1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
|
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * Copyright INRIA, CNRS and contributors *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
Require Import Lra.
Require Import Rbase.
Require Import PSeries_reg.
Require Import Rtrigo1.
Require Import Rtrigo_facts.
Require Import Ranalysis_reg.
Require Import Rfunctions.
Require Import AltSeries.
Require Import Rseries.
Require Import SeqProp.
Require Import Ranalysis5.
Require Import SeqSeries.
Require Import PartSum.
Require Import Lia.
Local Open Scope R_scope.
(*********************************************************)
(** * Preliminaries *)
(*********************************************************)
(** ** Various generic lemmas which probably should go somewhere else *)
Lemma Boule_half_to_interval : forall x,
Boule (/2) posreal_half x -> 0 <= x <= 1.
Proof.
unfold Boule, posreal_half; simpl.
intros x b; apply Rabs_def2 in b; destruct b; split; lra.
Qed.
Lemma Boule_lt : forall c r x,
Boule c r x -> Rabs x < Rabs c + r.
Proof.
unfold Boule; intros c r x h.
apply Rabs_def2 in h; destruct h; apply Rabs_def1;
(destruct (Rle_lt_dec 0 c);[rewrite Rabs_pos_eq; lra |
rewrite <- Rabs_Ropp, Rabs_pos_eq; lra]).
Qed.
(* The following lemma does not belong here. *)
Lemma Un_cv_ext : forall un vn,
(forall n, un n = vn n) ->
forall l, Un_cv un l ->
Un_cv vn l.
Proof.
intros un vn quv l P eps ep; destruct (P eps ep) as [N Pn]; exists N.
intro n; rewrite <- quv; apply Pn.
Qed.
(* The following two lemmas are general purposes about alternated series.
They do not belong here. *)
Lemma Alt_first_term_bound : forall f l N n,
Un_decreasing f -> Un_cv f 0 ->
Un_cv (sum_f_R0 (tg_alt f)) l ->
(N <= n)%nat ->
R_dist (sum_f_R0 (tg_alt f) n) l <= f N.
Proof.
intros f l.
assert (WLOG :
forall n P, (forall k, (0 < k)%nat -> P k) ->
((forall k, (0 < k)%nat -> P k) -> P 0%nat) -> P n).
clear.
intros [ | n] P Hs Ho;[solve[apply Ho, Hs] | apply Hs; auto with arith].
intros N; pattern N; apply WLOG; clear N.
intros [ | N] Npos n decr to0 cv nN.
lia.
assert (decr' : Un_decreasing (fun i => f (S N + i)%nat)).
intros k; replace (S N+S k)%nat with (S (S N+k)) by ring.
apply (decr (S N + k)%nat).
assert (to' : Un_cv (fun i => f (S N + i)%nat) 0).
intros eps ep; destruct (to0 eps ep) as [M PM].
exists M; intros k kM; apply PM; lia.
assert (cv' : Un_cv
(sum_f_R0 (tg_alt (fun i => ((-1) ^ S N * f(S N + i)%nat))))
(l - sum_f_R0 (tg_alt f) N)).
intros eps ep; destruct (cv eps ep) as [M PM]; exists M.
intros n' nM.
match goal with |- ?C => set (U := C) end.
assert (nM' : (n' + S N >= M)%nat) by lia.
generalize (PM _ nM'); unfold R_dist.
rewrite (tech2 (tg_alt f) N (n' + S N)).
assert (t : forall a b c, (a + b) - c = b - (c - a)) by (intros; ring).
rewrite t; clear t; unfold U, R_dist; clear U.
replace (n' + S N - S N)%nat with n' by lia.
rewrite <- (sum_eq (tg_alt (fun i => (-1) ^ S N * f(S N + i)%nat))).
tauto.
intros i _; unfold tg_alt.
rewrite <- Rmult_assoc, <- pow_add, !(plus_comm i); reflexivity.
lia.
assert (cv'' : Un_cv (sum_f_R0 (tg_alt (fun i => f (S N + i)%nat)))
((-1) ^ S N * (l - sum_f_R0 (tg_alt f) N))).
apply (Un_cv_ext (fun n => (-1) ^ S N *
sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat)) n)).
intros n0; rewrite scal_sum; apply sum_eq; intros i _.
unfold tg_alt; ring_simplify; replace (((-1) ^ S N) ^ 2) with 1.
ring.
rewrite <- pow_mult, mult_comm, pow_mult; replace ((-1) ^2) with 1 by ring.
rewrite pow1; reflexivity.
apply CV_mult.
solve[intros eps ep; exists 0%nat; intros; rewrite R_dist_eq; auto].
assumption.
destruct (even_odd_cor N) as [p [Neven | Nodd]].
rewrite Neven; destruct (alternated_series_ineq _ _ p decr to0 cv) as [B C].
case (even_odd_cor n) as [p' [neven | nodd]].
rewrite neven.
destruct (alternated_series_ineq _ _ p' decr to0 cv) as [D E].
unfold R_dist; rewrite Rabs_pos_eq;[ | lra].
assert (dist : (p <= p')%nat) by lia.
assert (t := decreasing_prop _ _ _ (CV_ALT_step1 f decr) dist).
apply Rle_trans with (sum_f_R0 (tg_alt f) (2 * p) - l).
unfold Rminus; apply Rplus_le_compat_r; exact t.
match goal with _ : ?a <= l, _ : l <= ?b |- _ =>
replace (f (S (2 * p))) with (b - a) by
(rewrite tech5; unfold tg_alt; rewrite pow_1_odd; ring); lra
end.
rewrite nodd; destruct (alternated_series_ineq _ _ p' decr to0 cv) as [D E].
unfold R_dist; rewrite <- Rabs_Ropp, Rabs_pos_eq, Ropp_minus_distr;
[ | lra].
assert (dist : (p <= p')%nat) by lia.
apply Rle_trans with (l - sum_f_R0 (tg_alt f) (S (2 * p))).
unfold Rminus; apply Rplus_le_compat_l, Ropp_le_contravar.
solve[apply Rge_le, (growing_prop _ _ _ (CV_ALT_step0 f decr) dist)].
unfold Rminus; rewrite tech5, Ropp_plus_distr, <- Rplus_assoc.
unfold tg_alt at 2; rewrite pow_1_odd; lra.
rewrite Nodd; destruct (alternated_series_ineq _ _ p decr to0 cv) as [B _].
destruct (alternated_series_ineq _ _ (S p) decr to0 cv) as [_ C].
assert (keep : (2 * S p = S (S ( 2 * p)))%nat) by ring.
case (even_odd_cor n) as [p' [neven | nodd]].
rewrite neven;
destruct (alternated_series_ineq _ _ p' decr to0 cv) as [D E].
unfold R_dist; rewrite Rabs_pos_eq;[ | lra].
assert (dist : (S p < S p')%nat) by lia.
apply Rle_trans with (sum_f_R0 (tg_alt f) (2 * S p) - l).
unfold Rminus; apply Rplus_le_compat_r,
(decreasing_prop _ _ _ (CV_ALT_step1 f decr)).
lia.
rewrite keep, tech5; unfold tg_alt at 2; rewrite <- keep, pow_1_even.
lra.
rewrite nodd; destruct (alternated_series_ineq _ _ p' decr to0 cv) as [D E].
unfold R_dist; rewrite <- Rabs_Ropp, Rabs_pos_eq;[ | lra].
rewrite Ropp_minus_distr.
apply Rle_trans with (l - sum_f_R0 (tg_alt f) (S (2 * p))).
unfold Rminus; apply Rplus_le_compat_l, Ropp_le_contravar, Rge_le,
(growing_prop _ _ _ (CV_ALT_step0 f decr)); lia.
generalize C; rewrite keep, tech5; unfold tg_alt.
rewrite <- keep, pow_1_even.
assert (t : forall a b c, a <= b + 1 * c -> a - b <= c) by (intros; lra).
solve[apply t].
clear WLOG; intros Hyp [ | n] decr to0 cv _.
generalize (alternated_series_ineq f l 0 decr to0 cv).
unfold R_dist, tg_alt; simpl; rewrite !Rmult_1_l, !Rmult_1_r.
assert (f 1%nat <= f 0%nat) by apply decr.
intros [A B]; rewrite Rabs_pos_eq; lra.
apply Rle_trans with (f 1%nat).
apply (Hyp 1%nat (le_n 1) (S n) decr to0 cv).
lia.
solve[apply decr].
Qed.
Lemma Alt_CVU : forall (f : nat -> R -> R) g h c r,
(forall x, Boule c r x ->Un_decreasing (fun n => f n x)) ->
(forall x, Boule c r x -> Un_cv (fun n => f n x) 0) ->
(forall x, Boule c r x ->
Un_cv (sum_f_R0 (tg_alt (fun i => f i x))) (g x)) ->
(forall x n, Boule c r x -> f n x <= h n) ->
(Un_cv h 0) ->
CVU (fun N x => sum_f_R0 (tg_alt (fun i => f i x)) N) g c r.
Proof.
intros f g h c r decr to0 to_g bound bound0 eps ep.
assert (ep' : 0 <eps/2) by lra.
destruct (bound0 _ ep) as [N Pn]; exists N.
intros n y nN dy.
rewrite <- Rabs_Ropp, Ropp_minus_distr; apply Rle_lt_trans with (f n y).
solve[apply (Alt_first_term_bound (fun i => f i y) (g y) n n); auto].
apply Rle_lt_trans with (h n).
apply bound; assumption.
clear - nN Pn.
generalize (Pn _ nN); unfold R_dist; rewrite Rminus_0_r; intros t.
apply Rabs_def2 in t; tauto.
Qed.
(* The following lemmas are general purpose lemmas about squares.
They do not belong here *)
Lemma pow2_ge_0 : forall x, 0 <= x^2.
Proof.
intros x; destruct (Rle_lt_dec 0 x).
replace (x ^ 2) with (x * x) by field.
apply Rmult_le_pos; assumption.
replace (x ^ 2) with ((-x) * (-x)) by field.
apply Rmult_le_pos; lra.
Qed.
Lemma pow2_abs : forall x, Rabs x^2 = x^2.
Proof.
intros x; destruct (Rle_lt_dec 0 x).
rewrite Rabs_pos_eq;[field | assumption].
rewrite <- Rabs_Ropp, Rabs_pos_eq;[field | lra].
Qed.
(** ** Properties of tangent *)
(** *** Derivative of tangent *)
Lemma derivable_pt_tan : forall x, -PI/2 < x < PI/2 ->
derivable_pt tan x.
Proof.
intros x xint.
unfold derivable_pt, tan.
apply derivable_pt_div ; [reg | reg | ].
apply Rgt_not_eq.
unfold Rgt ; apply cos_gt_0;
[unfold Rdiv; rewrite <- Ropp_mult_distr_l_reverse; fold (-PI/2) |];tauto.
Qed.
Lemma derive_pt_tan : forall x,
forall (Pr1: -PI/2 < x < PI/2),
derive_pt tan x (derivable_pt_tan x Pr1) = 1 + (tan x)^2.
Proof.
intros x pr.
assert (cos x <> 0).
apply Rgt_not_eq, cos_gt_0; rewrite <- ?Ropp_div; tauto.
unfold tan; reg; unfold pow, Rsqr; field; assumption.
Qed.
(** *** Proof that tangent is a bijection *)
(* to be removed? *)
Lemma derive_increasing_interv : forall (a b : R) (f : R -> R),
a < b ->
forall (pr:forall x, a < x < b -> derivable_pt f x),
(forall t:R, forall (t_encad : a < t < b), 0 < derive_pt f t (pr t t_encad)) ->
forall x y:R, a < x < b -> a < y < b -> x < y -> f x < f y.
