Rabs (RiemannInt_SF (psi1 n)) < RinvN n)).
split with (fun n:nat => proj1_sig (phi_sequence_prop RinvN pr1 n)); intro;
apply (proj2_sig (phi_sequence_prop RinvN pr1 n0)).
assert
(H8 :
exists psi2 : nat -> StepFun a b,
(forall n:nat,
(forall t:R,
Rmin a b <= t /\ t <= Rmax a b ->
Rabs (g t - phi_sequence RinvN pr2 n t) <= psi2 n t) /\
Rabs (RiemannInt_SF (psi2 n)) < RinvN n)).
split with (fun n:nat => proj1_sig (phi_sequence_prop RinvN pr2 n)); intro;
apply (proj2_sig (phi_sequence_prop RinvN pr2 n0)).
assert
(H9 :
exists psi3 : nat -> StepFun a b,
(forall n:nat,
(forall t:R,
Rmin a b <= t /\ t <= Rmax a b ->
Rabs (f t + l * g t - phi_sequence RinvN pr3 n t) <= psi3 n t) /\
Rabs (RiemannInt_SF (psi3 n)) < RinvN n)).
split with (fun n:nat => proj1_sig (phi_sequence_prop RinvN pr3 n)); intro;
apply (proj2_sig (phi_sequence_prop RinvN pr3 n0)).
elim H7; clear H7; intros psi1 H7; elim H8; clear H8; intros psi2 H8; elim H9;
clear H9; intros psi3 H9;
replace
(RiemannInt_SF (phi_sequence RinvN pr3 n) -
(RiemannInt_SF (phi_sequence RinvN pr1 n) +
l * RiemannInt_SF (phi_sequence RinvN pr2 n))) with
(RiemannInt_SF (phi_sequence RinvN pr3 n) +
-1 *
(RiemannInt_SF (phi_sequence RinvN pr1 n) +
l * RiemannInt_SF (phi_sequence RinvN pr2 n)));
[ idtac | ring ]; do 2 rewrite <- StepFun_P30; assert (H10 : Rmin a b = a).
unfold Rmin; decide (Rle_dec a b) with H; reflexivity.
assert (H11 : Rmax a b = b).
unfold Rmax; decide (Rle_dec a b) with H; reflexivity.
rewrite H10 in H7; rewrite H10 in H8; rewrite H10 in H9; rewrite H11 in H7;
rewrite H11 in H8; rewrite H11 in H9;
apply Rle_lt_trans with
(RiemannInt_SF
(mkStepFun
(StepFun_P32
(mkStepFun
(StepFun_P28 (-1) (phi_sequence RinvN pr3 n)
(mkStepFun
(StepFun_P28 l (phi_sequence RinvN pr1 n)
(phi_sequence RinvN pr2 n)))))))).
apply StepFun_P34; assumption.
apply Rle_lt_trans with
(RiemannInt_SF
(mkStepFun
(StepFun_P28 1 (psi3 n)
(mkStepFun (StepFun_P28 (Rabs l) (psi1 n) (psi2 n)))))).
apply StepFun_P37; try assumption.
intros; simpl; rewrite Rmult_1_l.
apply Rle_trans with
(Rabs (phi_sequence RinvN pr3 n x1 - (f x1 + l * g x1)) +
Rabs
(f x1 + l * g x1 +
-1 * (phi_sequence RinvN pr1 n x1 + l * phi_sequence RinvN pr2 n x1))).
replace
(phi_sequence RinvN pr3 n x1 +
-1 * (phi_sequence RinvN pr1 n x1 + l * phi_sequence RinvN pr2 n x1)) with
(phi_sequence RinvN pr3 n x1 - (f x1 + l * g x1) +
(f x1 + l * g x1 +
-1 * (phi_sequence RinvN pr1 n x1 + l * phi_sequence RinvN pr2 n x1)));
[ apply Rabs_triang | ring ].
rewrite Rplus_assoc; apply Rplus_le_compat.
elim (H9 n); intros; rewrite <- Rabs_Ropp; rewrite Ropp_minus_distr;
apply H13.
elim H12; intros; split; left; assumption.
apply Rle_trans with
(Rabs (f x1 - phi_sequence RinvN pr1 n x1) +
Rabs l * Rabs (g x1 - phi_sequence RinvN pr2 n x1)).
rewrite <- Rabs_mult;
replace
(f x1 +
(l * g x1 +
-1 * (phi_sequence RinvN pr1 n x1 + l * phi_sequence RinvN pr2 n x1)))
with
(f x1 - phi_sequence RinvN pr1 n x1 +
l * (g x1 - phi_sequence RinvN pr2 n x1)); [ apply Rabs_triang | ring ].
apply Rplus_le_compat.
elim (H7 n); intros; apply H13.
elim H12; intros; split; left; assumption.
apply Rmult_le_compat_l;
[ apply Rabs_pos
| elim (H8 n); intros; apply H13; elim H12; intros; split; left; assumption ].
do 2 rewrite StepFun_P30; rewrite Rmult_1_l;
replace (3 * (eps / 5)) with (eps / 5 + (eps / 5 + eps / 5));
[ repeat apply Rplus_lt_compat | ring ].
apply Rlt_trans with (pos (RinvN n));
[ apply Rle_lt_trans with (Rabs (RiemannInt_SF (psi3 n)));
[ apply RRle_abs | elim (H9 n); intros; assumption ]
| apply H4; unfold ge; apply le_trans with N;
[ apply le_trans with (max N0 N1);
[ apply le_max_r | unfold N; apply le_max_l ]
| assumption ] ].
apply Rlt_trans with (pos (RinvN n));
[ apply Rle_lt_trans with (Rabs (RiemannInt_SF (psi1 n)));
[ apply RRle_abs | elim (H7 n); intros; assumption ]
| apply H4; unfold ge; apply le_trans with N;
[ apply le_trans with (max N0 N1);
[ apply le_max_r | unfold N; apply le_max_l ]
| assumption ] ].
apply Rmult_lt_reg_l with (/ Rabs l).
apply Rinv_0_lt_compat; apply Rabs_pos_lt; assumption.
rewrite <- Rmult_assoc; rewrite <- Rinv_l_sym.
rewrite Rmult_1_l; replace (/ Rabs l * (eps / 5)) with (eps / (5 * Rabs l)).
apply Rlt_trans with (pos (RinvN n));
[ apply Rle_lt_trans with (Rabs (RiemannInt_SF (psi2 n)));
[ apply RRle_abs | elim (H8 n); intros; assumption ]
| apply H5; unfold ge; apply le_trans with N;
[ apply le_trans with (max N2 N3);
[ apply le_max_r | unfold N; apply le_max_r ]
| assumption ] ].
unfold Rdiv; rewrite Rinv_mult_distr;
[ ring | discrR | apply Rabs_no_R0; assumption ].
apply Rabs_no_R0; assumption.
apply H3; unfold ge; apply le_trans with (max N0 N1);
[ apply le_max_l
| apply le_trans with N; [ unfold N; apply le_max_l | assumption ] ].
apply Rmult_lt_reg_l with (/ Rabs l).
apply Rinv_0_lt_compat; apply Rabs_pos_lt; assumption.
rewrite <- Rmult_assoc; rewrite <- Rinv_l_sym.
rewrite Rmult_1_l; replace (/ Rabs l * (eps / 5)) with (eps / (5 * Rabs l)).
apply H6; unfold ge; apply le_trans with (max N2 N3);
[ apply le_max_l
| apply le_trans with N; [ unfold N; apply le_max_r | assumption ] ].
unfold Rdiv; rewrite Rinv_mult_distr;
[ ring | discrR | apply Rabs_no_R0; assumption ].
apply Rabs_no_R0; assumption.
apply Rmult_eq_reg_l with 5;
[ unfold Rdiv; do 2 rewrite Rmult_plus_distr_l;
do 3 rewrite (Rmult_comm 5); repeat rewrite Rmult_assoc;
rewrite <- Rinv_l_sym; [ ring | discrR ]
| discrR ].
Qed.
Lemma RiemannInt_P13 :
forall (f g:R -> R) (a b l:R) (pr1:Riemann_integrable f a b)
(pr2:Riemann_integrable g a b)
(pr3:Riemann_integrable (fun x:R => f x + l * g x) a b),
RiemannInt pr3 = RiemannInt pr1 + l * RiemannInt pr2.
Proof.
intros; destruct (Rle_dec a b) as [Hle|Hnle];
[ apply RiemannInt_P12; assumption
| assert (H : b <= a);
[ auto with real
| replace (RiemannInt pr3) with (- RiemannInt (RiemannInt_P1 pr3));
[ idtac | symmetry ; apply RiemannInt_P8 ];
replace (RiemannInt pr2) with (- RiemannInt (RiemannInt_P1 pr2));
[ idtac | symmetry ; apply RiemannInt_P8 ];
replace (RiemannInt pr1) with (- RiemannInt (RiemannInt_P1 pr1));
[ idtac | symmetry ; apply RiemannInt_P8 ];
rewrite
(RiemannInt_P12 (RiemannInt_P1 pr1) (RiemannInt_P1 pr2)
(RiemannInt_P1 pr3) H); ring ] ].
Qed.
Lemma RiemannInt_P14 : forall a b c:R, Riemann_integrable (fct_cte c) a b.
Proof.
unfold Riemann_integrable; intros;
split with (mkStepFun (StepFun_P4 a b c));
split with (mkStepFun (StepFun_P4 a b 0)); split;
[ intros; simpl; unfold Rminus; rewrite Rplus_opp_r;
rewrite Rabs_R0; unfold fct_cte; right;
reflexivity
| rewrite StepFun_P18; rewrite Rmult_0_l; rewrite Rabs_R0;
apply (cond_pos eps) ].
Qed.
Lemma RiemannInt_P15 :
forall (a b c:R) (pr:Riemann_integrable (fct_cte c) a b),
RiemannInt pr = c * (b - a).
Proof.
intros; unfold RiemannInt; destruct (RiemannInt_exists pr RinvN RinvN_cv) as (?,HUn_cv);
intros; eapply UL_sequence.
apply HUn_cv.
set (phi1 := fun N:nat => phi_sequence RinvN pr N);
change (Un_cv (fun N:nat => RiemannInt_SF (phi1 N)) (c * (b - a)));
set (f := fct_cte c);
assert
(H1 :
exists psi1 : nat -> StepFun a b,
(forall n:nat,
(forall t:R,
Rmin a b <= t /\ t <= Rmax a b ->
Rabs (f t - phi_sequence RinvN pr n t) <= psi1 n t) /\
Rabs (RiemannInt_SF (psi1 n)) < RinvN n)).
split with (fun n:nat => proj1_sig (phi_sequence_prop RinvN pr n)); intro;
apply (proj2_sig (phi_sequence_prop RinvN pr n)).
elim H1; clear H1; intros psi1 H1;
set (phi2 := fun n:nat => mkStepFun (StepFun_P4 a b c));
set (psi2 := fun n:nat => mkStepFun (StepFun_P4 a b 0));
apply RiemannInt_P11 with f RinvN phi2 psi2 psi1;
try assumption.
apply RinvN_cv.
intro; split.
intros; unfold f; simpl; unfold Rminus;
rewrite Rplus_opp_r; rewrite Rabs_R0; unfold fct_cte;
right; reflexivity.
unfold psi2; rewrite StepFun_P18; rewrite Rmult_0_l; rewrite Rabs_R0;
apply (cond_pos (RinvN n)).
unfold Un_cv; intros; split with 0%nat; intros; unfold R_dist;
unfold phi2; rewrite StepFun_P18; unfold Rminus;
rewrite Rplus_opp_r; rewrite Rabs_R0; apply H.
Qed.
Lemma RiemannInt_P16 :
forall (f:R -> R) (a b:R),
Riemann_integrable f a b -> Riemann_integrable (fun x:R => Rabs (f x)) a b.
Proof.
unfold Riemann_integrable; intro f; intros; elim (X eps); clear X;
intros phi [psi [H H0]]; split with (mkStepFun (StepFun_P32 phi));
split with psi; split; try assumption; intros; simpl;
apply Rle_trans with (Rabs (f t - phi t));
[ apply Rabs_triang_inv2 | apply H; assumption ].
Qed.
Lemma Rle_cv_lim :
forall (Un Vn:nat -> R) (l1 l2:R),
(forall n:nat, Un n <= Vn n) -> Un_cv Un l1 -> Un_cv Vn l2 -> l1 <= l2.
