aboutsummaryrefslogtreecommitdiff
path: root/theories/Reals/Cauchy/ConstructiveRcomplete.v
blob: c2b60e6478992888861aebdcfbb17520a1a0563e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
(************************************************************************)
(*         *   The Coq Proof Assistant / The Coq Development Team       *)
(*  v      *         Copyright INRIA, CNRS and contributors             *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)
(************************************************************************)

Require Import QArith_base.
Require Import Qabs.
Require Import ConstructiveReals.
Require Import ConstructiveCauchyRealsMult.
Require Import Logic.ConstructiveEpsilon.
Require Import ConstructiveCauchyAbs.
Require Import Lia.
Require Import Lqa.
Require Import Qpower.
Require Import QExtra.
Require Import PosExtra.
Require Import ConstructiveExtra.

(** Proof that Cauchy reals are Cauchy-complete.

    WARNING: this file is experimental and likely to change in future releases.
 *)

Local Open Scope CReal_scope.

(* We use <= in sort Prop rather than < in sort Set,
   it is equivalent for the definition of limits and it
   extracts smaller programs. *)
Definition seq_cv (un : nat -> CReal) (l : CReal) : Set
  := forall p : positive,
    { n : nat  |  forall i:nat, le n i -> CReal_abs (un i - l) <= inject_Q (1#p) }.

Definition Un_cauchy_mod (un : nat -> CReal) : Set
  := forall p : positive,
    { n : nat  |  forall i j:nat, le n i -> le n j
                       -> CReal_abs (un i - un j) <= inject_Q (1#p) }.

Lemma seq_cv_proper : forall (un : nat -> CReal) (a b : CReal),
    seq_cv un a
    -> a == b
    -> seq_cv un b.
Proof.
  intros. intro p. specialize (H p) as [n H].
  exists n. intros. rewrite <- H0. apply H, H1.
Qed.

Instance seq_cv_morph
  : forall (un : nat -> CReal), CMorphisms.Proper
      (CMorphisms.respectful CRealEq CRelationClasses.iffT) (seq_cv un).
Proof.
  split. intros. apply (seq_cv_proper un x). exact H0. exact H.
  intros. apply (seq_cv_proper un y). exact H0. symmetry. exact H.
Qed.


(* Sharpen the archimedean property : constructive versions of
   the usual floor and ceiling functions. *)
Definition Rfloor (a : CReal)
  : { p : Z  &  inject_Q (p#1) < a < inject_Q (p#1) + 2 }.
Proof.
  destruct (CRealArchimedean a) as [n [H H0]].
  exists (n-2)%Z. split.
  - setoid_replace (n - 2 # 1)%Q with ((n#1) + - 2)%Q.
    rewrite inject_Q_plus, (opp_inject_Q 2).
    apply (CReal_plus_lt_reg_r 2). ring_simplify.
    rewrite CReal_plus_comm. exact H0.
    rewrite Qinv_plus_distr. reflexivity.
  - setoid_replace (n - 2 # 1)%Q with ((n#1) + - 2)%Q.
    rewrite inject_Q_plus, (opp_inject_Q 2).
    ring_simplify. exact H.
    rewrite Qinv_plus_distr. reflexivity.
Qed.

(* ToDo: Move to ConstructiveCauchyAbs.v *)
Lemma Qabs_Rabs : forall q : Q,
    inject_Q (Qabs q) == CReal_abs (inject_Q q).
Proof.
  intro q. apply Qabs_case.
  - intros. rewrite CReal_abs_right. reflexivity.
    apply inject_Q_le, H.
  - intros. rewrite CReal_abs_left, opp_inject_Q. reflexivity.
    apply inject_Q_le, H.
Qed.

Lemma Qlt_trans_swap_hyp: forall x y z : Q,
  (y < z)%Q -> (x < y)%Q -> (x < z)%Q.
Proof.
  intros x y z H1 H2.
  apply (Qlt_trans x y z); assumption.
Qed.

Lemma Qle_trans_swap_hyp: forall x y z : Q,
  (y <= z)%Q -> (x <= y)%Q -> (x <= z)%Q.
Proof.
  intros x y z H1 H2.
  apply (Qle_trans x y z); assumption.
Qed.