Proof.
intros a b f a_lt_b pr Df_gt_0 x y x_encad y_encad x_lt_y.
assert (derivable_id_interv : forall c : R, x < c < y -> derivable_pt id c).
intros ; apply derivable_pt_id.
assert (derivable_f_interv : forall c : R, x < c < y -> derivable_pt f c).
intros c c_encad. apply pr. split.
apply Rlt_trans with (r2:=x) ; [exact (proj1 x_encad) | exact (proj1 c_encad)].
apply Rlt_trans with (r2:=y) ; [exact (proj2 c_encad) | exact (proj2 y_encad)].
assert (f_cont_interv : forall c : R, x <= c <= y -> continuity_pt f c).
intros c c_encad; apply derivable_continuous_pt ; apply pr. split.
apply Rlt_le_trans with (r2:=x) ; [exact (proj1 x_encad) | exact (proj1 c_encad)].
apply Rle_lt_trans with (r2:=y) ; [ exact (proj2 c_encad) | exact (proj2 y_encad)].
assert (id_cont_interv : forall c : R, x <= c <= y -> continuity_pt id c).
intros ; apply derivable_continuous_pt ; apply derivable_pt_id.
elim (MVT f id x y derivable_f_interv derivable_id_interv x_lt_y f_cont_interv id_cont_interv).
intros c Temp ; elim Temp ; clear Temp ; intros Pr eq.
replace (id y - id x) with (y - x) in eq by intuition.
replace (derive_pt id c (derivable_id_interv c Pr)) with 1 in eq.
assert (Hyp : f y - f x > 0).
rewrite Rmult_1_r in eq. rewrite <- eq.
apply Rmult_gt_0_compat.
apply Rgt_minus ; assumption.
assert (c_encad2 : a <= c < b).
split.
apply Rlt_le ; apply Rlt_trans with (r2:=x) ; [exact (proj1 x_encad) | exact (proj1 Pr)].
apply Rle_lt_trans with (r2:=y) ; [apply Rlt_le ; exact (proj2 Pr) | exact (proj2 y_encad)].
assert (c_encad : a < c < b).
split.
apply Rlt_trans with (r2:=x) ; [exact (proj1 x_encad) | exact (proj1 Pr)].
apply Rle_lt_trans with (r2:=y) ; [apply Rlt_le ; exact (proj2 Pr) | exact (proj2 y_encad)].
assert (Temp := Df_gt_0 c c_encad).
assert (Temp2 := pr_nu f c (derivable_f_interv c Pr) (pr c c_encad)).
rewrite Temp2 ; apply Temp.
apply Rminus_gt ; exact Hyp.
symmetry ; rewrite derive_pt_eq ; apply derivable_pt_lim_id.
Qed.
(* begin hide *)
Lemma plus_Rsqr_gt_0 : forall x, 1 + x ^ 2 > 0.
Proof.
intro m. replace 0 with (0+0) by intuition.
apply Rplus_gt_ge_compat. intuition.
elim (total_order_T m 0) ; intro s'. case s'.
intros m_cond. replace 0 with (0*0) by intuition.
replace (m ^ 2) with ((-m)^2).
apply Rle_ge ; apply Rmult_le_compat ; intuition ; apply Rlt_le ; rewrite Rmult_1_r ; intuition.
field.
intro H' ; rewrite H' ; right ; field.
left. intuition.
Qed.
(* end hide *)
(* The following lemmas about PI should probably be in Rtrigo. *)
Lemma PI2_lower_bound : forall x, 0 < x < 2 -> 0 < cos x -> x < PI/2.
Proof.
intros x [xp xlt2] cx.
destruct (Rtotal_order x (PI/2)) as [xltpi2 | [xeqpi2 | xgtpi2]].
assumption.
now case (Rgt_not_eq _ _ cx); rewrite xeqpi2, cos_PI2.
destruct (MVT_cor1 cos (PI/2) x derivable_cos xgtpi2) as
[c [Pc [cint1 cint2]]].
revert Pc; rewrite cos_PI2, Rminus_0_r.
rewrite <- (pr_nu cos c (derivable_pt_cos c)), derive_pt_cos.
assert (0 < c < 2) by (split; assert (t := PI2_RGT_0); lra).
assert (0 < sin c) by now apply sin_pos_tech.
intros Pc.
case (Rlt_not_le _ _ cx).
rewrite <- (Rplus_0_l (cos x)), Pc, Ropp_mult_distr_l_reverse.
apply Rle_minus, Rmult_le_pos;[apply Rlt_le; assumption | lra ].
Qed.
Lemma PI2_3_2 : 3/2 < PI/2.
Proof.
apply PI2_lower_bound;[split; lra | ].
destruct (pre_cos_bound (3/2) 1) as [t _]; [lra | lra | ].
apply Rlt_le_trans with (2 := t); clear t.
unfold cos_approx; simpl; unfold cos_term.
rewrite !INR_IZR_INZ.
simpl.
field_simplify.
apply Rdiv_lt_0_compat ; now apply IZR_lt.
Qed.
Lemma PI2_1 : 1 < PI/2.
Proof. assert (t := PI2_3_2); lra. Qed.
Lemma tan_increasing : forall x y,
-PI/2 < x -> x < y -> y < PI/2 ->
tan x < tan y.
Proof.
intros x y Z_le_x x_lt_y y_le_1.
assert (x_encad : -PI/2 < x < PI/2).
split ; [assumption | apply Rlt_trans with (r2:=y) ; assumption].
assert (y_encad : -PI/2 < y < PI/2).
split ; [apply Rlt_trans with (r2:=x) ; intuition | intuition ].
assert (local_derivable_pt_tan : forall x, -PI/2 < x < PI/2 ->
derivable_pt tan x).
intros ; apply derivable_pt_tan ; intuition.
apply derive_increasing_interv with (a:=-PI/2) (b:=PI/2) (pr:=local_derivable_pt_tan) ; intuition.
lra.
assert (Temp := pr_nu tan t (derivable_pt_tan t t_encad) (local_derivable_pt_tan t t_encad)) ;
rewrite <- Temp ; clear Temp.
assert (Temp := derive_pt_tan t t_encad) ; rewrite Temp ; clear Temp.
apply plus_Rsqr_gt_0.
Qed.
Lemma tan_inj : forall x y,
-PI/2 < x < PI/2 -> -PI/2 < y < PI/2 ->
tan x = tan y ->
x = y.
Proof.
intros a b a_encad b_encad fa_eq_fb.
case(total_order_T a b).
intro s ; case s ; clear s.
intro Hf.
assert (Hfalse := tan_increasing a b (proj1 a_encad) Hf (proj2 b_encad)).
case (Rlt_not_eq (tan a) (tan b)) ; assumption.
intuition.
intro Hf. assert (Hfalse := tan_increasing b a (proj1 b_encad) Hf (proj2 a_encad)).
case (Rlt_not_eq (tan b) (tan a)) ; [|symmetry] ; assumption.
Qed.
Notation tan_is_inj := tan_inj (only parsing). (* compat *)
Lemma exists_atan_in_frame : forall lb ub y,
lb < ub -> -PI/2 < lb -> ub < PI/2 ->
tan lb < y < tan ub ->
{x | lb < x < ub /\ tan x = y}.
Proof.
intros lb ub y lb_lt_ub lb_cond ub_cond y_encad.
case y_encad ; intros y_encad1 y_encad2.
assert (f_cont : forall a : R, lb <= a <= ub -> continuity_pt tan a).
intros a a_encad. apply derivable_continuous_pt ; apply derivable_pt_tan.
split. apply Rlt_le_trans with (r2:=lb) ; intuition.
apply Rle_lt_trans with (r2:=ub) ; intuition.
assert (Cont : forall a : R, lb <= a <= ub -> continuity_pt (fun x => tan x - y) a).
intros a a_encad. unfold continuity_pt, continue_in, limit1_in, limit_in ; simpl ; unfold R_dist.
intros eps eps_pos. elim (f_cont a a_encad eps eps_pos).
intros alpha alpha_pos. destruct alpha_pos as (alpha_pos,Temp).
exists alpha. split.
assumption. intros x x_cond.
replace (tan x - y - (tan a - y)) with (tan x - tan a) by field.
exact (Temp x x_cond).
assert (H1 : (fun x => tan x - y) lb < 0).
apply Rlt_minus. assumption.
assert (H2 : 0 < (fun x => tan x - y) ub).
apply Rgt_minus. assumption.
destruct (IVT_interv (fun x => tan x - y) lb ub Cont lb_lt_ub H1 H2) as (x,Hx).
exists x.
destruct Hx as (Hyp,Result).
intuition.
assert (Temp2 : x <> lb).
intro Hfalse. rewrite Hfalse in Result.
assert (Temp2 : y <> tan lb).
apply Rgt_not_eq ; assumption.
clear - Temp2 Result. apply Temp2.
intuition.
clear -Temp2 H3.
case H3 ; intuition. apply False_ind ; apply Temp2 ; symmetry ; assumption.
assert (Temp : x <> ub).
intro Hfalse. rewrite Hfalse in Result.
assert (Temp2 : y <> tan ub).
apply Rlt_not_eq ; assumption.
clear - Temp2 Result. apply Temp2.
intuition.
case H4 ; intuition.
Qed.
(*********************************************************)
(** * Definition of arctangent *)
(*********************************************************)
(** ** Definition of arctangent as the reciprocal function of tangent and proof of this status *)
Lemma tan_1_gt_1 : tan 1 > 1.
Proof.
assert (0 < cos 1) by (apply cos_gt_0; assert (t:=PI2_1); lra).
assert (t1 : cos 1 <= 1 - 1/2 + 1/24).
destruct (pre_cos_bound 1 0) as [_ t]; try lra; revert t.
unfold cos_approx, cos_term; simpl; intros t; apply Rle_trans with (1:=t).
clear t; apply Req_le; field.
assert (t2 : 1 - 1/6 <= sin 1).
destruct (pre_sin_bound 1 0) as [t _]; try lra; revert t.
unfold sin_approx, sin_term; simpl; intros t; apply Rle_trans with (2:=t).
clear t; apply Req_le; field.
pattern 1 at 2; replace 1 with
(cos 1 / cos 1) by (field; apply Rgt_not_eq; lra).
apply Rlt_gt; apply (Rmult_lt_compat_r (/ cos 1) (cos 1) (sin 1)).
apply Rinv_0_lt_compat; assumption.
apply Rle_lt_trans with (1 := t1); apply Rlt_le_trans with (2 := t2).
lra.
Qed.
Definition frame_tan y : {x | 0 < x < PI/2 /\ Rabs y < tan x}.
Proof.
destruct (total_order_T (Rabs y) 1) as [Hs|Hgt].
assert (yle1 : Rabs y <= 1) by (destruct Hs; lra).
clear Hs; exists 1; split;[split; [exact Rlt_0_1 | exact PI2_1] | ].
apply Rle_lt_trans with (1 := yle1); exact tan_1_gt_1.
assert (0 < / (Rabs y + 1)).
apply Rinv_0_lt_compat; lra.
set (u := /2 * / (Rabs y + 1)).
assert (0 < u).
apply Rmult_lt_0_compat; [lra | assumption].
assert (vlt1 : / (Rabs y + 1) < 1).
apply Rmult_lt_reg_r with (Rabs y + 1).
assert (t := Rabs_pos y); lra.
rewrite Rinv_l; [rewrite Rmult_1_l | apply Rgt_not_eq]; lra.
assert (vlt2 : u < 1).
apply Rlt_trans with (/ (Rabs y + 1)).
rewrite double_var.
assert (t : forall x, 0 < x -> x < x + x) by (clear; intros; lra).
unfold u; rewrite Rmult_comm; apply t.
unfold Rdiv; rewrite Rmult_comm; assumption.
assumption.
assert(int : 0 < PI / 2 - u < PI / 2).
split.
assert (t := PI2_1); apply Rlt_Rminus, Rlt_trans with (2 := t); assumption.
assert (dumb : forall x y, 0 < y -> x - y < x) by (clear; intros; lra).
apply dumb; clear dumb; assumption.
exists (PI/2 - u).
assert (tmp : forall x y, 0 < x -> y < 1 -> x * y < x).
clear; intros x y x0 y1; pattern x at 2; rewrite <- (Rmult_1_r x).
apply Rmult_lt_compat_l; assumption.
assert (0 < sin u).
apply sin_gt_0;[ assumption | ].
assert (t := PI2_Rlt_PI); assert (t' := PI2_1).
apply Rlt_trans with (2 := Rlt_trans _ _ _ t' t); assumption.
split.
assumption.
apply Rlt_trans with (/2 * / cos(PI / 2 - u)).
rewrite cos_shift.
assert (sin u < u).
assert (t1 : 0 <= u) by (apply Rlt_le; assumption).
assert (t2 : u <= 4) by
(apply Rle_trans with 1;[apply Rlt_le | lra]; assumption).
destruct (pre_sin_bound u 0 t1 t2) as [_ t].
apply Rle_lt_trans with (1 := t); clear t1 t2 t.
unfold sin_approx; simpl; unfold sin_term; simpl ((-1) ^ 0);
replace ((-1) ^ 2) with 1 by ring; simpl ((-1) ^ 1);
rewrite !Rmult_1_r, !Rmult_1_l; simpl plus; simpl (INR (fact 1)).
rewrite <- (fun x => tech_pow_Rmult x 0), <- (fun x => tech_pow_Rmult x 2),
<- (fun x => tech_pow_Rmult x 4).
rewrite (Rmult_comm (-1)); simpl ((/(Rabs y + 1)) ^ 0).
unfold Rdiv; rewrite Rinv_1, !Rmult_assoc, <- !Rmult_plus_distr_l.
apply tmp;[assumption | ].
rewrite Rplus_assoc, Rmult_1_l; pattern 1 at 2; rewrite <- Rplus_0_r.
apply Rplus_lt_compat_l.
rewrite <- Rmult_assoc.
match goal with |- (?a * (-1)) + _ < 0 =>
rewrite <- (Rplus_opp_l a); change (-1) with (-(1)); rewrite Ropp_mult_distr_r_reverse, Rmult_1_r
end.