Proof.
intros; destruct (Rle_dec l1 l2) as [Hle|Hnle].
assumption.
assert (H2 : l2 < l1).
auto with real.
assert (H3 : 0 < (l1 - l2) / 2).
unfold Rdiv; apply Rmult_lt_0_compat;
[ apply Rlt_Rminus; assumption | apply Rinv_0_lt_compat; prove_sup0 ].
elim (H1 _ H3); elim (H0 _ H3); clear H0 H1; unfold R_dist; intros;
set (N := max x x0); cut (Vn N < Un N).
intro; elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ (H N) H4)).
apply Rlt_trans with ((l1 + l2) / 2).
apply Rplus_lt_reg_l with (- l2);
replace (- l2 + (l1 + l2) / 2) with ((l1 - l2) / 2).
rewrite Rplus_comm; apply Rle_lt_trans with (Rabs (Vn N - l2)).
apply RRle_abs.
apply H1; unfold ge; unfold N; apply le_max_r.
apply Rmult_eq_reg_l with 2;
[ unfold Rdiv; do 2 rewrite (Rmult_comm 2);
rewrite (Rmult_plus_distr_r (- l2) ((l1 + l2) * / 2) 2);
repeat rewrite Rmult_assoc; rewrite <- Rinv_l_sym;
[ ring | discrR ]
| discrR ].
apply Ropp_lt_cancel; apply Rplus_lt_reg_l with l1;
replace (l1 + - ((l1 + l2) / 2)) with ((l1 - l2) / 2).
apply Rle_lt_trans with (Rabs (Un N - l1)).
rewrite <- Rabs_Ropp; rewrite Ropp_minus_distr; apply RRle_abs.
apply H0; unfold ge; unfold N; apply le_max_l.
apply Rmult_eq_reg_l with 2;
[ unfold Rdiv; do 2 rewrite (Rmult_comm 2);
rewrite (Rmult_plus_distr_r l1 (- ((l1 + l2) * / 2)) 2);
rewrite <- Ropp_mult_distr_l_reverse; repeat rewrite Rmult_assoc;
rewrite <- Rinv_l_sym; [ ring | discrR ]
| discrR ].
Qed.
Lemma RiemannInt_P17 :
forall (f:R -> R) (a b:R) (pr1:Riemann_integrable f a b)
(pr2:Riemann_integrable (fun x:R => Rabs (f x)) a b),
a <= b -> Rabs (RiemannInt pr1) <= RiemannInt pr2.
Proof.
intro f; intros; unfold RiemannInt;
case (RiemannInt_exists pr1 RinvN RinvN_cv) as (x0,HUn_cv0);
case (RiemannInt_exists pr2 RinvN RinvN_cv) as (x,HUn_cv);
set (phi1 := phi_sequence RinvN pr1) in HUn_cv0;
set (phi2 := fun N:nat => mkStepFun (StepFun_P32 (phi1 N)));
apply Rle_cv_lim with
(fun N:nat => Rabs (RiemannInt_SF (phi1 N)))
(fun N:nat => RiemannInt_SF (phi2 N)).
intro; unfold phi2; apply StepFun_P34; assumption.
apply (continuity_seq Rabs (fun N:nat => RiemannInt_SF (phi1 N)) x0);
try assumption.
apply Rcontinuity_abs.
set (phi3 := phi_sequence RinvN pr2);
assert
(H0 :
exists psi3 : nat -> StepFun a b,
(forall n:nat,
(forall t:R,
Rmin a b <= t /\ t <= Rmax a b ->
Rabs (Rabs (f t) - phi3 n t) <= psi3 n t) /\
Rabs (RiemannInt_SF (psi3 n)) < RinvN n)).
split with (fun n:nat => proj1_sig (phi_sequence_prop RinvN pr2 n)); intro;
apply (proj2_sig (phi_sequence_prop RinvN pr2 n)).
assert
(H1 :
exists psi2 : nat -> StepFun a b,
(forall n:nat,
(forall t:R,
Rmin a b <= t /\ t <= Rmax a b ->
Rabs (Rabs (f t) - phi2 n t) <= psi2 n t) /\
Rabs (RiemannInt_SF (psi2 n)) < RinvN n)).
assert
(H1 :
exists psi2 : nat -> StepFun a b,
(forall n:nat,
(forall t:R,
Rmin a b <= t /\ t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi2 n t) /\
Rabs (RiemannInt_SF (psi2 n)) < RinvN n)).
split with (fun n:nat => proj1_sig (phi_sequence_prop RinvN pr1 n)); intro;
apply (proj2_sig (phi_sequence_prop RinvN pr1 n)).
elim H1; clear H1; intros psi2 H1; split with psi2; intros; elim (H1 n);
clear H1; intros; split; try assumption.
intros; unfold phi2; simpl;
apply Rle_trans with (Rabs (f t - phi1 n t)).
apply Rabs_triang_inv2.
apply H1; assumption.
elim H0; clear H0; intros psi3 H0; elim H1; clear H1; intros psi2 H1;
apply RiemannInt_P11 with (fun x:R => Rabs (f x)) RinvN phi3 psi3 psi2;
try assumption; apply RinvN_cv.
Qed.
Lemma RiemannInt_P18 :
forall (f g:R -> R) (a b:R) (pr1:Riemann_integrable f a b)
(pr2:Riemann_integrable g a b),
a <= b ->
(forall x:R, a < x < b -> f x = g x) -> RiemannInt pr1 = RiemannInt pr2.
Proof.
intro f; intros; unfold RiemannInt;
case (RiemannInt_exists pr1 RinvN RinvN_cv) as (x0,HUn_cv0);
case (RiemannInt_exists pr2 RinvN RinvN_cv) as (x,HUn_cv);
eapply UL_sequence.
apply HUn_cv0.
set (phi1 := fun N:nat => phi_sequence RinvN pr1 N);
change (Un_cv (fun N:nat => RiemannInt_SF (phi1 N)) x);
assert
(H1 :
exists psi1 : nat -> StepFun a b,
(forall n:nat,
(forall t:R,
Rmin a b <= t /\ t <= Rmax a b ->
Rabs (f t - phi1 n t) <= psi1 n t) /\
Rabs (RiemannInt_SF (psi1 n)) < RinvN n)).
split with (fun n:nat => proj1_sig (phi_sequence_prop RinvN pr1 n)); intro;
apply (proj2_sig (phi_sequence_prop RinvN pr1 n)).
elim H1; clear H1; intros psi1 H1;
set (phi2 := fun N:nat => phi_sequence RinvN pr2 N).
set
(phi2_aux :=
fun (N:nat) (x:R) =>
match Req_EM_T x a with
| left _ => f a
| right _ =>
match Req_EM_T x b with
| left _ => f b
| right _ => phi2 N x
end
end).
cut (forall N:nat, IsStepFun (phi2_aux N) a b).
intro; set (phi2_m := fun N:nat => mkStepFun (X N)).
assert
(H2 :
exists psi2 : nat -> StepFun a b,
(forall n:nat,
(forall t:R,
Rmin a b <= t /\ t <= Rmax a b -> Rabs (g t - phi2 n t) <= psi2 n t) /\
Rabs (RiemannInt_SF (psi2 n)) < RinvN n)).
split with (fun n:nat => proj1_sig (phi_sequence_prop RinvN pr2 n)); intro;
apply (proj2_sig (phi_sequence_prop RinvN pr2 n)).
elim H2; clear H2; intros psi2 H2;
apply RiemannInt_P11 with f RinvN phi2_m psi2 psi1;
try assumption.
apply RinvN_cv.
intro; elim (H2 n); intros; split; try assumption.
intros; unfold phi2_m; simpl; unfold phi2_aux;
destruct (Req_EM_T t a) as [Heqa|Hneqa]; destruct (Req_EM_T t b) as [Heqb|Hneqb].
rewrite Heqa; unfold Rminus; rewrite Rplus_opp_r; rewrite Rabs_R0;
apply Rle_trans with (Rabs (g t - phi2 n t)).
apply Rabs_pos.
pattern a at 3; rewrite <- Heqa; apply H3; assumption.
rewrite Heqa; unfold Rminus; rewrite Rplus_opp_r; rewrite Rabs_R0;
apply Rle_trans with (Rabs (g t - phi2 n t)).
apply Rabs_pos.
pattern a at 3; rewrite <- Heqa; apply H3; assumption.
rewrite Heqb; unfold Rminus; rewrite Rplus_opp_r; rewrite Rabs_R0;
apply Rle_trans with (Rabs (g t - phi2 n t)).
apply Rabs_pos.
pattern b at 3; rewrite <- Heqb; apply H3; assumption.
replace (f t) with (g t).
apply H3; assumption.
symmetry ; apply H0; elim H5; clear H5; intros.
assert (H7 : Rmin a b = a).
unfold Rmin; destruct (Rle_dec a b) as [Heqab|Hneqab];
[ reflexivity | elim Hneqab; assumption ].
assert (H8 : Rmax a b = b).
unfold Rmax; destruct (Rle_dec a b) as [Heqab|Hneqab];
[ reflexivity | elim Hneqab; assumption ].
rewrite H7 in H5; rewrite H8 in H6; split.
elim H5; intro; [ assumption | elim Hneqa; symmetry ; assumption ].
elim H6; intro; [ assumption | elim Hneqb; assumption ].
cut (forall N:nat, RiemannInt_SF (phi2_m N) = RiemannInt_SF (phi2 N)).
intro; unfold Un_cv; intros; elim (HUn_cv _ H4); intros; exists x1; intros;
rewrite (H3 n); apply H5; assumption.
intro; apply Rle_antisym.
apply StepFun_P37; try assumption.
intros; unfold phi2_m; simpl; unfold phi2_aux;
destruct (Req_EM_T x1 a) as [Heqa|Hneqa]; destruct (Req_EM_T x1 b) as [Heqb|Hneqb].
elim H3; intros; rewrite Heqa in H4; elim (Rlt_irrefl _ H4).
elim H3; intros; rewrite Heqa in H4; elim (Rlt_irrefl _ H4).
elim H3; intros; rewrite Heqb in H5; elim (Rlt_irrefl _ H5).
right; reflexivity.
apply StepFun_P37; try assumption.
intros; unfold phi2_m; simpl; unfold phi2_aux;
destruct (Req_EM_T x1 a) as [ -> |Hneqa].
elim H3; intros; elim (Rlt_irrefl _ H4).
destruct (Req_EM_T x1 b) as [ -> |Hneqb].
elim H3; intros; elim (Rlt_irrefl _ H5).
right; reflexivity.
intro; assert (H2 := pre (phi2 N)); unfold IsStepFun in H2;
unfold is_subdivision in H2; elim H2; clear H2; intros l [lf H2];
split with l; split with lf; unfold adapted_couple in H2;
decompose [and] H2; clear H2; unfold adapted_couple;
repeat split; try assumption.
intros; assert (H9 := H8 i H2); unfold constant_D_eq, open_interval in H9;
unfold constant_D_eq, open_interval; intros;
rewrite <- (H9 x1 H7); assert (H10 : a <= pos_Rl l i).
replace a with (Rmin a b).
rewrite <- H5; elim (RList_P6 l); intros; apply H10.
assumption.
apply le_O_n.
apply lt_trans with (pred (length l)); [ assumption | apply lt_pred_n_n ].
apply neq_O_lt; intro; rewrite <- H12 in H6; discriminate.
unfold Rmin; decide (Rle_dec a b) with H; reflexivity.
assert (H11 : pos_Rl l (S i) <= b).
replace b with (Rmax a b).
rewrite <- H4; elim (RList_P6 l); intros; apply H11.
assumption.
apply lt_le_S; assumption.
apply lt_pred_n_n; apply neq_O_lt; intro; rewrite <- H13 in H6; discriminate.
unfold Rmax; decide (Rle_dec a b) with H; reflexivity.
elim H7; clear H7; intros; unfold phi2_aux; destruct (Req_EM_T x1 a) as [Heq|Hneq];
destruct (Req_EM_T x1 b) as [Heq'|Hneq'].
rewrite Heq' in H12; elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H11 H12)).
rewrite Heq in H7; elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H10 H7)).
rewrite Heq' in H12; elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H11 H12)).
reflexivity.
Qed.
Lemma RiemannInt_P19 :
forall (f g:R -> R) (a b:R) (pr1:Riemann_integrable f a b)
(pr2:Riemann_integrable g a b),
a <= b ->
(forall x:R, a < x < b -> f x <= g x) -> RiemannInt pr1 <= RiemannInt pr2.