(** This inequality is tight since it is equal for n=1 and n=2 *)

Lemma Qpower_2powneg_le_inv: forall (n : positive),
    (2 * 2 ^ Z.neg n <= 1 # n)%Q.
Proof.
  intros n.
  induction n using Pos.peano_ind.
  - cbn. lra.
  - rewrite <- Pos2Z.opp_pos, Pos2Z.inj_succ, Z.opp_succ, Pos2Z.opp_pos, <- Z.sub_1_r.
    rewrite Qpower_minus_pos.
    ring_simplify.
    apply (Qmult_le_l _ _ (1#2)) in IHn.
      2: lra.
    ring_simplify in IHn.
    apply (Qle_trans _ _ _ IHn).
    unfold Qle, Qmult, Qnum, Qden.
    ring_simplify; rewrite Pos2Z.inj_succ, <- Z.add_1_l.
    clear IHn; induction n using Pos.peano_ind.
    + reflexivity.
    + rewrite Pos2Z.inj_succ, <- Z.add_1_l.
      (* ToDo: does this lemma really need to be named like this and have this statement? *)
      rewrite <- POrderedType.Positive_as_OT.add_1_l.
      rewrite POrderedType.Positive_as_OT.mul_add_distr_l.
      rewrite Pos2Z.inj_add.
      apply Z.add_le_mono.
      * lia.
      * exact IHn.
Qed.

Lemma Pospow_lin_le_2pow: forall (n : positive),
    (2 * n <= 2 ^ n)%positive.
Proof.
  intros n.
  induction n using Pos.peano_ind.
  - cbn. lia.
  - rewrite Pos.mul_succ_r, Pos.pow_succ_r.
    lia.
Qed.

Lemma CReal_cv_self : forall (x : CReal) (n : positive),
    CReal_abs (x - inject_Q (seq x (Z.neg n))) <= inject_Q (1#n).
Proof.
  intros x n.
  (* ToDo: CRealLt_asym should be names CRealLt_Le_weak and asym should be x<y /\ y<x -> False *)
  apply CRealLt_asym.
  apply (CRealLt_RQ_from_single_dist _ _ (Z.neg n - 1)%Z).
  unfold CReal_abs, CReal_abs_seq, CReal_abs_scale.
  unfold CReal_minus, CReal_plus, CReal_plus_seq, CReal_abs_scale.
  unfold CReal_opp, CReal_opp_seq, CReal_opp_scale.
  unfold inject_Q.
  do 4 rewrite CReal_red_seq; rewrite Qred_correct.
  ring_simplify (Z.neg n - 1 - 1)%Z.
  pose proof cauchy x (Z.neg n) (Z.neg n - 2)%Z (Z.neg n) ltac:(lia) ltac:(lia) as Hxbnd.
  apply Qround.Qopp_lt_compat in Hxbnd.
  apply (Qplus_lt_r _ _ (1#n)) in Hxbnd.
  apply (Qlt_trans_swap_hyp _ _ _ Hxbnd); clear Hxbnd x.
  rewrite Qpower_minus_pos.
  apply (Qplus_lt_r _ _ (2 ^ Z.neg n)%Q); ring_simplify.
  pose proof Qpower_2powneg_le_inv n as Hpowinv.
  pose proof Qpower_pos_lt 2 (Z.neg n) ltac:(lra) as Hpowpos.
  lra.
Qed.

Lemma CReal_cv_self' : forall (x : CReal) (n : Z),
    CReal_abs (x - inject_Q (seq x n)) <= inject_Q (2^n).
Proof.
  intros x n [k kmaj].
  unfold CReal_abs, CReal_abs_seq, CReal_abs_scale in kmaj.
  unfold CReal_minus, CReal_plus, CReal_plus_seq, CReal_abs_scale in kmaj.
  unfold CReal_opp, CReal_opp_seq, CReal_opp_scale in kmaj.
  unfold inject_Q in kmaj.
  do 4 rewrite CReal_red_seq in kmaj; rewrite Qred_correct in kmaj.
  apply (Qlt_not_le _ _ kmaj). clear kmaj.
  rewrite CReal_red_seq.
  apply (Qplus_le_l _ _ (2^n)%Q); ring_simplify.
  pose proof cauchy x (Z.max (k-1)%Z n) (k-1)%Z n ltac:(lia) ltac:(lia) as Hxbnd.
  apply Qlt_le_weak in Hxbnd.
  apply (Qle_trans _ _ _ Hxbnd); clear Hxbnd.
  apply Z.max_case.
  - rewrite <- Qplus_0_l; apply Qplus_le_compat.
    + apply Qpower_pos; lra.
    + rewrite Qpower_minus_pos.
      pose proof (Qpower_pos_lt 2 k)%Q; lra.
  - rewrite <- Qplus_0_r; apply Qplus_le_compat.
    + lra.
    + pose proof (Qpower_pos_lt 2 k)%Q; lra.
Qed.