apply Rplus_lt_compat_l.
assert (0 < u ^ 2) by (apply pow_lt; assumption).
replace (u ^ 4) with (u ^ 2 * u ^ 2) by ring.
rewrite Rmult_assoc; apply Rmult_lt_compat_l; auto.
apply Rlt_trans with (u ^ 2 * /INR (fact 3)).
apply Rmult_lt_compat_l; auto.
apply Rinv_lt_contravar.
solve[apply Rmult_lt_0_compat; apply INR_fact_lt_0].
rewrite !INR_IZR_INZ; apply IZR_lt; reflexivity.
rewrite Rmult_comm; apply tmp.
solve[apply Rinv_0_lt_compat, INR_fact_lt_0].
apply Rlt_trans with (2 := vlt2).
simpl; unfold u; apply tmp; auto; rewrite Rmult_1_r; assumption.
apply Rlt_trans with (Rabs y + 1);[lra | ].
pattern (Rabs y + 1) at 1; rewrite <- (Rinv_involutive (Rabs y + 1));
[ | apply Rgt_not_eq; lra].
rewrite <- Rinv_mult_distr.
apply Rinv_lt_contravar.
apply Rmult_lt_0_compat.
apply Rmult_lt_0_compat;[lra | assumption].
assumption.
replace (/(Rabs y + 1)) with (2 * u).
lra.
unfold u; field; apply Rgt_not_eq; clear -Hgt; lra.
solve[discrR].
apply Rgt_not_eq; assumption.
unfold tan.
set (u' := PI / 2); unfold Rdiv; apply Rmult_lt_compat_r; unfold u'.
apply Rinv_0_lt_compat.
rewrite cos_shift; assumption.
assert (vlt3 : u < /4).
replace (/4) with (/2 * /2) by field.
unfold u; apply Rmult_lt_compat_l;[lra | ].
apply Rinv_lt_contravar.
apply Rmult_lt_0_compat; lra.
lra.
assert (1 < PI / 2 - u) by (assert (t := PI2_3_2); lra).
apply Rlt_trans with (sin 1).
assert (t' : 1 <= 4) by lra.
destruct (pre_sin_bound 1 0 (Rlt_le _ _ Rlt_0_1) t') as [t _].
apply Rlt_le_trans with (2 := t); clear t.
simpl plus; replace (sin_approx 1 1) with (5/6);[lra | ].
unfold sin_approx, sin_term; simpl; field.
apply sin_increasing_1.
assert (t := PI2_1); lra.
apply Rlt_le, PI2_1.
assert (t := PI2_1); lra.
lra.
assumption.
Qed.
Lemma ub_opp : forall x, x < PI/2 -> -PI/2 < -x.
Proof.
intros x h; rewrite Ropp_div; apply Ropp_lt_contravar; assumption.
Qed.
Lemma pos_opp_lt : forall x, 0 < x -> -x < x.
Proof. intros; lra. Qed.
Lemma tech_opp_tan : forall x y, -tan x < y -> tan (-x) < y.
Proof.
intros; rewrite tan_neg; assumption.
Qed.
Definition pre_atan (y : R) : {x : R | -PI/2 < x < PI/2 /\ tan x = y}.
Proof.
destruct (frame_tan y) as [ub [[ub0 ubpi2] Ptan_ub]].
set (pr := (conj (tech_opp_tan _ _ (proj2 (Rabs_def2 _ _ Ptan_ub)))
(proj1 (Rabs_def2 _ _ Ptan_ub)))).
destruct (exists_atan_in_frame (-ub) ub y (pos_opp_lt _ ub0) (ub_opp _ ubpi2)
ubpi2 pr) as [v [[vl vu] vq]].
exists v; clear pr.
split;[rewrite Ropp_div; split; lra | assumption].
Qed.
Definition atan x := let (v, _) := pre_atan x in v.
Lemma atan_bound : forall x,
-PI/2 < atan x < PI/2.
Proof.
intros x; unfold atan; destruct (pre_atan x) as [v [int _]]; exact int.
Qed.
Lemma tan_atan : forall x,
tan (atan x) = x.
Proof.
intros x; unfold atan; destruct (pre_atan x) as [v [_ q]]; exact q.
Qed.
Notation atan_right_inv := tan_atan (only parsing). (* compat *)
Lemma atan_opp : forall x,
atan (- x) = - atan x.
Proof.
intros x; generalize (atan_bound (-x)); rewrite Ropp_div;intros [a b].
generalize (atan_bound x); rewrite Ropp_div; intros [c d].
apply tan_inj; try rewrite Ropp_div; try split; try lra.
rewrite tan_neg, !tan_atan; reflexivity.
Qed.
Lemma derivable_pt_atan : forall x,
derivable_pt atan x.
Proof.
intros x.
destruct (frame_tan x) as [ub [[ub0 ubpi] P]].
assert (lb_lt_ub : -ub < ub) by apply pos_opp_lt, ub0.
assert (xint : tan(-ub) < x < tan ub).
assert (xint' : x < tan ub /\ -(tan ub) < x) by apply Rabs_def2, P.
rewrite tan_neg; tauto.
assert (inv_p : forall x, tan(-ub) <= x -> x <= tan ub ->
comp tan atan x = id x).
intros; apply tan_atan.
assert (int_tan : forall y, tan (- ub) <= y -> y <= tan ub ->
-ub <= atan y <= ub).
clear -ub0 ubpi; intros y lo up; split.
destruct (Rle_lt_dec (-ub) (atan y)) as [h | abs]; auto.
assert (y < tan (-ub)).
rewrite <- (tan_atan y); apply tan_increasing.
destruct (atan_bound y); assumption.
assumption.
lra.
lra.
destruct (Rle_lt_dec (atan y) ub) as [h | abs]; auto.
assert (tan ub < y).
rewrite <- (tan_atan y); apply tan_increasing.
rewrite Ropp_div; lra.
assumption.
destruct (atan_bound y); assumption.
lra.
assert (incr : forall x y, -ub <= x -> x < y -> y <= ub -> tan x < tan y).
intros y z l yz u; apply tan_increasing.
rewrite Ropp_div; lra.
assumption.
lra.
assert (der : forall a, -ub <= a <= ub -> derivable_pt tan a).
intros a [la ua]; apply derivable_pt_tan.
rewrite Ropp_div; split; lra.
assert (df_neq : derive_pt tan (atan x)
(derivable_pt_recip_interv_prelim1 tan atan
(- ub) ub x lb_lt_ub xint int_tan der) <> 0).
rewrite <- (pr_nu tan (atan x)
(derivable_pt_tan (atan x) (atan_bound x))).
rewrite derive_pt_tan.
solve[apply Rgt_not_eq, plus_Rsqr_gt_0].
apply (derivable_pt_recip_interv tan atan (-ub) ub x
lb_lt_ub xint inv_p int_tan incr der).
exact df_neq.
Qed.
Lemma atan_increasing : forall x y,
x < y -> atan x < atan y.
Proof.
intros x y d.
assert (t1 := atan_bound x).
assert (t2 := atan_bound y).
destruct (Rlt_le_dec (atan x) (atan y)) as [lt | bad].
assumption.
apply Rlt_not_le in d.
case d.
rewrite <- (tan_atan y), <- (tan_atan x).
destruct bad as [ylt | yx].
apply Rlt_le, tan_increasing; try tauto.
solve[rewrite yx; apply Rle_refl].
Qed.
Lemma atan_0 : atan 0 = 0.
Proof.
apply tan_inj; try (apply atan_bound).
assert (t := PI_RGT_0); rewrite Ropp_div; split; lra.
rewrite tan_atan, tan_0.
reflexivity.
Qed.
Lemma atan_eq0 : forall x,
atan x = 0 -> x = 0.
Proof.
intros x.
generalize (atan_increasing 0 x) (atan_increasing x 0).
rewrite atan_0.
lra.
Qed.
Lemma atan_1 : atan 1 = PI/4.
Proof.
assert (ut := PI_RGT_0).
assert (-PI/2 < PI/4 < PI/2) by (rewrite Ropp_div; split; lra).
assert (t := atan_bound 1).
apply tan_inj; auto.
rewrite tan_PI4, tan_atan; reflexivity.
Qed.
Lemma atan_tan : forall x, - (PI / 2) < x < PI / 2 ->
atan (tan x) = x.
Proof.
intros x xB.
apply tan_inj.
- now apply atan_bound.
- lra.
- now apply tan_atan.
Qed.
Lemma atan_inv : forall x, (0 < x)%R ->
atan (/ x) = (PI / 2 - atan x)%R.
Proof.
intros x Hx.
apply tan_inj.
- apply atan_bound.
- split.
+ apply Rlt_trans with R0.
* unfold Rdiv.
rewrite Ropp_mult_distr_l_reverse.
apply Ropp_lt_gt_0_contravar.
apply PI2_RGT_0.
* apply Rgt_minus.
apply atan_bound.
+ apply Rplus_lt_reg_r with (atan x - PI / 2)%R.
ring_simplify.
rewrite <- atan_0.
now apply atan_increasing.
- rewrite tan_atan.
unfold tan.
rewrite sin_shift.
rewrite cos_shift.
rewrite <- Rinv_Rdiv.
+ apply f_equal, sym_eq, tan_atan.
+ apply Rgt_not_eq, sin_gt_0.
* rewrite <- atan_0.
now apply atan_increasing.
* apply Rlt_trans with (2 := PI2_Rlt_PI).
apply atan_bound.
+ apply Rgt_not_eq, cos_gt_0.
unfold Rdiv.
rewrite <- Ropp_mult_distr_l_reverse.
apply atan_bound.
apply atan_bound.
Qed.
(** ** Derivative of arctangent *)
Lemma derive_pt_atan : forall x,
derive_pt atan x (derivable_pt_atan x) = 1 / (1 + x²).
Proof.
intros x.
destruct (frame_tan x) as [ub [[ub0 ubpi] Pub]].
assert (lb_lt_ub : -ub < ub) by apply pos_opp_lt, ub0.
assert (xint : tan(-ub) < x < tan ub).
assert (xint' : x < tan ub /\ -(tan ub) < x) by apply Rabs_def2, Pub.
rewrite tan_neg; tauto.
assert (inv_p : forall x, tan(-ub) <= x -> x <= tan ub ->
comp tan atan x = id x).
intros; apply tan_atan.
assert (int_tan : forall y, tan (- ub) <= y -> y <= tan ub ->
-ub <= atan y <= ub).
clear -ub0 ubpi; intros y lo up; split.
destruct (Rle_lt_dec (-ub) (atan y)) as [h | abs]; auto.
assert (y < tan (-ub)).
rewrite <- (tan_atan y); apply tan_increasing.
destruct (atan_bound y); assumption.
assumption.
lra.
lra.
destruct (Rle_lt_dec (atan y) ub) as [h | abs]; auto.
assert (tan ub < y).
rewrite <- (tan_atan y); apply tan_increasing.
rewrite Ropp_div; lra.
assumption.
destruct (atan_bound y); assumption.
lra.
assert (incr : forall x y, -ub <= x -> x < y -> y <= ub -> tan x < tan y).
intros y z l yz u; apply tan_increasing.
rewrite Ropp_div; lra.
assumption.
lra.
assert (der : forall a, -ub <= a <= ub -> derivable_pt tan a).
intros a [la ua]; apply derivable_pt_tan.
rewrite Ropp_div; split; lra.
assert (df_neq : derive_pt tan (atan x)
(derivable_pt_recip_interv_prelim1 tan atan
(- ub) ub x lb_lt_ub xint int_tan der) <> 0).
rewrite <- (pr_nu tan (atan x)
(derivable_pt_tan (atan x) (atan_bound x))).
rewrite derive_pt_tan.
solve[apply Rgt_not_eq, plus_Rsqr_gt_0].
assert (t := derive_pt_recip_interv tan atan (-ub) ub x lb_lt_ub
xint incr int_tan der inv_p df_neq).
rewrite <- (pr_nu atan x (derivable_pt_recip_interv tan atan (- ub) ub
x lb_lt_ub xint inv_p int_tan incr der df_neq)).
rewrite t.
assert (t' := atan_bound x).
rewrite <- (pr_nu tan (atan x) (derivable_pt_tan _ t')).
rewrite derive_pt_tan, tan_atan.
replace (Rsqr x) with (x ^ 2) by (unfold Rsqr; ring).
reflexivity.
Qed.
Lemma derivable_pt_lim_atan : forall x,
derivable_pt_lim atan x (/ (1 + x^2)).
Proof.
intros x.
apply derive_pt_eq_1 with (derivable_pt_atan x).
replace (x ^ 2) with (x * x) by ring.
rewrite <- (Rmult_1_l (Rinv _)).
apply derive_pt_atan.
Qed.
(** ** Definition of the arctangent function as the sum of the arctan power series *)
(* Proof taken from Guillaume Melquiond's interval package for Coq *)
Definition Ratan_seq x := fun n => (x ^ (2 * n + 1) / INR (2 * n + 1))%R.