Proof.
intro f; intros; apply Rplus_le_reg_l with (- RiemannInt pr1);
rewrite Rplus_opp_l; rewrite Rplus_comm;
apply Rle_trans with (Rabs (RiemannInt (RiemannInt_P10 (-1) pr2 pr1))).
apply Rabs_pos.
replace (RiemannInt pr2 + - RiemannInt pr1) with
(RiemannInt (RiemannInt_P16 (RiemannInt_P10 (-1) pr2 pr1))).
apply
(RiemannInt_P17 (RiemannInt_P10 (-1) pr2 pr1)
(RiemannInt_P16 (RiemannInt_P10 (-1) pr2 pr1)));
assumption.
replace (RiemannInt pr2 + - RiemannInt pr1) with
(RiemannInt (RiemannInt_P10 (-1) pr2 pr1)).
apply RiemannInt_P18; try assumption.
intros; apply Rabs_right.
apply Rle_ge; apply Rplus_le_reg_l with (f x); rewrite Rplus_0_r;
replace (f x + (g x + -1 * f x)) with (g x); [ apply H0; assumption | ring ].
rewrite (RiemannInt_P12 pr2 pr1 (RiemannInt_P10 (-1) pr2 pr1));
[ ring | assumption ].
Qed.
Lemma FTC_P1 :
forall (f:R -> R) (a b:R),
a <= b ->
(forall x:R, a <= x <= b -> continuity_pt f x) ->
forall x:R, a <= x -> x <= b -> Riemann_integrable f a x.
Proof.
intros; apply continuity_implies_RiemannInt;
[ assumption
| intros; apply H0; elim H3; intros; split;
assumption || apply Rle_trans with x; assumption ].
Qed.
Definition primitive (f:R -> R) (a b:R) (h:a <= b)
(pr:forall x:R, a <= x -> x <= b -> Riemann_integrable f a x)
(x:R) : R :=
match Rle_dec a x with
| left r =>
match Rle_dec x b with
| left r0 => RiemannInt (pr x r r0)
| right _ => f b * (x - b) + RiemannInt (pr b h (Rle_refl b))
end
| right _ => f a * (x - a)
end.
Lemma RiemannInt_P20 :
forall (f:R -> R) (a b:R) (h:a <= b)
(pr:forall x:R, a <= x -> x <= b -> Riemann_integrable f a x)
(pr0:Riemann_integrable f a b),
RiemannInt pr0 = primitive h pr b - primitive h pr a.
Proof.
intros; replace (primitive h pr a) with 0.
replace (RiemannInt pr0) with (primitive h pr b).
ring.
unfold primitive; destruct (Rle_dec a b) as [Hle|[]]; destruct (Rle_dec b b) as [Hle'|Hnle'];
[ apply RiemannInt_P5
| destruct Hnle'; right; reflexivity
| assumption
| assumption].
symmetry ; unfold primitive; destruct (Rle_dec a a) as [Hle|[]];
destruct (Rle_dec a b) as [Hle'|Hnle'];
[ apply RiemannInt_P9
| elim Hnle'; assumption
| right; reflexivity
| right; reflexivity ].
Qed.
Lemma RiemannInt_P21 :
forall (f:R -> R) (a b c:R),
a <= b ->
b <= c ->
Riemann_integrable f a b ->
Riemann_integrable f b c -> Riemann_integrable f a c.
Proof.
unfold Riemann_integrable; intros f a b c Hyp1 Hyp2 X X0 eps.
assert (H : 0 < eps / 2).
unfold Rdiv; apply Rmult_lt_0_compat;
[ apply (cond_pos eps) | apply Rinv_0_lt_compat; prove_sup0 ].
elim (X (mkposreal _ H)); clear X; intros phi1 [psi1 H1];
elim (X0 (mkposreal _ H)); clear X0; intros phi2 [psi2 H2].
set
(phi3 :=
fun x:R =>
match Rle_dec a x with
| left _ =>
match Rle_dec x b with
| left _ => phi1 x
| right _ => phi2 x
end
| right _ => 0
end).
set
(psi3 :=
fun x:R =>
match Rle_dec a x with
| left _ =>
match Rle_dec x b with
| left _ => psi1 x
| right _ => psi2 x
end
| right _ => 0
end).
cut (IsStepFun phi3 a c).
intro; cut (IsStepFun psi3 a b).
intro; cut (IsStepFun psi3 b c).
intro; cut (IsStepFun psi3 a c).
intro; split with (mkStepFun X); split with (mkStepFun X2); simpl;
split.
intros; unfold phi3, psi3; case (Rle_dec t b) as [|Hnle]; case (Rle_dec a t) as [|Hnle'].
elim H1; intros; apply H3.
replace (Rmin a b) with a.
replace (Rmax a b) with b.
split; assumption.
unfold Rmax; decide (Rle_dec a b) with Hyp1; reflexivity.
unfold Rmin; decide (Rle_dec a b) with Hyp1; reflexivity.
elim Hnle'; replace a with (Rmin a c).
elim H0; intros; assumption.
unfold Rmin; case (Rle_dec a c) as [|[]];
[ reflexivity | apply Rle_trans with b; assumption ].
elim H2; intros; apply H3.
replace (Rmax b c) with (Rmax a c).
elim H0; intros; split; try assumption.
replace (Rmin b c) with b.
auto with real.
unfold Rmin; decide (Rle_dec b c) with Hyp2; reflexivity.
unfold Rmax; decide (Rle_dec b c) with Hyp2; case (Rle_dec a c) as [|[]];
[ reflexivity | apply Rle_trans with b; assumption ].
elim Hnle'; replace a with (Rmin a c).
elim H0; intros; assumption.
unfold Rmin; case (Rle_dec a c) as [|[]];
[ reflexivity | apply Rle_trans with b; assumption ].
rewrite <- (StepFun_P43 X0 X1 X2).
apply Rle_lt_trans with
(Rabs (RiemannInt_SF (mkStepFun X0)) + Rabs (RiemannInt_SF (mkStepFun X1))).
apply Rabs_triang.
rewrite (double_var eps);
replace (RiemannInt_SF (mkStepFun X0)) with (RiemannInt_SF psi1).
replace (RiemannInt_SF (mkStepFun X1)) with (RiemannInt_SF psi2).
apply Rplus_lt_compat.
elim H1; intros; assumption.
elim H2; intros; assumption.
apply Rle_antisym.
apply StepFun_P37; try assumption.
simpl; intros; unfold psi3; elim H0; clear H0; intros;
destruct (Rle_dec a x) as [Hle|Hnle]; destruct (Rle_dec x b) as [Hle'|Hnle'];
[ elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ Hle' H0))
| right; reflexivity
| elim Hnle; apply Rle_trans with b; [ assumption | left; assumption ]
| elim Hnle; apply Rle_trans with b; [ assumption | left; assumption ] ].
apply StepFun_P37; try assumption.
simpl; intros; unfold psi3; elim H0; clear H0; intros;
destruct (Rle_dec a x) as [Hle|Hnle]; destruct (Rle_dec x b) as [Hle'|Hnle'];
[ elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ Hle' H0))
| right; reflexivity
| elim Hnle; apply Rle_trans with b; [ assumption | left; assumption ]
| elim Hnle; apply Rle_trans with b; [ assumption | left; assumption ] ].
apply Rle_antisym.
apply StepFun_P37; try assumption.
simpl; intros; unfold psi3; elim H0; clear H0; intros;
destruct (Rle_dec a x) as [Hle|Hnle]; destruct (Rle_dec x b) as [Hle'|Hnle'];
[ right; reflexivity
| elim Hnle'; left; assumption
| elim Hnle; left; assumption
| elim Hnle; left; assumption ].
apply StepFun_P37; try assumption.
simpl; intros; unfold psi3; elim H0; clear H0; intros;
destruct (Rle_dec a x) as [Hle|Hnle]; destruct (Rle_dec x b) as [Hle'|Hnle'];
[ right; reflexivity
| elim Hnle'; left; assumption
| elim Hnle; left; assumption
| elim Hnle; left; assumption ].
apply StepFun_P46 with b; assumption.
assert (H3 := pre psi2); unfold IsStepFun in H3; unfold is_subdivision in H3;
elim H3; clear H3; intros l1 [lf1 H3]; split with l1;
split with lf1; unfold adapted_couple in H3; decompose [and] H3;
clear H3; unfold adapted_couple; repeat split;
try assumption.
intros; assert (H9 := H8 i H3); unfold constant_D_eq, open_interval;
unfold constant_D_eq, open_interval in H9; intros;
rewrite <- (H9 x H7); unfold psi3; assert (H10 : b < x).
apply Rle_lt_trans with (pos_Rl l1 i).
replace b with (Rmin b c).
rewrite <- H5; elim (RList_P6 l1); intros; apply H10; try assumption.
apply le_O_n.
apply lt_trans with (pred (length l1)); try assumption; apply lt_pred_n_n;
apply neq_O_lt; red; intro; rewrite <- H12 in H6;
discriminate.
unfold Rmin; decide (Rle_dec b c) with Hyp2;
reflexivity.
elim H7; intros; assumption.
destruct (Rle_dec a x) as [Hle|Hnle]; destruct (Rle_dec x b) as [Hle'|Hnle'];
[ elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ Hle' H10))
| reflexivity
| elim Hnle; apply Rle_trans with b; [ assumption | left; assumption ]
| elim Hnle; apply Rle_trans with b; [ assumption | left; assumption ] ].
assert (H3 := pre psi1); unfold IsStepFun in H3; unfold is_subdivision in H3;
elim H3; clear H3; intros l1 [lf1 H3]; split with l1;
split with lf1; unfold adapted_couple in H3; decompose [and] H3;
clear H3; unfold adapted_couple; repeat split;
try assumption.
intros; assert (H9 := H8 i H3); unfold constant_D_eq, open_interval;
unfold constant_D_eq, open_interval in H9; intros;
rewrite <- (H9 x H7); unfold psi3; assert (H10 : x <= b).
apply Rle_trans with (pos_Rl l1 (S i)).
elim H7; intros; left; assumption.
replace b with (Rmax a b).
rewrite <- H4; elim (RList_P6 l1); intros; apply H10; try assumption.
apply lt_pred_n_n; apply neq_O_lt; red; intro; rewrite <- H12 in H6;
discriminate.
unfold Rmax; decide (Rle_dec a b) with Hyp1; reflexivity.
assert (H11 : a <= x).
apply Rle_trans with (pos_Rl l1 i).
replace a with (Rmin a b).
rewrite <- H5; elim (RList_P6 l1); intros; apply H11; try assumption.
apply le_O_n.
apply lt_trans with (pred (length l1)); try assumption; apply lt_pred_n_n;
apply neq_O_lt; red; intro; rewrite <- H13 in H6;
discriminate.
unfold Rmin; decide (Rle_dec a b) with Hyp1; reflexivity.
left; elim H7; intros; assumption.
decide (Rle_dec a x) with H11; decide (Rle_dec x b) with H10; reflexivity.
apply StepFun_P46 with b.
assert (H3 := pre phi1); unfold IsStepFun in H3; unfold is_subdivision in H3;
elim H3; clear H3; intros l1 [lf1 H3]; split with l1;
split with lf1; unfold adapted_couple in H3; decompose [and] H3;
clear H3; unfold adapted_couple; repeat split;
try assumption.
intros; assert (H9 := H8 i H3); unfold constant_D_eq, open_interval;
unfold constant_D_eq, open_interval in H9; intros;
rewrite <- (H9 x H7); unfold psi3; assert (H10 : x <= b).
apply Rle_trans with (pos_Rl l1 (S i)).
elim H7; intros; left; assumption.
replace b with (Rmax a b).
rewrite <- H4; elim (RList_P6 l1); intros; apply H10; try assumption.
apply lt_pred_n_n; apply neq_O_lt; red; intro; rewrite <- H12 in H6;
discriminate.
unfold Rmax; decide (Rle_dec a b) with Hyp1; reflexivity.
assert (H11 : a <= x).
apply Rle_trans with (pos_Rl l1 i).
replace a with (Rmin a b).
rewrite <- H5; elim (RList_P6 l1); intros; apply H11; try assumption.
apply le_O_n.
apply lt_trans with (pred (length l1)); try assumption; apply lt_pred_n_n;
apply neq_O_lt; red; intro; rewrite <- H13 in H6;
discriminate.
unfold Rmin; decide (Rle_dec a b) with Hyp1; reflexivity.
left; elim H7; intros; assumption.
unfold phi3; decide (Rle_dec a x) with H11; decide (Rle_dec x b) with H10;
reflexivity || elim n; assumption.
assert (H3 := pre phi2); unfold IsStepFun in H3; unfold is_subdivision in H3;
elim H3; clear H3; intros l1 [lf1 H3]; split with l1;
split with lf1; unfold adapted_couple in H3; decompose [and] H3;
clear H3; unfold adapted_couple; repeat split;
try assumption.
intros; assert (H9 := H8 i H3); unfold constant_D_eq, open_interval;
unfold constant_D_eq, open_interval in H9; intros;
rewrite <- (H9 x H7); unfold psi3; assert (H10 : b < x).
apply Rle_lt_trans with (pos_Rl l1 i).
replace b with (Rmin b c).
rewrite <- H5; elim (RList_P6 l1); intros; apply H10; try assumption.
apply le_O_n.
apply lt_trans with (pred (length l1)); try assumption; apply lt_pred_n_n;
apply neq_O_lt; red; intro; rewrite <- H12 in H6;
discriminate.
unfold Rmin; decide (Rle_dec b c) with Hyp2; reflexivity.
elim H7; intros; assumption.
unfold phi3; destruct (Rle_dec a x) as [Hle|Hnle]; destruct (Rle_dec x b) as [Hle'|Hnle']; intros;
[ elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ Hle' H10))
| reflexivity
| elim Hnle; apply Rle_trans with b; [ assumption | left; assumption ]
| elim Hnle; apply Rle_trans with b; [ assumption | left; assumption ] ].