Definition QCauchySeqLin (un : positive -> Q)
  : Prop
  := forall (k : positive) (p q : positive),
      Pos.le k p
      -> Pos.le k q
      -> Qlt (Qabs (un p - un q)) (1 # k).

(* We can probably reduce the factor 4. *)
Lemma Rcauchy_limit : forall (xn : nat -> CReal) (xcau : Un_cauchy_mod xn),
    QCauchySeqLin
      (fun n : positive =>
         let (p, _) := xcau (4 * n)%positive in seq (xn p) (4 * Z.neg n)%Z).
Proof.
  intros xn xcau n p q Hp Hq.
  destruct (xcau (4 * p)%positive) as [i imaj],
  (xcau (4 * q)%positive) as [j jmaj].
  assert (CReal_abs (xn i - xn j) <= inject_Q (1 # 4 * n)).
  { destruct (le_lt_dec i j).
    apply (CReal_le_trans _ _ _ (imaj i j (le_refl _) l)).
    apply inject_Q_le. unfold Qle, Qnum, Qden.
    rewrite Z.mul_1_l, Z.mul_1_l. apply Pos2Z.pos_le_pos.
    apply Pos.mul_le_mono_l, Hp. apply le_S, le_S_n in l.
    apply (CReal_le_trans _ _ _ (jmaj i j l (le_refl _))).
    apply inject_Q_le. unfold Qle, Qnum, Qden.
    rewrite Z.mul_1_l, Z.mul_1_l. apply Pos2Z.pos_le_pos.
    apply Pos.mul_le_mono_l, Hq. }
  clear jmaj imaj.
  setoid_replace (1#n)%Q with ((1#(3*n)) + ((1#(3*n)) + (1#(3*n))))%Q.
  2: rewrite Qinv_plus_distr, Qinv_plus_distr; reflexivity.
  apply lt_inject_Q. rewrite inject_Q_plus.
  rewrite Qabs_Rabs.
  apply (CReal_le_lt_trans _ (CReal_abs (inject_Q (seq (xn i) (4 * Z.neg p)%Z) - xn i) + CReal_abs (xn i - inject_Q(seq (xn j) (4 * Z.neg q)%Z)))).
  unfold Qminus.
  rewrite inject_Q_plus, opp_inject_Q.
  setoid_replace (inject_Q (seq (xn i) (4 * Z.neg p)%Z) +
                  - inject_Q (seq (xn j) (4 * Z.neg q)%Z))
    with (inject_Q (seq (xn i) (4 * Z.neg p)%Z) - xn i
          + (xn i - inject_Q (seq (xn j) (4 * Z.neg q)%Z))).
  2: ring.
  apply CReal_abs_triang. apply CReal_plus_le_lt_compat.
  rewrite CReal_abs_minus_sym. apply (CReal_le_trans _ (inject_Q (1# 4*p))).
  apply CReal_cv_self. apply inject_Q_le. unfold Qle, Qnum, Qden.
  rewrite Z.mul_1_l, Z.mul_1_l.
  apply Pos2Z.pos_le_pos. apply (Pos.le_trans _ (4*n)).
  apply Pos.mul_le_mono_r. discriminate.
  apply Pos.mul_le_mono_l. exact Hp.
  apply (CReal_le_lt_trans
           _ (CReal_abs (xn i - xn j + (xn j - inject_Q (seq (xn j) (4 * Z.neg q)%Z))))).
  apply CReal_abs_morph. ring.
  apply (CReal_le_lt_trans _ _ _ (CReal_abs_triang _ _)).
  rewrite inject_Q_plus. apply CReal_plus_le_lt_compat.
  apply (CReal_le_trans _ _ _ H). apply inject_Q_le.
  unfold Qle, Qnum, Qden. rewrite Z.mul_1_l, Z.mul_1_l.
  apply Pos2Z.pos_le_pos. apply Pos.mul_le_mono_r. discriminate.
  apply (CReal_le_lt_trans _ (inject_Q (1#4*q))).
  apply CReal_cv_self. apply inject_Q_lt. unfold Qlt, Qnum, Qden.
  rewrite Z.mul_1_l, Z.mul_1_l.
  apply Pos2Z.pos_lt_pos. apply (Pos.lt_le_trans _ (4*n)).
  apply Pos.mul_lt_mono_r. reflexivity.
  apply Pos.mul_le_mono_l. exact Hq.
Qed.

Definition CReal_from_cauchy_cm (n : Z) : positive :=
  match n with
    | Z0
    | Zpos _ => 1%positive
    | Zneg p => p
    end.