Lemma Ratan_seq_decreasing : forall x, (0 <= x <= 1)%R ->
Un_decreasing (Ratan_seq x).
Proof.
intros x Hx n.
unfold Ratan_seq, Rdiv.
apply Rmult_le_compat. apply pow_le.
exact (proj1 Hx).
apply Rlt_le.
apply Rinv_0_lt_compat.
apply lt_INR_0.
lia.
destruct (proj1 Hx) as [Hx1|Hx1].
destruct (proj2 Hx) as [Hx2|Hx2].
(* . 0 < x < 1 *)
rewrite <- (Rinv_involutive x).
assert (/ x <> 0)%R by auto with real.
repeat rewrite <- Rinv_pow with (1 := H).
apply Rlt_le.
apply Rinv_lt_contravar.
apply Rmult_lt_0_compat ; apply pow_lt ; auto with real.
apply Rlt_pow.
rewrite <- Rinv_1.
apply Rinv_lt_contravar.
rewrite Rmult_1_r.
exact Hx1.
exact Hx2.
lia.
apply Rgt_not_eq.
exact Hx1.
(* . x = 1 *)
rewrite Hx2.
do 2 rewrite pow1.
apply Rle_refl.
(* . x = 0 *)
rewrite <- Hx1.
do 2 (rewrite pow_i ; [ idtac | lia ]).
apply Rle_refl.
apply Rlt_le.
apply Rinv_lt_contravar.
apply Rmult_lt_0_compat ; apply lt_INR_0 ; lia.
apply lt_INR.
lia.
Qed.
Lemma Ratan_seq_converging : forall x, (0 <= x <= 1)%R ->
Un_cv (Ratan_seq x) 0.
Proof.
intros x Hx eps Heps.
destruct (archimed (/ eps)) as (HN,_).
assert (0 < up (/ eps))%Z.
apply lt_IZR.
apply Rlt_trans with (2 := HN).
apply Rinv_0_lt_compat.
exact Heps.
case_eq (up (/ eps)) ;
intros ; rewrite H0 in H ; try discriminate H.
rewrite H0 in HN.
simpl in HN.
pose (N := Pos.to_nat p).
fold N in HN.
clear H H0.
exists N.
intros n Hn.
unfold R_dist.
rewrite Rminus_0_r.
unfold Ratan_seq.
rewrite Rabs_right.
apply Rle_lt_trans with (1 ^ (2 * n + 1) / INR (2 * n + 1))%R.
unfold Rdiv.
apply Rmult_le_compat_r.
apply Rlt_le.
apply Rinv_0_lt_compat.
apply lt_INR_0.
lia.
apply pow_incr.
exact Hx.
rewrite pow1.
apply Rle_lt_trans with (/ INR (2 * N + 1))%R.
unfold Rdiv.
rewrite Rmult_1_l.
apply Rinv_le_contravar.
apply lt_INR_0.
lia.
apply le_INR.
lia.
rewrite <- (Rinv_involutive eps).
apply Rinv_lt_contravar.
apply Rmult_lt_0_compat.
auto with real.
apply lt_INR_0.
lia.
apply Rlt_trans with (INR N).
destruct (archimed (/ eps)) as (H,_).
assert (0 < up (/ eps))%Z.
apply lt_IZR.
apply Rlt_trans with (2 := H).
apply Rinv_0_lt_compat.
exact Heps.
unfold N.
rewrite INR_IZR_INZ, positive_nat_Z.
exact HN.
apply lt_INR.
lia.
apply Rgt_not_eq.
exact Heps.
apply Rle_ge.
unfold Rdiv.
apply Rmult_le_pos.
apply pow_le.
exact (proj1 Hx).
apply Rlt_le.
apply Rinv_0_lt_compat.
apply lt_INR_0.
lia.
Qed.
Definition ps_atan_exists_01 (x : R) (Hx:0 <= x <= 1) :
{l : R | Un_cv (fun N : nat => sum_f_R0 (tg_alt (Ratan_seq x)) N) l}.
Proof.
exact (alternated_series (Ratan_seq x)
(Ratan_seq_decreasing _ Hx) (Ratan_seq_converging _ Hx)).
Defined.
Lemma Ratan_seq_opp : forall x n,
Ratan_seq (-x) n = -Ratan_seq x n.
Proof.
intros x n; unfold Ratan_seq.
rewrite !pow_add, !pow_mult, !pow_1.
unfold Rdiv; replace ((-x) ^ 2) with (x ^ 2) by ring; ring.
Qed.
Lemma sum_Ratan_seq_opp : forall x n,
sum_f_R0 (tg_alt (Ratan_seq (- x))) n = - sum_f_R0 (tg_alt (Ratan_seq x)) n.
Proof.
intros x n; replace (-sum_f_R0 (tg_alt (Ratan_seq x)) n) with
(-1 * sum_f_R0 (tg_alt (Ratan_seq x)) n) by ring.
rewrite scal_sum; apply sum_eq; intros i _; unfold tg_alt.
rewrite Ratan_seq_opp; ring.
Qed.
Definition ps_atan_exists_1 (x : R) (Hx : -1 <= x <= 1) :
{l : R | Un_cv (fun N : nat => sum_f_R0 (tg_alt (Ratan_seq x)) N) l}.
Proof.
destruct (Rle_lt_dec 0 x).
assert (pr : 0 <= x <= 1) by tauto.
exact (ps_atan_exists_01 x pr).
assert (pr : 0 <= -x <= 1) by (destruct Hx; split; lra).
destruct (ps_atan_exists_01 _ pr) as [v Pv].
exists (-v).
apply (Un_cv_ext (fun n => (- 1) * sum_f_R0 (tg_alt (Ratan_seq (- x))) n)).
intros n; rewrite sum_Ratan_seq_opp; ring.
replace (-v) with (-1 * v) by ring.
apply CV_mult;[ | assumption].
solve[intros; exists 0%nat; intros; rewrite R_dist_eq; auto].
Qed.
Definition in_int (x : R) : {-1 <= x <= 1}+{~ -1 <= x <= 1}.
Proof.
destruct (Rle_lt_dec x 1).
destruct (Rle_lt_dec (-1) x).
left;split; auto.
right;intros [a1 a2]; lra.
right;intros [a1 a2]; lra.
Qed.
Definition ps_atan (x : R) : R :=
match in_int x with
left h => let (v, _) := ps_atan_exists_1 x h in v
| right h => atan x
end.
(** ** Proof of the equivalence of the two definitions between -1 and 1 *)
Lemma ps_atan0_0 : ps_atan 0 = 0.
Proof.
unfold ps_atan.
destruct (in_int 0) as [h1 | h2].
destruct (ps_atan_exists_1 0 h1) as [v P].
apply (UL_sequence _ _ _ P).
apply (Un_cv_ext (fun n => 0)).
symmetry;apply sum_eq_R0.
intros i _; unfold tg_alt, Ratan_seq; rewrite plus_comm; simpl.
unfold Rdiv; rewrite !Rmult_0_l, Rmult_0_r; reflexivity.
intros eps ep; exists 0%nat; intros n _; unfold R_dist.
rewrite Rminus_0_r, Rabs_pos_eq; auto with real.
case h2; split; lra.
Qed.
Lemma ps_atan_exists_1_opp : forall x h h',
proj1_sig (ps_atan_exists_1 (-x) h) = -(proj1_sig (ps_atan_exists_1 x h')).
Proof.
intros x h h'; destruct (ps_atan_exists_1 (-x) h) as [v Pv].
destruct (ps_atan_exists_1 x h') as [u Pu]; simpl.
assert (Pu' : Un_cv (fun N => (-1) * sum_f_R0 (tg_alt (Ratan_seq x)) N) (-1 * u)).
apply CV_mult;[ | assumption].
intros eps ep; exists 0%nat; intros; rewrite R_dist_eq; assumption.
assert (Pv' : Un_cv
(fun N : nat => -1 * sum_f_R0 (tg_alt (Ratan_seq x)) N) v).
apply Un_cv_ext with (2 := Pv); intros n; rewrite sum_Ratan_seq_opp; ring.
replace (-u) with (-1 * u) by ring.
apply UL_sequence with (1:=Pv') (2:= Pu').
Qed.
Lemma ps_atan_opp : forall x,
ps_atan (-x) = -ps_atan x.
Proof.
intros x; unfold ps_atan.
destruct (in_int (- x)) as [inside | outside].
destruct (in_int x) as [ins' | outs'].
generalize (ps_atan_exists_1_opp x inside ins').
intros h; exact h.
destruct inside; case outs'; split; lra.
destruct (in_int x) as [ins' | outs'].
destruct outside; case ins'; split; lra.
apply atan_opp.
Qed.
(** atan = ps_atan *)
Lemma ps_atanSeq_continuity_pt_1 : forall (N : nat) (x : R),
0 <= x -> x <= 1 ->
continuity_pt (fun x => sum_f_R0 (tg_alt (Ratan_seq x)) N) x.
Proof.
assert (Sublemma : forall (x:R) (N:nat), sum_f_R0 (tg_alt (Ratan_seq x)) N = x * (comp (fun x => sum_f_R0 (fun n => (fun i : nat => (-1) ^ i / INR (2 * i + 1)) n * x ^ n) N) (fun x => x ^ 2) x)).
intros x N.
induction N.
unfold tg_alt, Ratan_seq, comp ; simpl ; field.
simpl sum_f_R0 at 1.
rewrite IHN.
replace (comp (fun x => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x ^ n) (S N)) (fun x => x ^ 2))
with (comp (fun x => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x ^ n) N + (-1) ^ (S N) / INR (2 * (S N) + 1) * x ^ (S N)) (fun x => x ^ 2)).
unfold comp.
rewrite Rmult_plus_distr_l.
apply Rplus_eq_compat_l.
unfold tg_alt, Ratan_seq.
rewrite <- Rmult_assoc.
case (Req_dec x 0) ; intro Hyp.
rewrite Hyp ; rewrite pow_i. rewrite Rmult_0_l ; rewrite Rmult_0_l.
unfold Rdiv ; rewrite Rmult_0_l ; rewrite Rmult_0_r ; reflexivity.
intuition.
replace (x * ((-1) ^ S N / INR (2 * S N + 1)) * (x ^ 2) ^ S N) with (x ^ (2 * S N + 1) * ((-1) ^ S N / INR (2 * S N + 1))).
rewrite Rmult_comm ; unfold Rdiv at 1.
rewrite Rmult_assoc ; apply Rmult_eq_compat_l.
field. apply Rgt_not_eq ; intuition.
rewrite Rmult_assoc.
replace (x * ((-1) ^ S N / INR (2 * S N + 1) * (x ^ 2) ^ S N)) with (((-1) ^ S N / INR (2 * S N + 1) * (x ^ 2) ^ S N) * x).
rewrite Rmult_assoc.
replace ((x ^ 2) ^ S N * x) with (x ^ (2 * S N + 1)).
rewrite Rmult_comm at 1 ; reflexivity.
rewrite <- pow_mult.
assert (Temp : forall x n, x ^ n * x = x ^ (n+1)).
intros a n ; induction n. rewrite pow_O. simpl ; intuition.
simpl ; rewrite Rmult_assoc ; rewrite IHn ; intuition.
rewrite Temp ; reflexivity.
rewrite Rmult_comm ; reflexivity.
intuition.
intros N x x_lb x_ub.
intros eps eps_pos.
assert (continuity_id : continuity id).
apply derivable_continuous ; exact derivable_id.
assert (Temp := continuity_mult id (comp
(fun x1 : R =>
sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x1 ^ n) N)
(fun x1 : R => x1 ^ 2))
continuity_id).
assert (Temp2 : continuity
(comp
(fun x1 : R =>
sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x1 ^ n) N)
(fun x1 : R => x1 ^ 2))).
apply continuity_comp.
reg.
apply continuity_finite_sum.
elim (Temp Temp2 x eps eps_pos) ; clear Temp Temp2 ; intros alpha T ; destruct T as (alpha_pos, T).
exists alpha ; split.
intuition.
intros x0 x0_cond.
rewrite Sublemma ; rewrite Sublemma.
apply T.
intuition.
Qed.
(** Definition of ps_atan's derivative *)
Definition Datan_seq := fun (x : R) (n : nat) => x ^ (2*n).
Lemma pow_lt_1_compat : forall x n,
0 <= x < 1 -> (0 < n)%nat ->
0 <= x ^ n < 1.
Proof.
intros x n hx; induction 1; simpl.
rewrite Rmult_1_r; tauto.
split.
apply Rmult_le_pos; tauto.
rewrite <- (Rmult_1_r 1); apply Rmult_le_0_lt_compat; intuition.
Qed.
Lemma Datan_seq_Rabs : forall x n,
Datan_seq (Rabs x) n = Datan_seq x n.