Qed.
Lemma RiemannInt_P22 :
forall (f:R -> R) (a b c:R),
Riemann_integrable f a b -> a <= c <= b -> Riemann_integrable f a c.
Proof.
unfold Riemann_integrable; intros; elim (X eps); clear X;
intros phi [psi H0]; elim H; elim H0; clear H H0;
intros; assert (H3 : IsStepFun phi a c).
apply StepFun_P44 with b.
apply (pre phi).
split; assumption.
assert (H4 : IsStepFun psi a c).
apply StepFun_P44 with b.
apply (pre psi).
split; assumption.
split with (mkStepFun H3); split with (mkStepFun H4); split.
simpl; intros; apply H.
replace (Rmin a b) with (Rmin a c) by (rewrite 2!Rmin_left; eauto using Rle_trans).
destruct H5; split; try assumption.
apply Rle_trans with (Rmax a c); try assumption.
apply Rle_max_compat_l; assumption.
rewrite Rabs_right.
assert (H5 : IsStepFun psi c b).
apply StepFun_P46 with a.
apply StepFun_P6; assumption.
apply (pre psi).
replace (RiemannInt_SF (mkStepFun H4)) with
(RiemannInt_SF psi - RiemannInt_SF (mkStepFun H5)).
apply Rle_lt_trans with (RiemannInt_SF psi).
unfold Rminus; pattern (RiemannInt_SF psi) at 2;
rewrite <- Rplus_0_r; apply Rplus_le_compat_l; rewrite <- Ropp_0;
apply Ropp_ge_le_contravar; apply Rle_ge;
replace 0 with (RiemannInt_SF (mkStepFun (StepFun_P4 c b 0))).
apply StepFun_P37; try assumption.
intros; simpl; unfold fct_cte;
apply Rle_trans with (Rabs (f x - phi x)).
apply Rabs_pos.
apply H.
rewrite Rmin_left; eauto using Rle_trans.
rewrite Rmax_right; eauto using Rle_trans.
destruct H6; split; left.
apply Rle_lt_trans with c; assumption.
assumption.
rewrite StepFun_P18; ring.
apply Rle_lt_trans with (Rabs (RiemannInt_SF psi)).
apply RRle_abs.
assumption.
assert (H6 : IsStepFun psi a b).
apply (pre psi).
replace (RiemannInt_SF psi) with (RiemannInt_SF (mkStepFun H6)).
rewrite <- (StepFun_P43 H4 H5 H6); ring.
unfold RiemannInt_SF; case (Rle_dec a b); intro.
eapply StepFun_P17.
apply StepFun_P1.
simpl; apply StepFun_P1.
apply Ropp_eq_compat; eapply StepFun_P17.
apply StepFun_P1.
simpl; apply StepFun_P1.
apply Rle_ge; replace 0 with (RiemannInt_SF (mkStepFun (StepFun_P4 a c 0))).
apply StepFun_P37; try assumption.
intros; simpl; unfold fct_cte;
apply Rle_trans with (Rabs (f x - phi x)).
apply Rabs_pos.
apply H.
rewrite Rmin_left; eauto using Rle_trans.
rewrite Rmax_right; eauto using Rle_trans.
destruct H5; split; left.
assumption.
apply Rlt_le_trans with c; assumption.
rewrite StepFun_P18; ring.
Qed.
Lemma RiemannInt_P23 :
forall (f:R -> R) (a b c:R),
Riemann_integrable f a b -> a <= c <= b -> Riemann_integrable f c b.
Proof.
unfold Riemann_integrable; intros; elim (X eps); clear X;
intros phi [psi H0]; elim H; elim H0; clear H H0;
intros; assert (H3 : IsStepFun phi c b).
apply StepFun_P45 with a.
apply (pre phi).
split; assumption.
assert (H4 : IsStepFun psi c b).
apply StepFun_P45 with a.
apply (pre psi).
split; assumption.
split with (mkStepFun H3); split with (mkStepFun H4); split.
simpl; intros; apply H.
replace (Rmax a b) with (Rmax c b).
elim H5; intros; split; try assumption.
apply Rle_trans with (Rmin c b); try assumption.
rewrite Rmin_left; eauto using Rle_trans.
rewrite Rmin_left; eauto using Rle_trans.
rewrite Rmax_right; eauto using Rle_trans.
rewrite Rmax_right; eauto using Rle_trans.
rewrite Rabs_right.
assert (H5 : IsStepFun psi a c).
apply StepFun_P46 with b.
apply (pre psi).
apply StepFun_P6; assumption.
replace (RiemannInt_SF (mkStepFun H4)) with
(RiemannInt_SF psi - RiemannInt_SF (mkStepFun H5)).
apply Rle_lt_trans with (RiemannInt_SF psi).
unfold Rminus; pattern (RiemannInt_SF psi) at 2;
rewrite <- Rplus_0_r; apply Rplus_le_compat_l; rewrite <- Ropp_0;
apply Ropp_ge_le_contravar; apply Rle_ge;
replace 0 with (RiemannInt_SF (mkStepFun (StepFun_P4 a c 0))).
apply StepFun_P37; try assumption.
intros; simpl; unfold fct_cte;
apply Rle_trans with (Rabs (f x - phi x)).
apply Rabs_pos.
apply H.
rewrite Rmin_left; eauto using Rle_trans.
rewrite Rmax_right; eauto using Rle_trans.
destruct H6; split; left.
assumption.
apply Rlt_le_trans with c; assumption.
rewrite StepFun_P18; ring.
apply Rle_lt_trans with (Rabs (RiemannInt_SF psi)).
apply RRle_abs.
assumption.
assert (H6 : IsStepFun psi a b).
apply (pre psi).
replace (RiemannInt_SF psi) with (RiemannInt_SF (mkStepFun H6)).
rewrite <- (StepFun_P43 H5 H4 H6); ring.
unfold RiemannInt_SF; case (Rle_dec a b); intro.
eapply StepFun_P17.
apply StepFun_P1.
simpl; apply StepFun_P1.
apply Ropp_eq_compat; eapply StepFun_P17.
apply StepFun_P1.
simpl; apply StepFun_P1.
apply Rle_ge; replace 0 with (RiemannInt_SF (mkStepFun (StepFun_P4 c b 0))).
apply StepFun_P37; try assumption.
intros; simpl; unfold fct_cte;
apply Rle_trans with (Rabs (f x - phi x)).
apply Rabs_pos.
apply H.
rewrite Rmin_left; eauto using Rle_trans.
rewrite Rmax_right; eauto using Rle_trans.
destruct H5; split; left.
apply Rle_lt_trans with c; assumption.
assumption.
rewrite StepFun_P18; ring.
Qed.
Lemma RiemannInt_P24 :
forall (f:R -> R) (a b c:R),
Riemann_integrable f a b ->
Riemann_integrable f b c -> Riemann_integrable f a c.
Proof.
intros; case (Rle_dec a b); case (Rle_dec b c); intros.
apply RiemannInt_P21 with b; assumption.
case (Rle_dec a c); intro.
apply RiemannInt_P22 with b; try assumption.
split; [ assumption | auto with real ].
apply RiemannInt_P1; apply RiemannInt_P22 with b.
apply RiemannInt_P1; assumption.
split; auto with real.
case (Rle_dec a c); intro.
apply RiemannInt_P23 with b; try assumption.
split; auto with real.
apply RiemannInt_P1; apply RiemannInt_P23 with b.
apply RiemannInt_P1; assumption.
split; [ assumption | auto with real ].
apply RiemannInt_P1; apply RiemannInt_P21 with b;
auto with real || apply RiemannInt_P1; assumption.
Qed.
Lemma RiemannInt_P25 :
forall (f:R -> R) (a b c:R) (pr1:Riemann_integrable f a b)
(pr2:Riemann_integrable f b c) (pr3:Riemann_integrable f a c),
a <= b -> b <= c -> RiemannInt pr1 + RiemannInt pr2 = RiemannInt pr3.
Proof.
intros f a b c pr1 pr2 pr3 Hyp1 Hyp2; unfold RiemannInt;
case (RiemannInt_exists pr1 RinvN RinvN_cv) as (x1,HUn_cv1);
case (RiemannInt_exists pr2 RinvN RinvN_cv) as (x0,HUn_cv0);
case (RiemannInt_exists pr3 RinvN RinvN_cv) as (x,HUn_cv);
symmetry ; eapply UL_sequence.
apply HUn_cv.
unfold Un_cv; intros; assert (H0 : 0 < eps / 3).
unfold Rdiv; apply Rmult_lt_0_compat;
[ assumption | apply Rinv_0_lt_compat; prove_sup0 ].
destruct (HUn_cv1 _ H0) as (N1,H1); clear HUn_cv1; destruct (HUn_cv0 _ H0) as (N2,H2); clear HUn_cv0;
cut
(Un_cv
(fun n:nat =>
RiemannInt_SF (phi_sequence RinvN pr3 n) -
(RiemannInt_SF (phi_sequence RinvN pr1 n) +
RiemannInt_SF (phi_sequence RinvN pr2 n))) 0).
intro; elim (H3 _ H0); clear H3; intros N3 H3;
set (N0 := max (max N1 N2) N3); exists N0; intros;
unfold R_dist;
apply Rle_lt_trans with
(Rabs
(RiemannInt_SF (phi_sequence RinvN pr3 n) -
(RiemannInt_SF (phi_sequence RinvN pr1 n) +
RiemannInt_SF (phi_sequence RinvN pr2 n))) +
Rabs
(RiemannInt_SF (phi_sequence RinvN pr1 n) +
RiemannInt_SF (phi_sequence RinvN pr2 n) - (x1 + x0))).
replace (RiemannInt_SF (phi_sequence RinvN pr3 n) - (x1 + x0)) with
(RiemannInt_SF (phi_sequence RinvN pr3 n) -
(RiemannInt_SF (phi_sequence RinvN pr1 n) +
RiemannInt_SF (phi_sequence RinvN pr2 n)) +
(RiemannInt_SF (phi_sequence RinvN pr1 n) +
RiemannInt_SF (phi_sequence RinvN pr2 n) - (x1 + x0)));
[ apply Rabs_triang | ring ].
replace eps with (eps / 3 + eps / 3 + eps / 3).
rewrite Rplus_assoc; apply Rplus_lt_compat.
unfold R_dist in H3; cut (n >= N3)%nat.
intro; assert (H6 := H3 _ H5); unfold Rminus in H6; rewrite Ropp_0 in H6;
rewrite Rplus_0_r in H6; apply H6.
unfold ge; apply le_trans with N0;
[ unfold N0; apply le_max_r | assumption ].
apply Rle_lt_trans with
(Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n) - x1) +
Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n) - x0)).
replace
(RiemannInt_SF (phi_sequence RinvN pr1 n) +
RiemannInt_SF (phi_sequence RinvN pr2 n) - (x1 + x0)) with
(RiemannInt_SF (phi_sequence RinvN pr1 n) - x1 +
(RiemannInt_SF (phi_sequence RinvN pr2 n) - x0));
[ apply Rabs_triang | ring ].
apply Rplus_lt_compat.
unfold R_dist in H1; apply H1.
unfold ge; apply le_trans with N0;
[ apply le_trans with (max N1 N2);
[ apply le_max_l | unfold N0; apply le_max_l ]
| assumption ].
unfold R_dist in H2; apply H2.
unfold ge; apply le_trans with N0;
[ apply le_trans with (max N1 N2);
[ apply le_max_r | unfold N0; apply le_max_l ]
| assumption ].
apply Rmult_eq_reg_l with 3;
[ unfold Rdiv; repeat rewrite Rmult_plus_distr_l;
do 2 rewrite (Rmult_comm 3); repeat rewrite Rmult_assoc;
rewrite <- Rinv_l_sym; [ ring | discrR ]
| discrR ].
clear x HUn_cv x0 x1 eps H H0 N1 H1 N2 H2;
assert
(H1 :
exists psi1 : nat -> StepFun a b,
(forall n:nat,
(forall t:R,
Rmin a b <= t /\ t <= Rmax a b ->
Rabs (f t - phi_sequence RinvN pr1 n t) <= psi1 n t) /\
Rabs (RiemannInt_SF (psi1 n)) < RinvN n)).