Lemma CReal_from_cauchy_cm_mono : forall (n p : Z),
    (p <= n)%Z
 -> (CReal_from_cauchy_cm n <= CReal_from_cauchy_cm p)%positive.
Proof.
  intros n p Hpn.
  unfold CReal_from_cauchy_cm; destruct n; destruct p; lia.
Qed.

Definition CReal_from_cauchy_seq (xn : nat -> CReal) (xcau : Un_cauchy_mod xn) (n : Z) : Q :=
  let p := CReal_from_cauchy_cm n in
  let (q, _) := xcau (4 * 2^p)%positive in
  seq (xn q) (Z.neg p - 2)%Z.

Lemma CReal_from_cauchy_cauchy : forall (xn : nat -> CReal) (xcau : Un_cauchy_mod xn),
    QCauchySeq (CReal_from_cauchy_seq xn xcau).
Proof.
  intros xn xcau n p q Hp Hq.
  remember (CReal_from_cauchy_cm n) as n'.
  remember (CReal_from_cauchy_cm p) as p'.
  remember (CReal_from_cauchy_cm q) as q'.
  unfold CReal_from_cauchy_seq.
  rewrite <- Heqp', <- Heqq'.
  destruct (xcau (4 * 2^p')%positive) as [i imaj].
  destruct (xcau (4 * 2^q')%positive) as [j jmaj].
  assert (CReal_abs (xn i - xn j) <= inject_Q (1 # 4 * 2^n')).
  {
    destruct (le_lt_dec i j).
    apply (CReal_le_trans _ _ _ (imaj i j (le_refl _) l)).
    apply inject_Q_le. unfold Qle, Qnum, Qden.
    rewrite Z.mul_1_l, Z.mul_1_l. apply Pos2Z.pos_le_pos.
    subst; apply Pos.mul_le_mono_l, Pos_pow_le_mono_r, CReal_from_cauchy_cm_mono, Hp.
    apply le_S, le_S_n in l.
    apply (CReal_le_trans _ _ _ (jmaj i j l (le_refl _))).
    apply inject_Q_le. unfold Qle, Qnum, Qden.
    rewrite Z.mul_1_l, Z.mul_1_l. apply Pos2Z.pos_le_pos.
    subst; apply Pos.mul_le_mono_l, Pos_pow_le_mono_r, CReal_from_cauchy_cm_mono, Hq.
  }
  clear jmaj imaj.
  setoid_replace (2^n)%Q with ((1#3)*2^n + ((1#3)*2^n + (1#3)*2^n))%Q by ring.
  apply lt_inject_Q. rewrite inject_Q_plus.
  rewrite Qabs_Rabs.
  apply (CReal_le_lt_trans _ (CReal_abs (inject_Q (seq (xn i) (Z.neg p' - 2)%Z) - xn i) + CReal_abs (xn i - inject_Q(seq (xn j) (Z.neg q' - 2)%Z)))).
  {
    unfold Qminus.
    rewrite inject_Q_plus, opp_inject_Q.
    setoid_replace (inject_Q (seq (xn i) (Z.neg p' - 2)%Z) +
                    - inject_Q (seq (xn j) (Z.neg q' -  2)%Z))
      with (inject_Q (seq (xn i) (Z.neg p' - 2)%Z) - xn i
            + (xn i - inject_Q (seq (xn j) (Z.neg q' - 2)%Z))).
    2: ring.
    apply CReal_abs_triang.
  }
  apply CReal_plus_le_lt_compat.
  {
    rewrite CReal_abs_minus_sym.
    apply (CReal_le_trans _ (inject_Q ((1#4)*2^(Z.neg p')))).
    - change (1#4)%Q with ((1#2)^2)%Q.
      rewrite Qmult_comm, <- Qpower_minus_pos.
      apply CReal_cv_self'.
    - apply inject_Q_le.
      apply Qmult_le_compat_nonneg.
      + lra.
      + { split.
          - apply Qpower_pos; lra.
          - apply Qpower_le_compat.
            + subst; unfold CReal_from_cauchy_cm; destruct p; lia.
            + lra. }
  }
  apply (CReal_le_lt_trans
           _ (CReal_abs (xn i - xn j + (xn j - inject_Q (seq (xn j) (Z.neg q' - 2)%Z))))).
    1: apply CReal_abs_morph; ring.
  apply (CReal_le_lt_trans _ _ _ (CReal_abs_triang _ _)).
  rewrite inject_Q_plus.
  apply CReal_plus_le_lt_compat.
  {
    apply (CReal_le_trans _ _ _ H). apply inject_Q_le.
    rewrite Q_factorDenom.
    rewrite <- (Z.pow_1_l (Z.pos n')) at 2 by lia.
    rewrite <- (Qpower_decomp').
    change (1#2)%Q with (/2)%Q; rewrite Qinv_power, <- Qpower_opp.
    apply Qmult_le_compat_nonneg.
    - lra.
    - { split.
        - apply Qpower_pos; lra.
        - apply Qpower_le_compat.
          + subst; unfold CReal_from_cauchy_cm; destruct n; lia.
          + lra. }
  }
  apply (CReal_le_lt_trans _ (inject_Q ((1#4)*2^(Z.neg q')))).
  {
    change (1#4)%Q with ((1#2)^2)%Q.
    rewrite Qmult_comm, <- Qpower_minus_pos.
    apply CReal_cv_self'.
  }
  apply inject_Q_lt.
  setoid_rewrite Qmult_comm at 1 2.
  apply Qmult_lt_le_compat_nonneg.
  + { split.
      - apply Qpower_pos_lt; lra.
      - apply Qpower_le_compat.
        + subst; unfold CReal_from_cauchy_cm. destruct q; lia.
        + lra. }
  + lra.
Qed.