Proof.
intros x n; unfold Datan_seq; rewrite !pow_mult, pow2_abs; reflexivity.
Qed.
Lemma Datan_seq_pos : forall x n, 0 < x ->
0 < Datan_seq x n.
Proof.
intros x n x_lb ; unfold Datan_seq ; induction n.
simpl ; intuition.
replace (x ^ (2 * S n)) with ((x ^ 2) * (x ^ (2 * n))).
apply Rmult_gt_0_compat.
replace (x^2) with (x*x) by field ; apply Rmult_gt_0_compat ; assumption.
assumption.
replace (2 * S n)%nat with (S (S (2 * n))) by lia.
simpl ; field.
Qed.
Lemma Datan_sum_eq :forall x n,
sum_f_R0 (tg_alt (Datan_seq x)) n = (1 - (- x ^ 2) ^ S n)/(1 + x ^ 2).
Proof.
intros x n.
assert (dif : - x ^ 2 <> 1).
apply Rlt_not_eq; apply Rle_lt_trans with 0;[ | apply Rlt_0_1].
assert (t := pow2_ge_0 x); lra.
replace (1 + x ^ 2) with (1 - - (x ^ 2)) by ring; rewrite <- (tech3 _ n dif).
apply sum_eq; unfold tg_alt, Datan_seq; intros i _.
rewrite pow_mult, <- Rpow_mult_distr.
f_equal.
ring.
Qed.
Lemma Datan_seq_increasing : forall x y n,
(n > 0)%nat -> 0 <= x < y ->
Datan_seq x n < Datan_seq y n.
Proof.
intros x y n n_lb x_encad ; assert (x_pos : x >= 0) by intuition.
assert (y_pos : y > 0). apply Rle_lt_trans with (r2:=x) ; intuition.
induction n. lia.
clear -x_encad x_pos y_pos ; induction n ; unfold Datan_seq.
case x_pos ; clear x_pos ; intro x_pos.
simpl ; apply Rmult_gt_0_lt_compat ; intuition. lra.
rewrite x_pos ; rewrite pow_i. replace (y ^ (2*1)) with (y*y).
apply Rmult_gt_0_compat ; assumption.
simpl ; field.
intuition.
assert (Hrew : forall a, a^(2 * S (S n)) = (a ^ 2) * (a ^ (2 * S n))).
clear ; intro a ; replace (2 * S (S n))%nat with (S (S (2 * S n)))%nat by lia.
simpl ; field.
case x_pos ; clear x_pos ; intro x_pos.
rewrite Hrew ; rewrite Hrew.
apply Rmult_gt_0_lt_compat ; intuition.
apply Rmult_gt_0_lt_compat ; intuition ; lra.
rewrite x_pos.
rewrite pow_i. intuition. lia.
Qed.
Lemma Datan_seq_decreasing : forall x, -1 < x -> x < 1 ->
Un_decreasing (Datan_seq x).
Proof.
intros x x_lb x_ub n.
unfold Datan_seq.
replace (2 * S n)%nat with (2 + 2 * n)%nat by ring.
rewrite <- (Rmult_1_l (x ^ (2 * n))).
rewrite pow_add.
apply Rmult_le_compat_r.
rewrite pow_mult; apply pow_le, pow2_ge_0.
apply Rlt_le; rewrite <- pow2_abs.
assert (intabs : 0 <= Rabs x < 1).
split;[apply Rabs_pos | apply Rabs_def1]; tauto.
apply (pow_lt_1_compat (Rabs x) 2) in intabs.
tauto.
lia.
Qed.
Lemma Datan_seq_CV_0 : forall x, -1 < x -> x < 1 ->
Un_cv (Datan_seq x) 0.
Proof.
intros x x_lb x_ub eps eps_pos.
assert (x_ub2 : Rabs (x^2) < 1).
rewrite Rabs_pos_eq;[ | apply pow2_ge_0].
rewrite <- pow2_abs.
assert (H: 0 <= Rabs x < 1)
by (split;[apply Rabs_pos | apply Rabs_def1; auto]).
apply (pow_lt_1_compat _ 2) in H;[tauto | lia].
elim (pow_lt_1_zero (x^2) x_ub2 eps eps_pos) ; intros N HN ; exists N ; intros n Hn.
unfold R_dist, Datan_seq.
replace (x ^ (2 * n) - 0) with ((x ^ 2) ^ n). apply HN ; assumption.
rewrite pow_mult ; field.
Qed.
Lemma Datan_lim : forall x, -1 < x -> x < 1 ->
Un_cv (fun N : nat => sum_f_R0 (tg_alt (Datan_seq x)) N) (/ (1 + x ^ 2)).
Proof.
intros x x_lb x_ub eps eps_pos.
assert (Tool0 : 0 <= x ^ 2) by apply pow2_ge_0.
assert (Tool1 : 0 < (1 + x ^ 2)).
solve[apply Rplus_lt_le_0_compat ; intuition].
assert (Tool2 : / (1 + x ^ 2) > 0).
apply Rinv_0_lt_compat ; tauto.
assert (x_ub2' : 0<= Rabs (x^2) < 1).
rewrite Rabs_pos_eq, <- pow2_abs;[ | apply pow2_ge_0].
apply pow_lt_1_compat;[split;[apply Rabs_pos | ] | lia].
apply Rabs_def1; assumption.
assert (x_ub2 : Rabs (x^2) < 1) by tauto.
assert (eps'_pos : ((1 + x^2)*eps) > 0).
apply Rmult_gt_0_compat ; assumption.
elim (pow_lt_1_zero _ x_ub2 _ eps'_pos) ; intros N HN ; exists N.
intros n Hn.
assert (H1 : - x^2 <> 1).
apply Rlt_not_eq; apply Rle_lt_trans with (2 := Rlt_0_1).
assert (t := pow2_ge_0 x); lra.
rewrite Datan_sum_eq.
unfold R_dist.
assert (tool : forall a b, a / b - /b = (-1 + a) /b).
intros a b; rewrite <- (Rmult_1_l (/b)); unfold Rdiv, Rminus.
rewrite <- Ropp_mult_distr_l_reverse, Rmult_plus_distr_r, Rplus_comm.
reflexivity.
set (u := 1 + x ^ 2); rewrite tool; unfold Rminus; rewrite <- Rplus_assoc.
unfold Rdiv, u.
change (-1) with (-(1)).
rewrite Rplus_opp_l, Rplus_0_l, Ropp_mult_distr_l_reverse, Rabs_Ropp.
rewrite Rabs_mult; clear tool u.
assert (tool : forall k, Rabs ((-x ^ 2) ^ k) = Rabs ((x ^ 2) ^ k)).
clear -Tool0; induction k;[simpl; rewrite Rabs_R1;tauto | ].
rewrite <- !(tech_pow_Rmult _ k), !Rabs_mult, Rabs_Ropp, IHk, Rabs_pos_eq.
reflexivity.
exact Tool0.
rewrite tool, (Rabs_pos_eq (/ _)); clear tool;[ | apply Rlt_le; assumption].
assert (tool : forall a b c, 0 < b -> a < b * c -> a * / b < c).
intros a b c bp h; replace c with (b * c * /b).
apply Rmult_lt_compat_r.
apply Rinv_0_lt_compat; assumption.
assumption.
field; apply Rgt_not_eq; exact bp.
apply tool;[exact Tool1 | ].
apply HN; lia.
Qed.
Lemma Datan_CVU_prelim : forall c (r : posreal), Rabs c + r < 1 ->
CVU (fun N x => sum_f_R0 (tg_alt (Datan_seq x)) N)
(fun y : R => / (1 + y ^ 2)) c r.
Proof.
intros c r ub_ub eps eps_pos.
apply (Alt_CVU (fun x n => Datan_seq n x)
(fun x => /(1 + x ^ 2))
(Datan_seq (Rabs c + r)) c r).
intros x inb; apply Datan_seq_decreasing;
try (apply Boule_lt in inb; apply Rabs_def2 in inb;
destruct inb; lra).
intros x inb; apply Datan_seq_CV_0;
try (apply Boule_lt in inb; apply Rabs_def2 in inb;
destruct inb; lra).
intros x inb; apply (Datan_lim x);
try (apply Boule_lt in inb; apply Rabs_def2 in inb;
destruct inb; lra).
intros x [ | n] inb.
solve[unfold Datan_seq; apply Rle_refl].
rewrite <- (Datan_seq_Rabs x); apply Rlt_le, Datan_seq_increasing.
lia.
apply Boule_lt in inb; intuition.
solve[apply Rabs_pos].
apply Datan_seq_CV_0.
apply Rlt_trans with 0;[lra | ].
apply Rplus_le_lt_0_compat.
solve[apply Rabs_pos].
destruct r; assumption.
assumption.
assumption.
Qed.
Lemma Datan_is_datan : forall (N : nat) (x : R),
-1 <= x -> x < 1 ->
derivable_pt_lim (fun x => sum_f_R0 (tg_alt (Ratan_seq x)) N) x (sum_f_R0 (tg_alt (Datan_seq x)) N).
Proof.
assert (Tool : forall N, (-1) ^ (S (2 * N)) = - 1).
intro n ; induction n.
simpl ; field.
replace ((-1) ^ S (2 * S n)) with ((-1) ^ 2 * (-1) ^ S (2*n)).
rewrite IHn ; field.
rewrite <- pow_add.
replace (2 + S (2 * n))%nat with (S (2 * S n))%nat.
reflexivity.
lia.
intros N x x_lb x_ub.
induction N.
unfold Datan_seq, Ratan_seq, tg_alt ; simpl.
intros eps eps_pos.
elim (derivable_pt_lim_id x eps eps_pos) ; intros delta Hdelta ; exists delta.
intros h hneq h_b.
replace (1 * ((x + h) * 1 / 1) - 1 * (x * 1 / 1)) with (id (x + h) - id x).
rewrite Rmult_1_r.
apply Hdelta ; assumption.
unfold id ; field ; assumption.
intros eps eps_pos.
assert (eps_3_pos : (eps/3) > 0) by lra.
elim (IHN (eps/3) eps_3_pos) ; intros delta1 Hdelta1.
assert (Main : derivable_pt_lim (fun x =>tg_alt (Ratan_seq x) (S N)) x ((tg_alt (Datan_seq x)) (S N))).
clear -Tool ; intros eps' eps'_pos.
elim (derivable_pt_lim_pow x (2 * (S N) + 1) eps' eps'_pos) ; intros delta Hdelta ; exists delta.
intros h h_neq h_b ; unfold tg_alt, Ratan_seq, Datan_seq.
replace (((-1) ^ S N * ((x + h) ^ (2 * S N + 1) / INR (2 * S N + 1)) -
(-1) ^ S N * (x ^ (2 * S N + 1) / INR (2 * S N + 1))) / h -
(-1) ^ S N * x ^ (2 * S N))
with (((-1)^(S N)) * ((((x + h) ^ (2 * S N + 1) / INR (2 * S N + 1)) -
(x ^ (2 * S N + 1) / INR (2 * S N + 1))) / h - x ^ (2 * S N))).
rewrite Rabs_mult ; rewrite pow_1_abs ; rewrite Rmult_1_l.
replace (((x + h) ^ (2 * S N + 1) / INR (2 * S N + 1) -
x ^ (2 * S N + 1) / INR (2 * S N + 1)) / h - x ^ (2 * S N))
with ((/INR (2* S N + 1)) * (((x + h) ^ (2 * S N + 1) - x ^ (2 * S N + 1)) / h -
INR (2 * S N + 1) * x ^ pred (2 * S N + 1))).
rewrite Rabs_mult.
case (Req_dec (((x + h) ^ (2 * S N + 1) - x ^ (2 * S N + 1)) / h -
INR (2 * S N + 1) * x ^ pred (2 * S N + 1)) 0) ; intro Heq.
rewrite Heq ; rewrite Rabs_R0 ; rewrite Rmult_0_r ; assumption.
apply Rlt_trans with (r2:=Rabs
(((x + h) ^ (2 * S N + 1) - x ^ (2 * S N + 1)) / h -
INR (2 * S N + 1) * x ^ pred (2 * S N + 1))).
rewrite <- Rmult_1_l ; apply Rmult_lt_compat_r.
apply Rabs_pos_lt ; assumption.
rewrite Rabs_right.
replace 1 with (/1) by field.
apply Rinv_1_lt_contravar. lra. apply lt_1_INR; lia.
apply Rgt_ge ; replace (INR (2 * S N + 1)) with (INR (2*S N) + 1) ;
[apply RiemannInt.RinvN_pos | ].
replace (2 * S N + 1)%nat with (S (2 * S N))%nat by lia.
rewrite S_INR ; reflexivity.
apply Hdelta ; assumption.
rewrite Rmult_minus_distr_l.
replace (/ INR (2 * S N + 1) * (INR (2 * S N + 1) * x ^ pred (2 * S N + 1))) with (x ^ (2 * S N)).
unfold Rminus ; rewrite Rplus_comm.