split with (fun n:nat => proj1_sig (phi_sequence_prop RinvN pr1 n)); intro;
apply (proj2_sig (phi_sequence_prop RinvN pr1 n)).
assert
(H2 :
exists psi2 : nat -> StepFun b c,
(forall n:nat,
(forall t:R,
Rmin b c <= t /\ t <= Rmax b c ->
Rabs (f t - phi_sequence RinvN pr2 n t) <= psi2 n t) /\
Rabs (RiemannInt_SF (psi2 n)) < RinvN n)).
split with (fun n:nat => proj1_sig (phi_sequence_prop RinvN pr2 n)); intro;
apply (proj2_sig (phi_sequence_prop RinvN pr2 n)).
assert
(H3 :
exists psi3 : nat -> StepFun a c,
(forall n:nat,
(forall t:R,
Rmin a c <= t /\ t <= Rmax a c ->
Rabs (f t - phi_sequence RinvN pr3 n t) <= psi3 n t) /\
Rabs (RiemannInt_SF (psi3 n)) < RinvN n)).
split with (fun n:nat => proj1_sig (phi_sequence_prop RinvN pr3 n)); intro;
apply (proj2_sig (phi_sequence_prop RinvN pr3 n)).
elim H1; clear H1; intros psi1 H1; elim H2; clear H2; intros psi2 H2; elim H3;
clear H3; intros psi3 H3; assert (H := RinvN_cv);
unfold Un_cv; intros; assert (H4 : 0 < eps / 3).
unfold Rdiv; apply Rmult_lt_0_compat;
[ assumption | apply Rinv_0_lt_compat; prove_sup0 ].
elim (H _ H4); clear H; intros N0 H;
assert (H5 : forall n:nat, (n >= N0)%nat -> RinvN n < eps / 3).
intros;
replace (pos (RinvN n)) with
(R_dist (mkposreal (/ (INR n + 1)) (RinvN_pos n)) 0).
apply H; assumption.
unfold R_dist; unfold Rminus; rewrite Ropp_0;
rewrite Rplus_0_r; apply Rabs_right; apply Rle_ge;
left; apply (cond_pos (RinvN n)).
exists N0; intros; elim (H1 n); elim (H2 n); elim (H3 n); clear H1 H2 H3;
intros; unfold R_dist; unfold Rminus;
rewrite Ropp_0; rewrite Rplus_0_r;
set (phi1 := phi_sequence RinvN pr1 n) in H8 |- *;
set (phi2 := phi_sequence RinvN pr2 n) in H3 |- *;
set (phi3 := phi_sequence RinvN pr3 n) in H1 |- *;
assert (H10 : IsStepFun phi3 a b).
apply StepFun_P44 with c.
apply (pre phi3).
split; assumption.
assert (H11 : IsStepFun (psi3 n) a b).
apply StepFun_P44 with c.
apply (pre (psi3 n)).
split; assumption.
assert (H12 : IsStepFun phi3 b c).
apply StepFun_P45 with a.
apply (pre phi3).
split; assumption.
assert (H13 : IsStepFun (psi3 n) b c).
apply StepFun_P45 with a.
apply (pre (psi3 n)).
split; assumption.
replace (RiemannInt_SF phi3) with
(RiemannInt_SF (mkStepFun H10) + RiemannInt_SF (mkStepFun H12)).
apply Rle_lt_trans with
(Rabs (RiemannInt_SF (mkStepFun H10) - RiemannInt_SF phi1) +
Rabs (RiemannInt_SF (mkStepFun H12) - RiemannInt_SF phi2)).
replace
(RiemannInt_SF (mkStepFun H10) + RiemannInt_SF (mkStepFun H12) +
- (RiemannInt_SF phi1 + RiemannInt_SF phi2)) with
(RiemannInt_SF (mkStepFun H10) - RiemannInt_SF phi1 +
(RiemannInt_SF (mkStepFun H12) - RiemannInt_SF phi2));
[ apply Rabs_triang | ring ].
replace (RiemannInt_SF (mkStepFun H10) - RiemannInt_SF phi1) with
(RiemannInt_SF (mkStepFun (StepFun_P28 (-1) (mkStepFun H10) phi1))).
replace (RiemannInt_SF (mkStepFun H12) - RiemannInt_SF phi2) with
(RiemannInt_SF (mkStepFun (StepFun_P28 (-1) (mkStepFun H12) phi2))).
apply Rle_lt_trans with
(RiemannInt_SF
(mkStepFun
(StepFun_P32 (mkStepFun (StepFun_P28 (-1) (mkStepFun H10) phi1)))) +
RiemannInt_SF
(mkStepFun
(StepFun_P32 (mkStepFun (StepFun_P28 (-1) (mkStepFun H12) phi2))))).
apply Rle_trans with
(Rabs (RiemannInt_SF (mkStepFun (StepFun_P28 (-1) (mkStepFun H10) phi1))) +
RiemannInt_SF
(mkStepFun
(StepFun_P32 (mkStepFun (StepFun_P28 (-1) (mkStepFun H12) phi2))))).
apply Rplus_le_compat_l.
apply StepFun_P34; try assumption.
do 2
rewrite <-
(Rplus_comm
(RiemannInt_SF
(mkStepFun
(StepFun_P32 (mkStepFun (StepFun_P28 (-1) (mkStepFun H12) phi2))))))
; apply Rplus_le_compat_l; apply StepFun_P34; try assumption.
apply Rle_lt_trans with
(RiemannInt_SF (mkStepFun (StepFun_P28 1 (mkStepFun H11) (psi1 n))) +
RiemannInt_SF (mkStepFun (StepFun_P28 1 (mkStepFun H13) (psi2 n)))).
apply Rle_trans with
(RiemannInt_SF
(mkStepFun
(StepFun_P32 (mkStepFun (StepFun_P28 (-1) (mkStepFun H10) phi1)))) +
RiemannInt_SF (mkStepFun (StepFun_P28 1 (mkStepFun H13) (psi2 n)))).
apply Rplus_le_compat_l; apply StepFun_P37; try assumption.
intros; simpl; rewrite Rmult_1_l;
apply Rle_trans with (Rabs (f x - phi3 x) + Rabs (f x - phi2 x)).
rewrite <- (Rabs_Ropp (f x - phi3 x)); rewrite Ropp_minus_distr;
replace (phi3 x + -1 * phi2 x) with (phi3 x - f x + (f x - phi2 x));
[ apply Rabs_triang | ring ].
apply Rplus_le_compat.
apply H1.
elim H14; intros; split.
rewrite Rmin_left; eauto using Rle_trans.
apply Rle_trans with b; try assumption.
left; assumption.
rewrite Rmax_right; eauto using Rle_trans.
left; assumption.
apply H3.
elim H14; intros; split.
rewrite Rmin_left; eauto using Rle_trans.
left; assumption.
rewrite Rmax_right; eauto using Rle_trans.
left; assumption.
do 2
rewrite <-
(Rplus_comm
(RiemannInt_SF (mkStepFun (StepFun_P28 1 (mkStepFun H13) (psi2 n)))))
; apply Rplus_le_compat_l; apply StepFun_P37; try assumption.
intros; simpl; rewrite Rmult_1_l;
apply Rle_trans with (Rabs (f x - phi3 x) + Rabs (f x - phi1 x)).
rewrite <- (Rabs_Ropp (f x - phi3 x)); rewrite Ropp_minus_distr;
replace (phi3 x + -1 * phi1 x) with (phi3 x - f x + (f x - phi1 x));
[ apply Rabs_triang | ring ].
apply Rplus_le_compat.
apply H1.
elim H14; intros; split.
rewrite Rmin_left; eauto using Rle_trans.
left; assumption.
rewrite Rmax_right; eauto using Rle_trans.
apply Rle_trans with b.
left; assumption.
assumption.
apply H8.
elim H14; intros; split.
rewrite Rmin_left; trivial.
left; assumption.
rewrite Rmax_right; trivial.
left; assumption.
do 2 rewrite StepFun_P30.
do 2 rewrite Rmult_1_l;
replace
(RiemannInt_SF (mkStepFun H11) + RiemannInt_SF (psi1 n) +
(RiemannInt_SF (mkStepFun H13) + RiemannInt_SF (psi2 n))) with
(RiemannInt_SF (psi3 n) + RiemannInt_SF (psi1 n) + RiemannInt_SF (psi2 n)).
replace eps with (eps / 3 + eps / 3 + eps / 3).
repeat rewrite Rplus_assoc; repeat apply Rplus_lt_compat.
apply Rle_lt_trans with (Rabs (RiemannInt_SF (psi3 n))).
apply RRle_abs.
apply Rlt_trans with (pos (RinvN n)).
assumption.
apply H5; assumption.
apply Rle_lt_trans with (Rabs (RiemannInt_SF (psi1 n))).
apply RRle_abs.
apply Rlt_trans with (pos (RinvN n)).
assumption.
apply H5; assumption.
apply Rle_lt_trans with (Rabs (RiemannInt_SF (psi2 n))).
apply RRle_abs.
apply Rlt_trans with (pos (RinvN n)).
assumption.
apply H5; assumption.
apply Rmult_eq_reg_l with 3;
[ unfold Rdiv; repeat rewrite Rmult_plus_distr_l;
do 2 rewrite (Rmult_comm 3); repeat rewrite Rmult_assoc;
rewrite <- Rinv_l_sym; [ ring | discrR ]
| discrR ].
replace (RiemannInt_SF (psi3 n)) with
(RiemannInt_SF (mkStepFun (pre (psi3 n)))).
rewrite <- (StepFun_P43 H11 H13 (pre (psi3 n))); ring.
reflexivity.
rewrite StepFun_P30; ring.
rewrite StepFun_P30; ring.
apply (StepFun_P43 H10 H12 (pre phi3)).
Qed.
Lemma RiemannInt_P26 :
forall (f:R -> R) (a b c:R) (pr1:Riemann_integrable f a b)
(pr2:Riemann_integrable f b c) (pr3:Riemann_integrable f a c),
RiemannInt pr1 + RiemannInt pr2 = RiemannInt pr3.
Proof.
intros; destruct (Rle_dec a b) as [Hle|Hnle]; destruct (Rle_dec b c) as [Hle'|Hnle'].
apply RiemannInt_P25; assumption.
destruct (Rle_dec a c) as [Hle''|Hnle''].
assert (H : c <= b).
auto with real.
rewrite <- (RiemannInt_P25 pr3 (RiemannInt_P1 pr2) pr1 Hle'' H);
rewrite (RiemannInt_P8 pr2 (RiemannInt_P1 pr2)); ring.
assert (H : c <= a).
auto with real.
rewrite (RiemannInt_P8 pr2 (RiemannInt_P1 pr2));
rewrite <- (RiemannInt_P25 (RiemannInt_P1 pr3) pr1 (RiemannInt_P1 pr2) H Hle);
rewrite (RiemannInt_P8 pr3 (RiemannInt_P1 pr3)); ring.
assert (H : b <= a).
auto with real.
destruct (Rle_dec a c) as [Hle''|Hnle''].
rewrite <- (RiemannInt_P25 (RiemannInt_P1 pr1) pr3 pr2 H Hle'');
rewrite (RiemannInt_P8 pr1 (RiemannInt_P1 pr1)); ring.
assert (H0 : c <= a).
auto with real.
rewrite (RiemannInt_P8 pr1 (RiemannInt_P1 pr1));
rewrite <- (RiemannInt_P25 pr2 (RiemannInt_P1 pr3) (RiemannInt_P1 pr1) Hle' H0);
rewrite (RiemannInt_P8 pr3 (RiemannInt_P1 pr3)); ring.
rewrite (RiemannInt_P8 pr1 (RiemannInt_P1 pr1));
rewrite (RiemannInt_P8 pr2 (RiemannInt_P1 pr2));
rewrite (RiemannInt_P8 pr3 (RiemannInt_P1 pr3));
rewrite <-
(RiemannInt_P25 (RiemannInt_P1 pr2) (RiemannInt_P1 pr1) (RiemannInt_P1 pr3))
; [ ring | auto with real | auto with real ].
Qed.
Lemma RiemannInt_P27 :
forall (f:R -> R) (a b x:R) (h:a <= b)
(C0:forall x:R, a <= x <= b -> continuity_pt f x),
a < x < b -> derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x).