replace (((x + h) ^ (2 * S N + 1) / INR (2 * S N + 1) +
- (x ^ (2 * S N + 1) / INR (2 * S N + 1))) / h + - x ^ (2 * S N))
with (- x ^ (2 * S N) + (((x + h) ^ (2 * S N + 1) / INR (2 * S N + 1) +
- (x ^ (2 * S N + 1) / INR (2 * S N + 1))) / h)) by intuition.
apply Rplus_eq_compat_l. field.
split ; [apply Rgt_not_eq|] ; intuition.
clear ; replace (pred (2 * S N + 1)) with (2 * S N)%nat by lia.
field ; apply Rgt_not_eq ; intuition.
field ; split ; [apply Rgt_not_eq |] ; intuition.
elim (Main (eps/3) eps_3_pos) ; intros delta2 Hdelta2.
destruct delta1 as (delta1, delta1_pos) ; destruct delta2 as (delta2, delta2_pos).
pose (mydelta := Rmin delta1 delta2).
assert (mydelta_pos : mydelta > 0).
unfold mydelta ; rewrite Rmin_Rgt ; split ; assumption.
pose (delta := mkposreal mydelta mydelta_pos) ; exists delta ; intros h h_neq h_b.
clear Main IHN.
unfold Rminus at 1.
apply Rle_lt_trans with (r2:=eps/3 + eps / 3).
assert (Temp : (sum_f_R0 (tg_alt (Ratan_seq (x + h))) (S N) -
sum_f_R0 (tg_alt (Ratan_seq x)) (S N)) / h +
- sum_f_R0 (tg_alt (Datan_seq x)) (S N) = ((sum_f_R0 (tg_alt (Ratan_seq (x + h))) N -
sum_f_R0 (tg_alt (Ratan_seq x)) N) / h) + (-
sum_f_R0 (tg_alt (Datan_seq x)) N) + ((tg_alt (Ratan_seq (x + h)) (S N) - tg_alt (Ratan_seq x) (S N)) /
h - tg_alt (Datan_seq x) (S N))).
simpl ; field ; intuition.
apply Rle_trans with (r2:= Rabs ((sum_f_R0 (tg_alt (Ratan_seq (x + h))) N -
sum_f_R0 (tg_alt (Ratan_seq x)) N) / h +
- sum_f_R0 (tg_alt (Datan_seq x)) N) +
Rabs ((tg_alt (Ratan_seq (x + h)) (S N) - tg_alt (Ratan_seq x) (S N)) / h -
tg_alt (Datan_seq x) (S N))).
rewrite Temp ; clear Temp ; apply Rabs_triang.
apply Rplus_le_compat ; apply Rlt_le ; [apply Hdelta1 | apply Hdelta2] ;
intuition ; apply Rlt_le_trans with (r2:=delta) ; intuition unfold delta, mydelta.
apply Rmin_l.
apply Rmin_r.
lra.
Qed.
Lemma Ratan_CVU' :
CVU (fun N x => sum_f_R0 (tg_alt (Ratan_seq x)) N)
ps_atan (/2) posreal_half.
Proof.
apply (Alt_CVU (fun i r => Ratan_seq r i) ps_atan PI_tg (/2) posreal_half);
lazy beta.
now intros; apply Ratan_seq_decreasing, Boule_half_to_interval.
now intros; apply Ratan_seq_converging, Boule_half_to_interval.
intros x b; apply Boule_half_to_interval in b.
unfold ps_atan; destruct (in_int x) as [inside | outside];
[ | destruct b; case outside; split; lra].
destruct (ps_atan_exists_1 x inside) as [v Pv].
apply Un_cv_ext with (2 := Pv);[reflexivity].
intros x n b; apply Boule_half_to_interval in b.
rewrite <- (Rmult_1_l (PI_tg n)); unfold Ratan_seq, PI_tg.
apply Rmult_le_compat_r.
apply Rlt_le, Rinv_0_lt_compat, (lt_INR 0); lia.
rewrite <- (pow1 (2 * n + 1)); apply pow_incr; assumption.
exact PI_tg_cv.
Qed.
Lemma Ratan_CVU :
CVU (fun N x => sum_f_R0 (tg_alt (Ratan_seq x)) N)
ps_atan 0 (mkposreal 1 Rlt_0_1).
Proof.
intros eps ep; destruct (Ratan_CVU' eps ep) as [N Pn].
exists N; intros n x nN b_y.
case (Rtotal_order 0 x) as [xgt0 | [x0 | x0]].
assert (Boule (/2) posreal_half x).
revert b_y; unfold Boule; simpl; intros b_y; apply Rabs_def2 in b_y.
destruct b_y; unfold Boule; simpl; apply Rabs_def1; lra.
apply Pn; assumption.
rewrite <- x0, ps_atan0_0.
rewrite <- (sum_eq (fun _ => 0)), sum_cte, Rmult_0_l, Rminus_0_r, Rabs_pos_eq.
assumption.
apply Rle_refl.
intros i _; unfold tg_alt, Ratan_seq, Rdiv; rewrite plus_comm; simpl.
solve[rewrite !Rmult_0_l, Rmult_0_r; auto].
replace (ps_atan x - sum_f_R0 (tg_alt (Ratan_seq x)) n) with
(-(ps_atan (-x) - sum_f_R0 (tg_alt (Ratan_seq (-x))) n)).
rewrite Rabs_Ropp.
assert (Boule (/2) posreal_half (-x)).
revert b_y; unfold Boule; simpl; intros b_y; apply Rabs_def2 in b_y.
destruct b_y; unfold Boule; simpl; apply Rabs_def1; lra.
apply Pn; assumption.
unfold Rminus; rewrite ps_atan_opp, Ropp_plus_distr, sum_Ratan_seq_opp.
rewrite !Ropp_involutive; reflexivity.
Qed.
Lemma Alt_PI_tg : forall n, PI_tg n = Ratan_seq 1 n.
Proof.
intros n; unfold PI_tg, Ratan_seq, Rdiv; rewrite pow1, Rmult_1_l.
reflexivity.
Qed.
Lemma Ratan_is_ps_atan : forall eps, eps > 0 ->
exists N, forall n, (n >= N)%nat -> forall x, -1 < x -> x < 1 ->
Rabs (sum_f_R0 (tg_alt (Ratan_seq x)) n - ps_atan x) < eps.
Proof.
intros eps ep.
destruct (Ratan_CVU _ ep) as [N1 PN1].
exists N1; intros n nN x xm1 x1; rewrite <- Rabs_Ropp, Ropp_minus_distr.
apply PN1; [assumption | ].
unfold Boule; simpl; rewrite Rminus_0_r; apply Rabs_def1; assumption.
Qed.
Lemma Datan_continuity : continuity (fun x => /(1 + x^2)).
Proof.
apply continuity_inv.
apply continuity_plus.
apply continuity_const ; unfold constant ; intuition.
apply derivable_continuous ; apply derivable_pow.
intro x ; apply Rgt_not_eq ; apply Rge_gt_trans with (1+0) ; [|lra] ;
apply Rplus_ge_compat_l.
replace (x^2) with (x²).
apply Rle_ge ; apply Rle_0_sqr.
unfold Rsqr ; field.
Qed.
Lemma derivable_pt_lim_ps_atan : forall x, -1 < x < 1 ->
derivable_pt_lim ps_atan x ((fun y => /(1 + y ^ 2)) x).
Proof.
intros x x_encad.
destruct (boule_in_interval (-1) 1 x x_encad) as [c [r [Pcr1 [P1 P2]]]].
change (/ (1 + x ^ 2)) with ((fun u => /(1 + u ^ 2)) x).
assert (t := derivable_pt_lim_CVU).
apply derivable_pt_lim_CVU with
(fn := (fun N x => sum_f_R0 (tg_alt (Ratan_seq x)) N))
(fn' := (fun N x => sum_f_R0 (tg_alt (Datan_seq x)) N))
(c := c) (r := r).
assumption.
intros y N inb; apply Rabs_def2 in inb; destruct inb.
apply Datan_is_datan.
lra.
lra.
intros y inb; apply Rabs_def2 in inb; destruct inb.
assert (y_gt_0 : -1 < y) by lra.
assert (y_lt_1 : y < 1) by lra.
intros eps eps_pos ; elim (Ratan_is_ps_atan eps eps_pos).
intros N HN ; exists N; intros n n_lb ; apply HN ; tauto.
apply Datan_CVU_prelim.
replace ((c - r + (c + r)) / 2) with c by field.
unfold mkposreal_lb_ub; simpl.
replace ((c + r - (c - r)) / 2) with (r :R) by field.
assert (Rabs c < 1 - r).
unfold Boule in Pcr1; destruct r; simpl in *; apply Rabs_def1;
apply Rabs_def2 in Pcr1; destruct Pcr1; lra.
lra.
intros; apply Datan_continuity.
Qed.
Lemma derivable_pt_ps_atan : forall x, -1 < x < 1 ->
derivable_pt ps_atan x.
Proof.
intros x x_encad.
exists (/(1 + x^2)) ; apply derivable_pt_lim_ps_atan; assumption.
Qed.
Lemma ps_atan_continuity_pt_1 : forall eps : R,
eps > 0 ->
exists alp : R, alp > 0 /\ (forall x, x < 1 -> 0 < x -> R_dist x 1 < alp ->
dist R_met (ps_atan x) (Alt_PI/4) < eps).
Proof.
intros eps eps_pos.
assert (eps_3_pos : eps / 3 > 0) by lra.
elim (Ratan_is_ps_atan (eps / 3) eps_3_pos) ; intros N1 HN1.
unfold Alt_PI.
destruct exist_PI as [v Pv]; replace ((4 * v)/4) with v by field.
assert (Pv' : Un_cv (sum_f_R0 (tg_alt (Ratan_seq 1))) v).
apply Un_cv_ext with (2:= Pv).
intros; apply sum_eq; intros; unfold tg_alt; rewrite Alt_PI_tg; tauto.
destruct (Pv' (eps / 3) eps_3_pos) as [N2 HN2].
set (N := (N1 + N2)%nat).
assert (O_lb : 0 <= 1) by intuition ; assert (O_ub : 1 <= 1) by intuition ;
elim (ps_atanSeq_continuity_pt_1 N 1 O_lb O_ub (eps / 3) eps_3_pos) ; intros alpha Halpha ;
clear -HN1 HN2 Halpha eps_3_pos; destruct Halpha as (alpha_pos, Halpha).
exists alpha ; split;[assumption | ].
intros x x_ub x_lb x_bounds.
simpl ; unfold R_dist.
replace (ps_atan x - v) with ((ps_atan x - sum_f_R0 (tg_alt (Ratan_seq x)) N)
+ (sum_f_R0 (tg_alt (Ratan_seq x)) N - sum_f_R0 (tg_alt (Ratan_seq 1)) N)
+ (sum_f_R0 (tg_alt (Ratan_seq 1)) N - v)).
apply Rle_lt_trans with (r2:=Rabs (ps_atan x - sum_f_R0 (tg_alt (Ratan_seq x)) N) +
Rabs ((sum_f_R0 (tg_alt (Ratan_seq x)) N - sum_f_R0 (tg_alt (Ratan_seq 1)) N) +
(sum_f_R0 (tg_alt (Ratan_seq 1)) N - v))).
rewrite Rplus_assoc ; apply Rabs_triang.
replace eps with (2 / 3 * eps + eps / 3).
rewrite Rplus_comm.
apply Rplus_lt_compat.
apply Rle_lt_trans with (r2 := Rabs (sum_f_R0 (tg_alt (Ratan_seq x)) N - sum_f_R0 (tg_alt (Ratan_seq 1)) N) +
Rabs (sum_f_R0 (tg_alt (Ratan_seq 1)) N - v)).
apply Rabs_triang.
apply Rlt_le_trans with (r2:= eps / 3 + eps / 3).
apply Rplus_lt_compat.
simpl in Halpha ; unfold R_dist in Halpha.
apply Halpha ; split.
unfold D_x, no_cond ; split ; [ | apply Rgt_not_eq ] ; intuition.
intuition.
apply HN2; unfold N; lia.
lra.
rewrite <- Rabs_Ropp, Ropp_minus_distr; apply HN1.
unfold N; lia.
lra.
assumption.
field.
ring.
Qed.
Lemma Datan_eq_DatanSeq_interv : forall x, -1 < x < 1 ->
forall (Pratan:derivable_pt ps_atan x) (Prmymeta:derivable_pt atan x),
derive_pt ps_atan x Pratan = derive_pt atan x Prmymeta.