Proof.
intro f; intros; elim H; clear H; intros; assert (H1 : continuity_pt f x).
apply C0; split; left; assumption.
unfold derivable_pt_lim; intros; assert (Hyp : 0 < eps / 2).
unfold Rdiv; apply Rmult_lt_0_compat;
[ assumption | apply Rinv_0_lt_compat; prove_sup0 ].
elim (H1 _ Hyp); unfold dist, D_x, no_cond; simpl;
unfold R_dist; intros; set (del := Rmin x0 (Rmin (b - x) (x - a)));
assert (H4 : 0 < del).
unfold del; unfold Rmin; case (Rle_dec (b - x) (x - a));
intro.
destruct (Rle_dec x0 (b - x)) as [Hle|Hnle];
[ elim H3; intros; assumption | apply Rlt_Rminus; assumption ].
destruct (Rle_dec x0 (x - a)) as [Hle'|Hnle'];
[ elim H3; intros; assumption | apply Rlt_Rminus; assumption ].
split with (mkposreal _ H4); intros;
assert (H7 : Riemann_integrable f x (x + h0)).
destruct (Rle_dec x (x + h0)) as [Hle''|Hnle''].
apply continuity_implies_RiemannInt; try assumption.
intros; apply C0; elim H7; intros; split.
apply Rle_trans with x; [ left; assumption | assumption ].
apply Rle_trans with (x + h0).
assumption.
left; apply Rlt_le_trans with (x + del).
apply Rplus_lt_compat_l; apply Rle_lt_trans with (Rabs h0);
[ apply RRle_abs | apply H6 ].
unfold del; apply Rle_trans with (x + Rmin (b - x) (x - a)).
apply Rplus_le_compat_l; apply Rmin_r.
pattern b at 2; replace b with (x + (b - x));
[ apply Rplus_le_compat_l; apply Rmin_l | ring ].
apply RiemannInt_P1; apply continuity_implies_RiemannInt; auto with real.
intros; apply C0; elim H7; intros; split.
apply Rle_trans with (x + h0).
left; apply Rle_lt_trans with (x - del).
unfold del; apply Rle_trans with (x - Rmin (b - x) (x - a)).
pattern a at 1; replace a with (x + (a - x)); [ idtac | ring ].
unfold Rminus; apply Rplus_le_compat_l; apply Ropp_le_cancel.
rewrite Ropp_involutive; rewrite Ropp_plus_distr; rewrite Ropp_involutive;
rewrite (Rplus_comm x); apply Rmin_r.
unfold Rminus; apply Rplus_le_compat_l; apply Ropp_le_cancel.
do 2 rewrite Ropp_involutive; apply Rmin_r.
unfold Rminus; apply Rplus_lt_compat_l; apply Ropp_lt_cancel.
rewrite Ropp_involutive; apply Rle_lt_trans with (Rabs h0);
[ rewrite <- Rabs_Ropp; apply RRle_abs | apply H6 ].
assumption.
apply Rle_trans with x; [ assumption | left; assumption ].
replace (primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x)
with (RiemannInt H7).
replace (f x) with (RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0).
replace
(RiemannInt H7 / h0 - RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0)
with ((RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))) / h0).
replace (RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))) with
(RiemannInt (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x)))).
unfold Rdiv; rewrite Rabs_mult; destruct (Rle_dec x (x + h0)) as [Hle|Hnle].
apply Rle_lt_trans with
(RiemannInt
(RiemannInt_P16
(RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x)))) *
Rabs (/ h0)).
do 2 rewrite <- (Rmult_comm (Rabs (/ h0))); apply Rmult_le_compat_l.
apply Rabs_pos.
apply
(RiemannInt_P17 (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x)))
(RiemannInt_P16
(RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x)))));
assumption.
apply Rle_lt_trans with
(RiemannInt (RiemannInt_P14 x (x + h0) (eps / 2)) * Rabs (/ h0)).
do 2 rewrite <- (Rmult_comm (Rabs (/ h0))); apply Rmult_le_compat_l.
apply Rabs_pos.
apply RiemannInt_P19; try assumption.
intros; replace (f x1 + -1 * fct_cte (f x) x1) with (f x1 - f x).
unfold fct_cte; destruct (Req_dec x x1) as [H9|H9].
rewrite H9; unfold Rminus; rewrite Rplus_opp_r; rewrite Rabs_R0; left;
assumption.
elim H3; intros; left; apply H11.
repeat split.
assumption.
rewrite Rabs_right.
apply Rplus_lt_reg_l with x; replace (x + (x1 - x)) with x1; [ idtac | ring ].
apply Rlt_le_trans with (x + h0).
elim H8; intros; assumption.
apply Rplus_le_compat_l; apply Rle_trans with del.
left; apply Rle_lt_trans with (Rabs h0); [ apply RRle_abs | assumption ].
unfold del; apply Rmin_l.
apply Rge_minus; apply Rle_ge; left; elim H8; intros; assumption.
unfold fct_cte; ring.
rewrite RiemannInt_P15.
rewrite Rmult_assoc; replace ((x + h0 - x) * Rabs (/ h0)) with 1.
rewrite Rmult_1_r; unfold Rdiv; apply Rmult_lt_reg_l with 2;
[ prove_sup0
| rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc;
rewrite <- Rinv_r_sym;
[ rewrite Rmult_1_l; pattern eps at 1; rewrite <- Rplus_0_r;
rewrite double; apply Rplus_lt_compat_l; assumption
| discrR ] ].
rewrite Rabs_right.
replace (x + h0 - x) with h0; [ idtac | ring ].
apply Rinv_r_sym.
assumption.
apply Rle_ge; left; apply Rinv_0_lt_compat.
elim Hle; intro.
apply Rplus_lt_reg_l with x; rewrite Rplus_0_r; assumption.
elim H5; symmetry ; apply Rplus_eq_reg_l with x; rewrite Rplus_0_r;
assumption.
apply Rle_lt_trans with
(RiemannInt
(RiemannInt_P16
(RiemannInt_P1
(RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x))))) *
Rabs (/ h0)).
do 2 rewrite <- (Rmult_comm (Rabs (/ h0))); apply Rmult_le_compat_l.
apply Rabs_pos.
replace
(RiemannInt (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x)))) with
(-
RiemannInt
(RiemannInt_P1 (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x))))).
rewrite Rabs_Ropp;
apply
(RiemannInt_P17
(RiemannInt_P1
(RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x))))
(RiemannInt_P16
(RiemannInt_P1
(RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x))))));
auto with real.
symmetry ; apply RiemannInt_P8.
apply Rle_lt_trans with
(RiemannInt (RiemannInt_P14 (x + h0) x (eps / 2)) * Rabs (/ h0)).
do 2 rewrite <- (Rmult_comm (Rabs (/ h0))); apply Rmult_le_compat_l.
apply Rabs_pos.
apply RiemannInt_P19.
auto with real.
intros; replace (f x1 + -1 * fct_cte (f x) x1) with (f x1 - f x).
unfold fct_cte; case (Req_dec x x1); intro.
rewrite H9; unfold Rminus; rewrite Rplus_opp_r; rewrite Rabs_R0; left;
assumption.
elim H3; intros; left; apply H11.
repeat split.
assumption.
rewrite Rabs_left.
apply Rplus_lt_reg_l with (x1 - x0); replace (x1 - x0 + x0) with x1;
[ idtac | ring ].
replace (x1 - x0 + - (x1 - x)) with (x - x0); [ idtac | ring ].
apply Rle_lt_trans with (x + h0).
unfold Rminus; apply Rplus_le_compat_l; apply Ropp_le_cancel.
rewrite Ropp_involutive; apply Rle_trans with (Rabs h0).
rewrite <- Rabs_Ropp; apply RRle_abs.
apply Rle_trans with del;
[ left; assumption | unfold del; apply Rmin_l ].
elim H8; intros; assumption.
apply Rplus_lt_reg_l with x; rewrite Rplus_0_r;
replace (x + (x1 - x)) with x1; [ elim H8; intros; assumption | ring ].
unfold fct_cte; ring.
rewrite RiemannInt_P15.
rewrite Rmult_assoc; replace ((x - (x + h0)) * Rabs (/ h0)) with 1.
rewrite Rmult_1_r; unfold Rdiv; apply Rmult_lt_reg_l with 2;
[ prove_sup0
| rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc;
rewrite <- Rinv_r_sym;
[ rewrite Rmult_1_l; pattern eps at 1; rewrite <- Rplus_0_r;
rewrite double; apply Rplus_lt_compat_l; assumption
| discrR ] ].
rewrite Rabs_left.
replace (x - (x + h0)) with (- h0); [ idtac | ring ].
rewrite Ropp_mult_distr_l_reverse; rewrite Ropp_mult_distr_r_reverse;
rewrite Ropp_involutive; apply Rinv_r_sym.
assumption.
apply Rinv_lt_0_compat.
assert (H8 : x + h0 < x).
auto with real.
apply Rplus_lt_reg_l with x; rewrite Rplus_0_r; assumption.
rewrite
(RiemannInt_P13 H7 (RiemannInt_P14 x (x + h0) (f x))
(RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x))))
.
ring.
unfold Rdiv, Rminus; rewrite Rmult_plus_distr_r; ring.
rewrite RiemannInt_P15; apply Rmult_eq_reg_l with h0;
[ unfold Rdiv; rewrite (Rmult_comm h0); repeat rewrite Rmult_assoc;
rewrite <- Rinv_l_sym; [ ring | assumption ]
| assumption ].
cut (a <= x + h0).
cut (x + h0 <= b).
intros; unfold primitive.
assert (H10: a <= x) by (left; assumption).
assert (H11: x <= b) by (left; assumption).
decide (Rle_dec a (x + h0)) with H9; decide (Rle_dec (x + h0) b) with H8;
decide (Rle_dec a x) with H10; decide (Rle_dec x b) with H11.
rewrite <- (RiemannInt_P26 (FTC_P1 h C0 H10 H11) H7 (FTC_P1 h C0 H9 H8)); ring.
apply Rplus_le_reg_l with (- x); replace (- x + (x + h0)) with h0;
[ idtac | ring ].
rewrite Rplus_comm; apply Rle_trans with (Rabs h0).
apply RRle_abs.
apply Rle_trans with del;
[ left; assumption
| unfold del; apply Rle_trans with (Rmin (b - x) (x - a));
[ apply Rmin_r | apply Rmin_l ] ].
apply Ropp_le_cancel; apply Rplus_le_reg_l with x;
replace (x + - (x + h0)) with (- h0); [ idtac | ring ].
apply Rle_trans with (Rabs h0);
[ rewrite <- Rabs_Ropp; apply RRle_abs
| apply Rle_trans with del;
[ left; assumption
| unfold del; apply Rle_trans with (Rmin (b - x) (x - a));
apply Rmin_r ] ].
Qed.
Lemma RiemannInt_P28 :
forall (f:R -> R) (a b x:R) (h:a <= b)
(C0:forall x:R, a <= x <= b -> continuity_pt f x),
a <= x <= b -> derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x).
Proof.
intro f; intros; elim h; intro.
elim H; clear H; intros; elim H; intro.
elim H1; intro.
apply RiemannInt_P27; split; assumption.
set
(f_b := fun x:R => f b * (x - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)));
rewrite H3.
assert (H4 : derivable_pt_lim f_b b (f b)).
unfold f_b; pattern (f b) at 2; replace (f b) with (f b + 0).
change
(derivable_pt_lim
((fct_cte (f b) * (id - fct_cte b))%F +
fct_cte (RiemannInt (FTC_P1 h C0 h (Rle_refl b)))) b (
f b + 0)).
apply derivable_pt_lim_plus.
pattern (f b) at 2;
replace (f b) with (0 * (id - fct_cte b)%F b + fct_cte (f b) b * 1).
apply derivable_pt_lim_mult.
apply derivable_pt_lim_const.
replace 1 with (1 - 0); [ idtac | ring ].
apply derivable_pt_lim_minus.
apply derivable_pt_lim_id.
apply derivable_pt_lim_const.
unfold fct_cte; ring.
apply derivable_pt_lim_const.
ring.
unfold derivable_pt_lim; intros; elim (H4 _ H5); intros;
assert (H7 : continuity_pt f b).
apply C0; split; [ left; assumption | right; reflexivity ].
assert (H8 : 0 < eps / 2).
unfold Rdiv; apply Rmult_lt_0_compat;
[ assumption | apply Rinv_0_lt_compat; prove_sup0 ].
elim (H7 _ H8); unfold D_x, no_cond, dist; simpl;
unfold R_dist; intros; set (del := Rmin x0 (Rmin x1 (b - a)));
assert (H10 : 0 < del).
unfold del; unfold Rmin; case (Rle_dec x1 (b - a)); intros.
destruct (Rle_dec x0 x1) as [Hle|Hnle];
[ apply (cond_pos x0) | elim H9; intros; assumption ].
destruct (Rle_dec x0 (b - a)) as [Hle'|Hnle'];
[ apply (cond_pos x0) | apply Rlt_Rminus; assumption ].
split with (mkposreal _ H10); intros; destruct (Rcase_abs h0) as [Hle|Hnle].
assert (H14 : b + h0 < b).
pattern b at 2; rewrite <- Rplus_0_r; apply Rplus_lt_compat_l;
assumption.
assert (H13 : Riemann_integrable f (b + h0) b).
apply continuity_implies_RiemannInt.
left; assumption.
intros; apply C0; elim H13; intros; split; try assumption.
apply Rle_trans with (b + h0); try assumption.
apply Rplus_le_reg_l with (- a - h0).
replace (- a - h0 + a) with (- h0); [ idtac | ring ].
replace (- a - h0 + (b + h0)) with (b - a); [ idtac | ring ].
apply Rle_trans with del.
apply Rle_trans with (Rabs h0).
rewrite <- Rabs_Ropp; apply RRle_abs.
left; assumption.
unfold del; apply Rle_trans with (Rmin x1 (b - a)); apply Rmin_r.
replace (primitive h (FTC_P1 h C0) (b + h0) - primitive h (FTC_P1 h C0) b)
with (- RiemannInt H13).
replace (f b) with (- RiemannInt (RiemannInt_P14 (b + h0) b (f b)) / h0).
rewrite <- Rabs_Ropp; unfold Rminus; unfold Rdiv;
rewrite Ropp_mult_distr_l_reverse; rewrite Ropp_plus_distr;
repeat rewrite Ropp_involutive;
replace
(RiemannInt H13 * / h0 +
- RiemannInt (RiemannInt_P14 (b + h0) b (f b)) * / h0) with
((RiemannInt H13 - RiemannInt (RiemannInt_P14 (b + h0) b (f b))) / h0).
replace (RiemannInt H13 - RiemannInt (RiemannInt_P14 (b + h0) b (f b))) with
(RiemannInt (RiemannInt_P10 (-1) H13 (RiemannInt_P14 (b + h0) b (f b)))).
unfold Rdiv; rewrite Rabs_mult;
apply Rle_lt_trans with
(RiemannInt
(RiemannInt_P16
(RiemannInt_P10 (-1) H13 (RiemannInt_P14 (b + h0) b (f b)))) *
Rabs (/ h0)).
do 2 rewrite <- (Rmult_comm (Rabs (/ h0))); apply Rmult_le_compat_l.
apply Rabs_pos.
apply
(RiemannInt_P17 (RiemannInt_P10 (-1) H13 (RiemannInt_P14 (b + h0) b (f b)))
(RiemannInt_P16
(RiemannInt_P10 (-1) H13 (RiemannInt_P14 (b + h0) b (f b)))));
left; assumption.
apply Rle_lt_trans with
(RiemannInt (RiemannInt_P14 (b + h0) b (eps / 2)) * Rabs (/ h0)).
do 2 rewrite <- (Rmult_comm (Rabs (/ h0))); apply Rmult_le_compat_l.
apply Rabs_pos.
apply RiemannInt_P19.
left; assumption.
intros; replace (f x2 + -1 * fct_cte (f b) x2) with (f x2 - f b).
unfold fct_cte; case (Req_dec b x2); intro.
rewrite H16; unfold Rminus; rewrite Rplus_opp_r; rewrite Rabs_R0;
left; assumption.
elim H9; intros; left; apply H18.
repeat split.
assumption.
rewrite <- Rabs_Ropp; rewrite Ropp_minus_distr; rewrite Rabs_right.
apply Rplus_lt_reg_l with (x2 - x1);
replace (x2 - x1 + (b - x2)) with (b - x1); [ idtac | ring ].
replace (x2 - x1 + x1) with x2; [ idtac | ring ].
apply Rlt_le_trans with (b + h0).
2: elim H15; intros; left; assumption.
unfold Rminus; apply Rplus_lt_compat_l; apply Ropp_lt_cancel;
rewrite Ropp_involutive; apply Rle_lt_trans with (Rabs h0).
rewrite <- Rabs_Ropp; apply RRle_abs.
apply Rlt_le_trans with del;
[ assumption
| unfold del; apply Rle_trans with (Rmin x1 (b - a));
[ apply Rmin_r | apply Rmin_l ] ].
apply Rle_ge; left; apply Rlt_Rminus; elim H15; intros; assumption.
unfold fct_cte; ring.
rewrite RiemannInt_P15.
rewrite Rmult_assoc; replace ((b - (b + h0)) * Rabs (/ h0)) with 1.
rewrite Rmult_1_r; unfold Rdiv; apply Rmult_lt_reg_l with 2;
[ prove_sup0
| rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc;
rewrite <- Rinv_r_sym;
[ rewrite Rmult_1_l; pattern eps at 1; rewrite <- Rplus_0_r;
rewrite double; apply Rplus_lt_compat_l; assumption
| discrR ] ].
rewrite Rabs_left.
apply Rmult_eq_reg_l with h0;
[ do 2 rewrite (Rmult_comm h0); rewrite Rmult_assoc;
rewrite Ropp_mult_distr_l_reverse; rewrite <- Rinv_l_sym;
[ ring | assumption ]
| assumption ].
apply Rinv_lt_0_compat; assumption.
rewrite
(RiemannInt_P13 H13 (RiemannInt_P14 (b + h0) b (f b))
(RiemannInt_P10 (-1) H13 (RiemannInt_P14 (b + h0) b (f b))))
; ring.
unfold Rdiv, Rminus; rewrite Rmult_plus_distr_r; ring.
rewrite RiemannInt_P15.
rewrite <- Ropp_mult_distr_l_reverse; apply Rmult_eq_reg_l with h0;
[ repeat rewrite (Rmult_comm h0); unfold Rdiv;
repeat rewrite Rmult_assoc; rewrite <- Rinv_l_sym;
[ ring | assumption ]
| assumption ].
cut (a <= b + h0).
cut (b + h0 <= b).
intros; unfold primitive; destruct (Rle_dec a (b + h0)) as [Hle'|Hnle'];
destruct (Rle_dec (b + h0) b) as [Hle''|[]]; destruct (Rle_dec a b) as [Hleab|[]]; destruct (Rle_dec b b) as [Hlebb|[]];
assumption || (right; reflexivity) || (try (left; assumption)).
rewrite <- (RiemannInt_P26 (FTC_P1 h C0 Hle' Hle'') H13 (FTC_P1 h C0 Hleab Hlebb)); ring.
elim Hnle'; assumption.
left; assumption.
apply Rplus_le_reg_l with (- a - h0).
replace (- a - h0 + a) with (- h0); [ idtac | ring ].
replace (- a - h0 + (b + h0)) with (b - a); [ idtac | ring ].
apply Rle_trans with del.
apply Rle_trans with (Rabs h0).
rewrite <- Rabs_Ropp; apply RRle_abs.
left; assumption.
unfold del; apply Rle_trans with (Rmin x1 (b - a)); apply Rmin_r.
cut (primitive h (FTC_P1 h C0) b = f_b b).
intro; cut (primitive h (FTC_P1 h C0) (b + h0) = f_b (b + h0)).
intro; rewrite H13; rewrite H14; apply H6.
assumption.
apply Rlt_le_trans with del;
[ assumption | unfold del; apply Rmin_l ].
assert (H14 : b < b + h0).
pattern b at 1; rewrite <- Rplus_0_r; apply Rplus_lt_compat_l.
assert (H14 := Rge_le _ _ Hnle); elim H14; intro.
assumption.
elim H11; symmetry ; assumption.
unfold primitive; destruct (Rle_dec a (b + h0)) as [Hle|[]];
destruct (Rle_dec (b + h0) b) as [Hle'|Hnle'];
[ elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ Hle' H14))
| unfold f_b; reflexivity
| left; apply Rlt_trans with b; assumption
| left; apply Rlt_trans with b; assumption ].
unfold f_b; unfold Rminus; rewrite Rplus_opp_r;
rewrite Rmult_0_r; rewrite Rplus_0_l; unfold primitive;
destruct (Rle_dec a b) as [Hle'|Hnle']; destruct (Rle_dec b b) as [Hle''|[]];
[ apply RiemannInt_P5
| right; reflexivity
| elim Hnle'; left; assumption
| right; reflexivity ].
(*****)
set (f_a := fun x:R => f a * (x - a)); rewrite <- H2;
assert (H3 : derivable_pt_lim f_a a (f a)).
unfold f_a;
change (derivable_pt_lim (fct_cte (f a) * (id - fct_cte a)%F) a (f a))
; pattern (f a) at 2;
replace (f a) with (0 * (id - fct_cte a)%F a + fct_cte (f a) a * 1).
apply derivable_pt_lim_mult.
apply derivable_pt_lim_const.
replace 1 with (1 - 0); [ idtac | ring ].
apply derivable_pt_lim_minus.
apply derivable_pt_lim_id.
apply derivable_pt_lim_const.
unfold fct_cte; ring.
unfold derivable_pt_lim; intros; elim (H3 _ H4); intros.
assert (H6 : continuity_pt f a).
apply C0; split; [ right; reflexivity | left; assumption ].
assert (H7 : 0 < eps / 2).
unfold Rdiv; apply Rmult_lt_0_compat;
[ assumption | apply Rinv_0_lt_compat; prove_sup0 ].
elim (H6 _ H7); unfold D_x, no_cond, dist; simpl;
unfold R_dist; intros.
set (del := Rmin x0 (Rmin x1 (b - a))).
assert (H9 : 0 < del).
unfold del; unfold Rmin.
case (Rle_dec x1 (b - a)); intros.
case (Rle_dec x0 x1); intro.
apply (cond_pos x0).
elim H8; intros; assumption.
case (Rle_dec x0 (b - a)); intro.
apply (cond_pos x0).
apply Rlt_Rminus; assumption.
split with (mkposreal _ H9).
intros; destruct (Rcase_abs h0) as [Hle|Hnle].
assert (H12 : a + h0 < a).
pattern a at 2; rewrite <- Rplus_0_r; apply Rplus_lt_compat_l;
assumption.
unfold primitive.
destruct (Rle_dec a (a + h0)) as [Hle'|Hnle'];
destruct (Rle_dec (a + h0) b) as [Hle''|Hnle''];
destruct (Rle_dec a a) as [Hleaa|[]];
destruct (Rle_dec a b) as [Hleab|[]];
try (left; assumption) || (right; reflexivity).
elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ Hle' H12)).
elim Hnle''; left; apply Rlt_trans with a; assumption.
rewrite RiemannInt_P9; replace 0 with (f_a a).
replace (f a * (a + h0 - a)) with (f_a (a + h0)).
apply H5; try assumption.
apply Rlt_le_trans with del;
[ assumption | unfold del; apply Rmin_l ].
unfold f_a; ring.
unfold f_a; ring.
elim Hnle''; left; apply Rlt_trans with a; assumption.
assert (H12 : a < a + h0).
pattern a at 1; rewrite <- Rplus_0_r; apply Rplus_lt_compat_l.
assert (H12 := Rge_le _ _ Hnle); elim H12; intro.
assumption.
elim H10; symmetry ; assumption.
assert (H13 : Riemann_integrable f a (a + h0)).
apply continuity_implies_RiemannInt.
left; assumption.
intros; apply C0; elim H13; intros; split; try assumption.
apply Rle_trans with (a + h0); try assumption.
apply Rplus_le_reg_l with (- b - h0).
replace (- b - h0 + b) with (- h0); [ idtac | ring ].
replace (- b - h0 + (a + h0)) with (a - b); [ idtac | ring ].
apply Ropp_le_cancel; rewrite Ropp_involutive; rewrite Ropp_minus_distr;
apply Rle_trans with del.
apply Rle_trans with (Rabs h0); [ apply RRle_abs | left; assumption ].
unfold del; apply Rle_trans with (Rmin x1 (b - a)); apply Rmin_r.
replace (primitive h (FTC_P1 h C0) (a + h0) - primitive h (FTC_P1 h C0) a)
with (RiemannInt H13).
replace (f a) with (RiemannInt (RiemannInt_P14 a (a + h0) (f a)) / h0).
replace
(RiemannInt H13 / h0 - RiemannInt (RiemannInt_P14 a (a + h0) (f a)) / h0)
with ((RiemannInt H13 - RiemannInt (RiemannInt_P14 a (a + h0) (f a))) / h0).
replace (RiemannInt H13 - RiemannInt (RiemannInt_P14 a (a + h0) (f a))) with
(RiemannInt (RiemannInt_P10 (-1) H13 (RiemannInt_P14 a (a + h0) (f a)))).
unfold Rdiv; rewrite Rabs_mult;
apply Rle_lt_trans with
(RiemannInt
(RiemannInt_P16
(RiemannInt_P10 (-1) H13 (RiemannInt_P14 a (a + h0) (f a)))) *
Rabs (/ h0)).