Proof.
assert (freq : 0 < tan 1) by apply (Rlt_trans _ _ _ Rlt_0_1 tan_1_gt_1).
intros x x_encad Pratan Prmymeta.
rewrite pr_nu_var2_interv with (g:=ps_atan) (lb:=-1) (ub:=tan 1)
(pr2 := derivable_pt_ps_atan x x_encad).
rewrite pr_nu_var2_interv with (f:=atan) (g:=atan) (lb:=-1) (ub:= 1) (pr2:=derivable_pt_atan x).
assert (Temp := derivable_pt_lim_ps_atan x x_encad).
assert (Hrew1 : derive_pt ps_atan x (derivable_pt_ps_atan x x_encad) = (/(1 + x^2))).
apply derive_pt_eq_0 ; assumption.
rewrite derive_pt_atan.
rewrite Hrew1.
replace (Rsqr x) with (x ^ 2) by (unfold Rsqr; ring).
unfold Rdiv; rewrite Rmult_1_l; reflexivity.
lra.
assumption.
intros; reflexivity.
lra.
assert (t := tan_1_gt_1); split;destruct x_encad; lra.
intros; reflexivity.
Qed.
Lemma atan_eq_ps_atan : forall x, 0 < x < 1 ->
atan x = ps_atan x.
Proof.
intros x x_encad.
assert (pr1 : forall c : R, 0 < c < x -> derivable_pt (atan - ps_atan) c).
intros c c_encad.
apply derivable_pt_minus.
exact (derivable_pt_atan c).
apply derivable_pt_ps_atan.
destruct x_encad; destruct c_encad; split; lra.
assert (pr2 : forall c : R, 0 < c < x -> derivable_pt id c).
intros ; apply derivable_pt_id; lra.
assert (delta_cont : forall c : R, 0 <= c <= x -> continuity_pt (atan - ps_atan) c).
intros c [[c_encad1 | c_encad1 ] [c_encad2 | c_encad2]];
apply continuity_pt_minus.
apply derivable_continuous_pt ; apply derivable_pt_atan.
apply derivable_continuous_pt ; apply derivable_pt_ps_atan.
split; destruct x_encad; lra.
apply derivable_continuous_pt, derivable_pt_atan.
apply derivable_continuous_pt, derivable_pt_ps_atan.
subst c; destruct x_encad; split; lra.
apply derivable_continuous_pt, derivable_pt_atan.
apply derivable_continuous_pt, derivable_pt_ps_atan.
subst c; split; lra.
apply derivable_continuous_pt, derivable_pt_atan.
apply derivable_continuous_pt, derivable_pt_ps_atan.
subst c; destruct x_encad; split; lra.
assert (id_cont : forall c : R, 0 <= c <= x -> continuity_pt id c).
intros ; apply derivable_continuous ; apply derivable_id.
assert (x_lb : 0 < x) by (destruct x_encad; lra).
elim (MVT (atan - ps_atan)%F id 0 x pr1 pr2 x_lb delta_cont id_cont) ; intros d Temp ; elim Temp ; intros d_encad Main.
clear - Main x_encad.
assert (Temp : forall (pr: derivable_pt (atan - ps_atan) d), derive_pt (atan - ps_atan) d pr = 0).
intro pr.
assert (d_encad3 : -1 < d < 1).
destruct d_encad; destruct x_encad; split; lra.
pose (pr3 := derivable_pt_minus atan ps_atan d (derivable_pt_atan d) (derivable_pt_ps_atan d d_encad3)).
rewrite <- pr_nu_var2_interv with (f:=(atan - ps_atan)%F) (g:=(atan - ps_atan)%F) (lb:=0) (ub:=x) (pr1:=pr3) (pr2:=pr).
unfold pr3. rewrite derive_pt_minus.
rewrite Datan_eq_DatanSeq_interv with (Prmymeta := derivable_pt_atan d).
intuition.
assumption.
destruct d_encad; lra.
assumption.
reflexivity.
assert (iatan0 : atan 0 = 0).
apply tan_inj.
apply atan_bound.
rewrite Ropp_div; assert (t := PI2_RGT_0); split; lra.
rewrite tan_0, tan_atan; reflexivity.
generalize Main; rewrite Temp, Rmult_0_r.
replace ((atan - ps_atan)%F x) with (atan x - ps_atan x) by intuition.
replace ((atan - ps_atan)%F 0) with (atan 0 - ps_atan 0) by intuition.
rewrite iatan0, ps_atan0_0, !Rminus_0_r.
replace (derive_pt id d (pr2 d d_encad)) with 1.
rewrite Rmult_1_r.
solve[intros M; apply Rminus_diag_uniq; auto].
rewrite pr_nu_var with (g:=id) (pr2:=derivable_pt_id d).
symmetry ; apply derive_pt_id.
tauto.
Qed.
Theorem Alt_PI_eq : Alt_PI = PI.
Proof.
apply Rmult_eq_reg_r with (/4); fold (Alt_PI/4); fold (PI/4);
[ | apply Rgt_not_eq; lra].
assert (0 < PI/6) by (apply PI6_RGT_0).
assert (t1:= PI2_1).
assert (t2 := PI_4).
assert (m := Alt_PI_RGT_0).
assert (-PI/2 < 1 < PI/2) by (rewrite Ropp_div; split; lra).
apply cond_eq; intros eps ep.
change (R_dist (Alt_PI/4) (PI/4) < eps).
assert (ca : continuity_pt atan 1).
apply derivable_continuous_pt, derivable_pt_atan.
assert (Xe : exists eps', exists eps'',
eps' + eps'' <= eps /\ 0 < eps' /\ 0 < eps'').
exists (eps/2); exists (eps/2); repeat apply conj; lra.
destruct Xe as [eps' [eps'' [eps_ineq [ep' ep'']]]].
destruct (ps_atan_continuity_pt_1 _ ep') as [alpha [a0 Palpha]].
destruct (ca _ ep'') as [beta [b0 Pbeta]].
assert (Xa : exists a, 0 < a < 1 /\ R_dist a 1 < alpha /\
R_dist a 1 < beta).
exists (Rmax (/2) (Rmax (1 - alpha /2) (1 - beta /2))).
assert (/2 <= Rmax (/2) (Rmax (1 - alpha /2) (1 - beta /2))) by apply Rmax_l.
assert (Rmax (1 - alpha /2) (1 - beta /2) <=
Rmax (/2) (Rmax (1 - alpha /2) (1 - beta /2))) by apply Rmax_r.
assert ((1 - alpha /2) <= Rmax (1 - alpha /2) (1 - beta /2)) by apply Rmax_l.
assert ((1 - beta /2) <= Rmax (1 - alpha /2) (1 - beta /2)) by apply Rmax_r.
assert (Rmax (1 - alpha /2) (1 - beta /2) < 1)
by (apply Rmax_lub_lt; lra).
split;[split;[ | apply Rmax_lub_lt]; lra | ].
assert (0 <= 1 - Rmax (/ 2) (Rmax (1 - alpha / 2) (1 - beta / 2))).
assert (Rmax (/2) (Rmax (1 - alpha / 2)
(1 - beta /2)) <= 1) by (apply Rmax_lub; lra).
lra.
split; unfold R_dist; rewrite <-Rabs_Ropp, Ropp_minus_distr,
Rabs_pos_eq;lra.
destruct Xa as [a [[Pa0 Pa1] [P1 P2]]].
apply Rle_lt_trans with (1 := R_dist_tri _ _ (ps_atan a)).
apply Rlt_le_trans with (2 := eps_ineq).
apply Rplus_lt_compat.
rewrite R_dist_sym; apply Palpha; assumption.
rewrite <- atan_eq_ps_atan.
rewrite <- atan_1; apply (Pbeta a); auto.
split; [ | exact P2].
split;[exact I | apply Rgt_not_eq; assumption].
split; assumption.
Qed.
Lemma PI_ineq : forall N : nat,
sum_f_R0 (tg_alt PI_tg) (S (2 * N)) <= PI/4 <= sum_f_R0 (tg_alt PI_tg) (2 * N).
Proof.
intros; rewrite <- Alt_PI_eq; apply Alt_PI_ineq.
Qed.
(** ** Relation between arctangent and sine and cosine *)
Lemma sin_atan: forall x,
sin (atan x) = x / sqrt (1 + x²).
Proof.
intros x.
pose proof (atan_right_inv x) as Hatan.
remember (atan(x)) as α.
rewrite <- Hatan.
apply sin_tan.
apply cos_gt_0.
all: pose proof atan_bound x; lra.
Qed.
Lemma cos_atan: forall x,
cos (atan x) = 1 / sqrt(1 + x²).
Proof.
intros x.
pose proof (atan_right_inv x) as Hatan.
remember (atan(x)) as α.
rewrite <- Hatan.
apply cos_tan.
apply cos_gt_0.
all: pose proof atan_bound x; lra.
Qed.
(*********************************************************)
(** * Definition of arcsine based on arctangent *)
(*********************************************************)
(** asin is defined by cases so that it is defined in the full range from -1 .. 1 *)
Definition asin x :=
if Rle_dec x (-1) then - (PI / 2) else
if Rle_dec 1 x then PI / 2 else
atan (x / sqrt (1 - x²)).
(** ** Relation between arcsin and arctangent *)
Lemma asin_atan : forall x, -1 < x < 1 ->
asin x = atan (x / sqrt (1 - x²)).
Proof.
intros x.
unfold asin; repeat case Rle_dec; intros; lra.
Qed.
(** ** arcsine of specific values *)
Lemma asin_0 : asin 0 = 0.
Proof.
unfold asin; repeat case Rle_dec; intros; try lra.
replace (0/_) with 0.
- apply atan_0.
- field.
rewrite Rsqr_pow2; field_simplify (1 - 0^2).
rewrite sqrt_1; lra.
Qed.
Lemma asin_1 : asin 1 = PI / 2.
Proof.
unfold asin; repeat case Rle_dec; lra.
Qed.
Lemma asin_inv_sqrt2 : asin (/sqrt 2) = PI/4.
Proof.
rewrite asin_atan.
pose proof sqrt2_neq_0 as SH.
rewrite Rsqr_pow2, <-Rinv_pow, <- Rsqr_pow2, Rsqr_sqrt; try lra.
replace (1 - /2) with (/2) by lra.
rewrite <- inv_sqrt; try lra.
now rewrite <- atan_1; apply f_equal; field.
split.
apply (Rlt_trans _ 0); try lra.
now apply Rinv_0_lt_compat; apply sqrt_lt_R0; lra.
replace 1 with (/ sqrt 1).
apply Rinv_1_lt_contravar.
now rewrite sqrt_1; lra.
now apply sqrt_lt_1; lra.
now rewrite sqrt_1; lra.
Qed.
Lemma asin_opp : forall x,
asin (- x) = - asin x.
Proof.
intros x.
unfold asin; repeat case Rle_dec; intros; try lra.
rewrite <- Rsqr_neg.
rewrite Ropp_div.
rewrite atan_opp.
reflexivity.
Qed.
(** ** Bounds of arcsine *)
Lemma asin_bound : forall x,
- (PI/2) <= asin x <= PI/2.
Proof.
intros x.
pose proof PI_RGT_0.
unfold asin; repeat case Rle_dec; try lra.
intros Hx1 Hx2.
pose proof atan_bound (x / sqrt (1 - x²)); lra.
Qed.
Lemma asin_bound_lt : forall x, -1 < x < 1 ->
- (PI/2) < asin x < PI/2.
Proof.
intros x HxB.
pose proof PI_RGT_0.
unfold asin; repeat case Rle_dec; try lra.
intros Hx1 Hx2.
pose proof atan_bound (x / sqrt (1 - x²)); lra.
Qed.
(** ** arcsine is the left and right inverse of sine *)
Lemma sin_asin : forall x, -1 <= x <= 1 ->
sin (asin x) = x.
Proof.
intros x.
unfold asin; repeat case Rle_dec.
rewrite sin_antisym, sin_PI2; lra.
rewrite sin_PI2; lra.
intros Hx1 Hx2 Hx3.
rewrite sin_atan.
assert (forall a b c:R, b<>0 -> c<> 0 -> a/b/c = a/(b*c)) as R_divdiv_divmul by (intros; field; lra).
rewrite R_divdiv_divmul.
rewrite <- sqrt_mult_alt.
rewrite Rsqr_div, Rsqr_sqrt.
field_simplify((1 - x²) * (1 + x² / (1 - x²))).
rewrite sqrt_1.
field.
(* Pose a few things useful for several subgoals *)
all: pose proof Rsqr_bounds_lt 1 x ltac:(lra) as Hxsqr;
rewrite Rsqr_1 in Hxsqr.
all: pose proof sqrt_lt_R0 (1 - x²) ltac:(lra).
(* Do 6 first, because it produces more subgoals *)
all: swap 1 6.
rewrite Rsqr_div, Rsqr_sqrt.
field_simplify(1 + x² / (1 - x²)).
rewrite sqrt_div.
rewrite sqrt_1.
pose proof Rdiv_lt_0_compat 1 (sqrt (- x² + 1)) ltac:(lra) as Hrange.
pose proof sqrt_lt_R0 (- x² + 1) ltac:(lra) as Hrangep.
specialize (Hrange Hrangep).
lra.
(* The rest can all be done with lra *)
all: try lra.
Qed.
Lemma asin_sin : forall x, -(PI/2) <= x <= PI/2 ->
asin (sin x) = x.
Proof.
intros x HB.
apply sin_inj; auto.
apply asin_bound.
apply sin_asin.
apply SIN_bound.
Qed.
(** ** Relation between arcsin, cosine and tangent *)
Lemma cos_asin : forall x, -1 <= x <= 1 ->
cos (asin x) = sqrt (1 - x²).
Proof.
intros x Hxrange.
pose proof (sin_asin x) ltac:(lra) as Hasin.
remember (asin(x)) as α.
rewrite <- Hasin.
apply cos_sin.
pose proof cos_ge_0 α.
pose proof asin_bound x.
lra.
Qed.
Lemma tan_asin : forall x, -1 <= x <= 1 ->
tan (asin x) = x / sqrt (1 - x²).
Proof.
intros x Hxrange.
pose proof (sin_asin x) Hxrange as Hasin.
remember (asin(x)) as α.
rewrite <- Hasin.
apply tan_sin.
pose proof cos_ge_0 α.
pose proof asin_bound x.
lra.
Qed.
(** ** Derivative of arcsine *)
Lemma derivable_pt_asin : forall x, -1 < x < 1 ->
derivable_pt asin x.
Proof.
intros x H.
eapply (derivable_pt_recip_interv sin asin (-PI/2) (PI/2)); [shelve ..|].
rewrite <- (pr_nu sin (asin x) (derivable_pt_sin (asin x))).
rewrite derive_pt_sin.
(* The asin bounds are needed later, so pose them before asin is unfolded *)
pose proof asin_bound_lt x ltac:(lra) as HxB3.
unfold asin in *.
destruct (Rle_dec x (-1)); destruct (Rle_dec 1 x); [lra .. |].
apply Rgt_not_eq; apply cos_gt_0; lra.
Unshelve.
- pose proof PI_RGT_0 as HPi; lra.
- rewrite Ropp_div,sin_antisym,sin_PI2; lra.
- clear x H; intros x Ha Hb.
rewrite Ropp_div; apply asin_bound.
- intros a Ha; reg.
- intros x0 Ha Hb.
unfold comp,id.
apply sin_asin.
rewrite Ropp_div,sin_antisym,sin_PI2 in Ha; rewrite sin_PI2 in Hb; lra.
- intros x1 x2 Ha Hb Hc.
apply sin_increasing_1; lra.
Qed.
Lemma derive_pt_asin : forall (x : R) (Hxrange : -1 < x < 1),
derive_pt asin x (derivable_pt_asin x Hxrange) = 1 / sqrt (1 - x²).
Proof.
intros x Hxrange.
epose proof (derive_pt_recip_interv sin asin (-PI/2) (PI/2) x _ _ _ _ _ _ _) as Hd.
rewrite <- (pr_nu sin (asin x) (derivable_pt_sin (asin x))) in Hd.
rewrite <- (pr_nu asin x (derivable_pt_asin x Hxrange)) in Hd.
rewrite derive_pt_sin in Hd.
rewrite cos_asin in Hd by lra.
assumption.
Unshelve.
- pose proof PI_RGT_0. lra.
- rewrite Ropp_div,sin_antisym,sin_PI2; lra.
- intros x1 x2 Ha Hb Hc.
apply sin_increasing_1; lra.
- intros x0 Ha Hb.
pose proof asin_bound x0; lra.
- intros a Ha; reg.
- intros x0 Ha Hb.
unfold comp,id.
apply sin_asin.
rewrite Ropp_div,sin_antisym,sin_PI2 in Ha; rewrite sin_PI2 in Hb; lra.
- rewrite <- (pr_nu sin (asin x) (derivable_pt_sin (asin x))).
rewrite derive_pt_sin.
rewrite cos_asin by lra.
apply Rgt_not_eq.
apply sqrt_lt_R0.
pose proof Rsqr_bounds_lt 1 x ltac:(lra) as Hxsqrrange.
rewrite Rsqr_1 in Hxsqrrange; lra.
Qed.
(*********************************************************)
(** * Definition of arccosine based on arctangent *)
(*********************************************************)
(** acos is defined by cases so that it is defined in the full range from -1 .. 1 *)
Definition acos x :=
if Rle_dec x (-1) then PI else
if Rle_dec 1 x then 0 else
PI/2 - atan (x/sqrt(1 - x²)).
(** ** Relation between arccosine, arcsine and arctangent *)
Lemma acos_atan : forall x, 0 < x ->
acos x = atan (sqrt (1 - x²) / x).
Proof.
intros x.
unfold acos; repeat case Rle_dec; [lra | |].
- intros Hx1 Hx2 Hx3.
pose proof Rsqr_bounds_le x 1 ltac:(lra)as Hxsqr.
rewrite Rsqr_1 in Hxsqr.
rewrite sqrt_neg_0 by lra.
replace (0/x) with 0 by (field;lra).
rewrite atan_0; reflexivity.
- intros Hx1 Hx2 Hx3.
pose proof atan_inv (sqrt (1 - x²) / x) as Hatan.
pose proof Rsqr_bounds_lt 1 x ltac:(lra)as Hxsqr.
rewrite Rsqr_1 in Hxsqr.
replace (/ (sqrt (1 - x²) / x)) with (x/sqrt (1 - x²)) in Hatan.
+ rewrite Hatan; [field|].
apply Rdiv_lt_0_compat; [|assumption].
apply sqrt_lt_R0; lra.
+ field; split.
lra.
assert(sqrt (1 - x²) >0) by (apply sqrt_lt_R0; lra); lra.
Qed.
Lemma acos_asin : forall x, -1 <= x <= 1 ->
acos x = PI/2 - asin x.
Proof.
intros x.
unfold acos, asin; repeat case Rle_dec; lra.
Qed.
Lemma asin_acos : forall x, -1 <= x <= 1 ->
asin x = PI/2 - acos x.
Proof.
intros x.
unfold acos, asin; repeat case Rle_dec; lra.
Qed.
(** ** arccosine of specific values *)
Lemma acos_0 : acos 0 = PI/2.
Proof.
unfold acos; repeat case Rle_dec; [lra..|].
intros Hx1 Hx2.
replace (0/_) with 0.
rewrite atan_0; field.
field.
rewrite Rsqr_pow2; field_simplify (1 - 0^2).
rewrite sqrt_1; lra.
Qed.
Lemma acos_1 : acos 1 = 0.
Proof.
unfold acos; repeat case Rle_dec; lra.
Qed.
Lemma acos_opp : forall x,
acos (- x) = PI - acos x.
Proof.
intros x.
unfold acos; repeat case Rle_dec; try lra.
intros Hx1 Hx2 Hx3 Hx4.
rewrite <- Rsqr_neg, Ropp_div, atan_opp.
lra.
Qed.
Lemma acos_inv_sqrt2 : acos (/sqrt 2) = PI/4.
Proof.
rewrite acos_asin.
rewrite asin_inv_sqrt2.
lra.
split.
apply Rlt_le.
apply (Rlt_trans (-1) 0 (/ sqrt 2)); try lra.
apply Rinv_0_lt_compat.
apply Rlt_sqrt2_0.
replace 1 with (/ sqrt 1).
apply Rlt_le.
apply Rinv_1_lt_contravar.
rewrite sqrt_1; lra.
apply sqrt_lt_1; lra.
rewrite sqrt_1; lra.
Qed.
(** ** Bounds of arccosine *)
Lemma acos_bound : forall x,
0 <= acos x <= PI.
Proof.
intros x.
pose proof PI_RGT_0.
unfold acos; repeat case Rle_dec; try lra.
intros Hx1 Hx2.
pose proof atan_bound (x / sqrt (1 - x²)); lra.
Qed.
Lemma acos_bound_lt : forall x, -1 < x < 1 ->
0 < acos x < PI.
Proof.
intros x xB.
pose proof PI_RGT_0.
unfold acos; repeat case Rle_dec; try lra.
intros Hx1 Hx2.
pose proof atan_bound (x / sqrt (1 - x²)); lra.
Qed.
(** ** arccosine is the left and right inverse of cosine *)
Lemma cos_acos : forall x, -1 <= x <= 1 ->
cos (acos x) = x.
Proof.
intros x xB.
assert (H : x = -1 \/ -1 < x) by lra.
destruct H as [He|Hl].
rewrite He.
change (IZR (-1)) with (-(IZR 1)).
now rewrite acos_opp, acos_1, Rminus_0_r, cos_PI.
assert (H : x = 1 \/ x < 1) by lra.
destruct H as [He1|Hl1].
now rewrite He1, acos_1, cos_0.
rewrite acos_asin, cos_shift; try lra.
rewrite sin_asin; lra.
Qed.
Lemma acos_cos : forall x, 0 <= x <= PI ->
acos (cos x) = x.
Proof.
intros x HB.
apply cos_inj; try lra.
apply acos_bound.
apply cos_acos.
apply COS_bound.
Qed.
(** ** Relation between arccosine, sine and tangent *)
Lemma sin_acos : forall x, -1 <= x <= 1 ->
sin (acos x) = sqrt (1 - x²).
Proof.
intros x Hxrange.
pose proof (cos_acos x) ltac:(lra) as Hacos.
remember (acos(x)) as α.
rewrite <- Hacos.
apply sin_cos.
pose proof sin_ge_0 α.
pose proof acos_bound x.
lra.
Qed.
Lemma tan_acos : forall x, -1 <= x <= 1 ->
tan (acos x) = sqrt (1 - x²) / x.
Proof.
intros x Hxrange.
pose proof (cos_acos x) Hxrange as Hacos.
remember (acos(x)) as α.
rewrite <- Hacos.
apply tan_cos.
pose proof sin_ge_0 α.
pose proof acos_bound x.
lra.
Qed.
(** ** Derivative of arccosine *)
Lemma derivable_pt_acos : forall x, -1 < x < 1 ->
derivable_pt acos x.
Proof.
intros x H.
eapply (derivable_pt_recip_interv_decr cos acos 0 PI); [shelve ..|].
rewrite <- (pr_nu cos (acos x) (derivable_pt_cos (acos x))).
rewrite derive_pt_cos.
(* The acos bounds are needed later, so pose them before acos is unfolded *)
pose proof acos_bound_lt x ltac:(lra) as Hbnd.
unfold acos in *.
destruct (Rle_dec x (-1)); destruct (Rle_dec 1 x); [lra..|].
apply Rlt_not_eq, Ropp_lt_gt_0_contravar, Rlt_gt.
apply sin_gt_0; lra.
Unshelve.
- pose proof PI_RGT_0 as HPi; lra.
- rewrite cos_0; rewrite cos_PI; lra.
- clear x H; intros x H1 H2.
apply acos_bound.
- intros a Ha; reg.
- intros x0 H1 H2.
unfold comp,id.
apply cos_acos.
rewrite cos_PI in H1; rewrite cos_0 in H2; lra.
- intros x1 x2 H1 H2 H3.
pose proof cos_decreasing_1 x1 x2; lra.
Qed.
Lemma derive_pt_acos : forall (x : R) (Hxrange : -1 < x < 1),
derive_pt acos x (derivable_pt_acos x Hxrange) = -1 / sqrt (1 - x²).
Proof.
intros x Hxrange.
epose proof (derive_pt_recip_interv_decr cos acos 0 PI x _ _ _ _ _ _ _ ) as Hd.
rewrite <- (pr_nu cos (acos x) (derivable_pt_cos (acos x))) in Hd.
rewrite <- (pr_nu acos x (derivable_pt_acos x Hxrange)) in Hd.
rewrite derive_pt_cos in Hd.
rewrite sin_acos in Hd by lra.
rewrite Hd; field.
apply Rgt_not_eq, Rlt_gt; rewrite <- sqrt_0.
pose proof Rsqr_bounds_lt 1 x ltac:(lra) as Hxb; rewrite Rsqr_1 in Hxb.
apply sqrt_lt_1; lra.
Unshelve.
- pose proof PI_RGT_0; lra.
- rewrite cos_PI,cos_0; lra.
- intros x1 x2 Ha Hb Hc.
apply cos_decreasing_1; lra.
- intros x0 Ha Hb.
pose proof acos_bound x0; lra.
- intros a Ha; reg.
- intros x0 Ha Hb.
unfold comp,id.
apply cos_acos.
rewrite cos_PI in Ha; rewrite cos_0 in Hb; lra.
- rewrite <- (pr_nu cos (acos x) (derivable_pt_cos (acos x))).
rewrite derive_pt_cos.
rewrite sin_acos by lra.
apply Rlt_not_eq; rewrite <- Ropp_0; apply Ropp_lt_contravar; rewrite <- sqrt_0.
pose proof Rsqr_bounds_lt 1 x ltac:(lra) as Hxb; rewrite Rsqr_1 in Hxb.
apply sqrt_lt_1; lra.
Qed.
|