do 2 rewrite <- (Rmult_comm (Rabs (/ h0))); apply Rmult_le_compat_l.
apply Rabs_pos.
apply
(RiemannInt_P17 (RiemannInt_P10 (-1) H13 (RiemannInt_P14 a (a + h0) (f a)))
(RiemannInt_P16
(RiemannInt_P10 (-1) H13 (RiemannInt_P14 a (a + h0) (f a)))));
left; assumption.
apply Rle_lt_trans with
(RiemannInt (RiemannInt_P14 a (a + h0) (eps / 2)) * Rabs (/ h0)).
do 2 rewrite <- (Rmult_comm (Rabs (/ h0))); apply Rmult_le_compat_l.
apply Rabs_pos.
apply RiemannInt_P19.
left; assumption.
intros; replace (f x2 + -1 * fct_cte (f a) x2) with (f x2 - f a).
unfold fct_cte; case (Req_dec a x2); intro.
rewrite H15; unfold Rminus; rewrite Rplus_opp_r; rewrite Rabs_R0;
left; assumption.
elim H8; intros; left; apply H17; repeat split.
assumption.
rewrite Rabs_right.
apply Rplus_lt_reg_l with a; replace (a + (x2 - a)) with x2; [ idtac | ring ].
apply Rlt_le_trans with (a + h0).
elim H14; intros; assumption.
apply Rplus_le_compat_l; left; apply Rle_lt_trans with (Rabs h0).
apply RRle_abs.
apply Rlt_le_trans with del;
[ assumption
| unfold del; apply Rle_trans with (Rmin x1 (b - a));
[ apply Rmin_r | apply Rmin_l ] ].
apply Rle_ge; left; apply Rlt_Rminus; elim H14; intros; assumption.
unfold fct_cte; ring.
rewrite RiemannInt_P15.
rewrite Rmult_assoc; replace ((a + h0 - a) * Rabs (/ h0)) with 1.
rewrite Rmult_1_r; unfold Rdiv; apply Rmult_lt_reg_l with 2;
[ prove_sup0
| rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc;
rewrite <- Rinv_r_sym;
[ rewrite Rmult_1_l; pattern eps at 1; rewrite <- Rplus_0_r;
rewrite double; apply Rplus_lt_compat_l; assumption
| discrR ] ].
rewrite Rabs_right.
rewrite Rplus_comm; unfold Rminus; rewrite Rplus_assoc;
rewrite Rplus_opp_r; rewrite Rplus_0_r; rewrite <- Rinv_r_sym;
[ reflexivity | assumption ].
apply Rle_ge; left; apply Rinv_0_lt_compat; assert (H14 := Rge_le _ _ Hnle);
elim H14; intro.
assumption.
elim H10; symmetry ; assumption.
rewrite
(RiemannInt_P13 H13 (RiemannInt_P14 a (a + h0) (f a))
(RiemannInt_P10 (-1) H13 (RiemannInt_P14 a (a + h0) (f a))))
; ring.
unfold Rdiv, Rminus; rewrite Rmult_plus_distr_r; ring.
rewrite RiemannInt_P15.
rewrite Rplus_comm; unfold Rminus; rewrite Rplus_assoc;
rewrite Rplus_opp_r; rewrite Rplus_0_r; unfold Rdiv;
rewrite Rmult_assoc; rewrite <- Rinv_r_sym; [ ring | assumption ].
cut (a <= a + h0).
cut (a + h0 <= b).
intros; unfold primitive.
decide (Rle_dec (a+h0) b) with H14.
decide (Rle_dec a a) with (Rle_refl a).
decide (Rle_dec a (a+h0)) with H15.
decide (Rle_dec a b) with h.
rewrite RiemannInt_P9; unfold Rminus; rewrite Ropp_0;
rewrite Rplus_0_r; apply RiemannInt_P5.
2: left; assumption.
apply Rplus_le_reg_l with (- a); replace (- a + (a + h0)) with h0;
[ idtac | ring ].
rewrite Rplus_comm; apply Rle_trans with del;
[ apply Rle_trans with (Rabs h0); [ apply RRle_abs | left; assumption ]
| unfold del; apply Rle_trans with (Rmin x1 (b - a)); apply Rmin_r ].
(*****)
assert (H1 : x = a).
rewrite <- H0 in H; elim H; intros; apply Rle_antisym; assumption.
set (f_a := fun x:R => f a * (x - a)).
assert (H2 : derivable_pt_lim f_a a (f a)).
unfold f_a;
change (derivable_pt_lim (fct_cte (f a) * (id - fct_cte a)%F) a (f a))
; pattern (f a) at 2;
replace (f a) with (0 * (id - fct_cte a)%F a + fct_cte (f a) a * 1).
apply derivable_pt_lim_mult.
apply derivable_pt_lim_const.
replace 1 with (1 - 0); [ idtac | ring ].
apply derivable_pt_lim_minus.
apply derivable_pt_lim_id.
apply derivable_pt_lim_const.
unfold fct_cte; ring.
set
(f_b := fun x:R => f b * (x - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b))).
assert (H3 : derivable_pt_lim f_b b (f b)).
unfold f_b; pattern (f b) at 2; replace (f b) with (f b + 0).
change
(derivable_pt_lim
((fct_cte (f b) * (id - fct_cte b))%F +
fct_cte (RiemannInt (FTC_P1 h C0 h (Rle_refl b)))) b (
f b + 0)).
apply derivable_pt_lim_plus.
pattern (f b) at 2;
replace (f b) with (0 * (id - fct_cte b)%F b + fct_cte (f b) b * 1).
apply derivable_pt_lim_mult.
apply derivable_pt_lim_const.
replace 1 with (1 - 0); [ idtac | ring ].
apply derivable_pt_lim_minus.
apply derivable_pt_lim_id.
apply derivable_pt_lim_const.
unfold fct_cte; ring.
apply derivable_pt_lim_const.
ring.
unfold derivable_pt_lim; intros; elim (H2 _ H4); intros;
elim (H3 _ H4); intros; set (del := Rmin x0 x1).
assert (H7 : 0 < del).
unfold del; unfold Rmin; destruct (Rle_dec x0 x1) as [Hle|Hnle].
apply (cond_pos x0).
apply (cond_pos x1).
split with (mkposreal _ H7); intros; destruct (Rcase_abs h0) as [Hle|Hnle].
assert (H10 : a + h0 < a).
pattern a at 2; rewrite <- Rplus_0_r; apply Rplus_lt_compat_l;
assumption.
rewrite H1; unfold primitive.
apply (decide_left (Rle_dec a b) h); intro h'.
assert (H11:~ a<=a+h0) by auto using Rlt_not_le.
decide (Rle_dec a (a+h0)) with H11.
decide (Rle_dec a a) with (Rle_refl a).
rewrite RiemannInt_P9; replace 0 with (f_a a).
replace (f a * (a + h0 - a)) with (f_a (a + h0)).
apply H5; try assumption.
apply Rlt_le_trans with del; try assumption.
unfold del; apply Rmin_l.
unfold f_a; ring.
unfold f_a; ring.
assert (H10 : a < a + h0).
pattern a at 1; rewrite <- Rplus_0_r; apply Rplus_lt_compat_l.
assert (H10 := Rge_le _ _ Hnle); elim H10; intro.
assumption.
elim H8; symmetry ; assumption.
rewrite H0 in H1; rewrite H1; unfold primitive.
decide (Rle_dec a b) with h.
decide (Rle_dec b b) with (Rle_refl b).
assert (H12 : a<=b+h0) by (eauto using Rlt_le_trans with real).
decide (Rle_dec a (b+h0)) with H12.
rewrite H0 in H10.
assert (H13 : ~b+h0<=b) by (auto using Rlt_not_le).
decide (Rle_dec (b+h0) b) with H13.
replace (RiemannInt (FTC_P1 h C0 hbis H11)) with (f_b b).
fold (f_b (b + h0)).
apply H6; try assumption.
apply Rlt_le_trans with del; try assumption.
unfold del; apply Rmin_r.
unfold f_b; unfold Rminus; rewrite Rplus_opp_r;
rewrite Rmult_0_r; rewrite Rplus_0_l; apply RiemannInt_P5.
Qed.
Lemma RiemannInt_P29 :
forall (f:R -> R) a b (h:a <= b)
(C0:forall x:R, a <= x <= b -> continuity_pt f x),
antiderivative f (primitive h (FTC_P1 h C0)) a b.
Proof.
intro f; intros; unfold antiderivative; split; try assumption; intros;
assert (H0 := RiemannInt_P28 h C0 H);
assert (H1 : derivable_pt (primitive h (FTC_P1 h C0)) x);
[ unfold derivable_pt; split with (f x); apply H0
| split with H1; symmetry ; apply derive_pt_eq_0; apply H0 ].
Qed.
Lemma RiemannInt_P30 :
forall (f:R -> R) (a b:R),
a <= b ->
(forall x:R, a <= x <= b -> continuity_pt f x) ->
{ g:R -> R | antiderivative f g a b }.
Proof.
intros; split with (primitive H (FTC_P1 H H0)); apply RiemannInt_P29.
Qed.
Record C1_fun : Type := mkC1
{c1 :> R -> R; diff0 : derivable c1; cont1 : continuity (derive c1 diff0)}.
Lemma RiemannInt_P31 :
forall (f:C1_fun) (a b:R),
a <= b -> antiderivative (derive f (diff0 f)) f a b.
Proof.
intro f; intros; unfold antiderivative; split; try assumption; intros;
split with (diff0 f x); reflexivity.
Qed.
Lemma RiemannInt_P32 :
forall (f:C1_fun) (a b:R), Riemann_integrable (derive f (diff0 f)) a b.
Proof.
intro f; intros; destruct (Rle_dec a b) as [Hle|Hnle];
[ apply continuity_implies_RiemannInt; try assumption; intros;
apply (cont1 f)
| assert (H : b <= a);
[ auto with real
| apply RiemannInt_P1; apply continuity_implies_RiemannInt;
try assumption; intros; apply (cont1 f) ] ].
Qed.
Lemma RiemannInt_P33 :
forall (f:C1_fun) (a b:R) (pr:Riemann_integrable (derive f (diff0 f)) a b),
a <= b -> RiemannInt pr = f b - f a.
Proof.
intro f; intros;
assert
(H0 : forall x:R, a <= x <= b -> continuity_pt (derive f (diff0 f)) x).
intros; apply (cont1 f).
rewrite (RiemannInt_P20 H (FTC_P1 H H0) pr);
assert (H1 := RiemannInt_P29 H H0); assert (H2 := RiemannInt_P31 f H);
elim (antiderivative_Ucte (derive f (diff0 f)) _ _ _ _ H1 H2);
intros C H3; repeat rewrite H3;
[ ring
| split; [ right; reflexivity | assumption ]
| split; [ assumption | right; reflexivity ] ].
Qed.
Lemma FTC_Riemann :
forall (f:C1_fun) (a b:R) (pr:Riemann_integrable (derive f (diff0 f)) a b),
RiemannInt pr = f b - f a.
Proof.
intro f; intros; destruct (Rle_dec a b) as [Hle|Hnle];
[ apply RiemannInt_P33; assumption
| assert (H : b <= a);
[ auto with real
| assert (H0 := RiemannInt_P1 pr); rewrite (RiemannInt_P8 pr H0);
rewrite (RiemannInt_P33 _ H0 H); ring ] ].
Qed.
(* RiemannInt *)
Lemma RiemannInt_const_bound :
forall f a b l u (h : Riemann_integrable f a b), a <= b ->
(forall x, a < x < b -> l <= f x <= u) ->
l * (b - a) <= RiemannInt h <= u * (b - a).
intros f a b l u ri ab intf.
rewrite <- !(fun l => RiemannInt_P15 (RiemannInt_P14 a b l)).
split; apply RiemannInt_P19; try assumption;
intros x intx; unfold fct_cte; destruct (intf x intx); assumption.
Qed.
Lemma Riemann_integrable_scal :
forall f a b k,
Riemann_integrable f a b ->
Riemann_integrable (fun x => k * f x) a b.
intros f a b k ri.
apply Riemann_integrable_ext with
(f := fun x => 0 + k * f x).
intros; ring.
apply (RiemannInt_P10 _ (RiemannInt_P14 _ _ 0) ri).
Qed.
Arguments Riemann_integrable_scal [f a b] k _ eps.
Lemma Riemann_integrable_Ropp :
forall f a b, Riemann_integrable f a b ->
Riemann_integrable (fun x => - f x) a b.
intros ff a b h.
apply Riemann_integrable_ext with (f := fun x => (-1) * ff x).
intros; ring.
apply Riemann_integrable_scal; assumption.
Qed.
Arguments Riemann_integrable_Ropp [f a b] _ eps.
|