Lemma Rup_pos (x : CReal)
  : { n : positive  &  x < inject_Q (Z.pos n # 1) }.
Proof.
  intros. destruct (CRealArchimedean x) as [p [maj _]].
  destruct p.
  - exists 1%positive. apply (CReal_lt_trans _ 0 _ maj). apply CRealLt_0_1.
  - exists p. exact maj.
  - exists 1%positive. apply (CReal_lt_trans _ (inject_Q (Z.neg p # 1)) _ maj).
    apply (CReal_lt_trans _ 0). apply inject_Q_lt. reflexivity.
    apply CRealLt_0_1.
Qed.

Lemma CReal_abs_upper_bound (x : CReal)
  : { n : positive  &  CReal_abs x < inject_Q (Z.pos n # 1) }.
Proof.
  intros.
  destruct (Rup_pos x) as [np Hnp].
  destruct (Rup_pos (-x)) as [nn Hnn].
  exists (Pos.max np nn).
  apply Rabs_def1.
  - apply (CReal_lt_le_trans _ _ _ Hnp), inject_Q_le.
    unfold Qle, Qnum, Qden; ring_simplify. lia.
  - apply (CReal_lt_le_trans _ _ _ Hnn), inject_Q_le.
    unfold Qle, Qnum, Qden; ring_simplify. lia.
Qed.

Require Import Qminmax.

Lemma CRealLt_QR_from_single_dist : forall (q : Q) (r : CReal) (n :Z),
    (2^n < seq r n - q)%Q
 -> inject_Q q < r .
Proof.
  intros q r n Hapart.
  pose proof Qpower_pos_lt 2 n ltac:(lra) as H2npos.
  destruct (QarchimedeanLowExp2_Z (seq r n - q - 2^n) ltac:(lra)) as [k Hk].
  unfold CRealLt; exists (Z.min n (k-1))%Z.
  unfold inject_Q; rewrite CReal_red_seq.
  pose proof cauchy r n n (Z.min n (k-1))%Z ltac:(lia) ltac:(lia) as Hrbnd.
  pose proof Qpower_le_compat 2 (Z.min n (k - 1))%Z (k-1)%Z ltac:(lia) ltac:(lra).
  apply (Qmult_le_l _ _ 2 ltac:(lra)) in H.
  apply (Qle_lt_trans _ _ _ H); clear H.
  rewrite Qpower_minus_pos.
  ring_simplify.
  apply Qabs_Qlt_condition in Hrbnd.
  lra.
Qed.

Lemma CReal_abs_Qabs: forall (x : CReal) (q : Q) (n : Z),
    CReal_abs x <= inject_Q q
 -> (Qabs (seq x n) <= q + 2^n)%Q.
Proof.
  intros x q n Hr.
  unfold CRealLe in Hr.
  apply Qnot_lt_le; intros Hq; apply Hr; clear Hr.
  apply (CRealLt_QR_from_single_dist _ _ n%Z).
  unfold CReal_abs, CReal_abs_seq; rewrite CReal_red_seq.
  lra.
Qed.

Lemma CReal_abs_Qabs_seq: forall (x : CReal) (n : Z),
    (seq (CReal_abs x) n == Qabs (seq x n))%Q.
Proof.
  intros x n.
  unfold CReal_abs, CReal_abs_seq; rewrite CReal_red_seq.
  reflexivity.
Qed.

Lemma CReal_abs_Qabs_diff: forall (x y : CReal) (q : Q) (n : Z),
    CReal_abs (x - y) <= inject_Q q
 -> (Qabs (seq x n - seq y n) <= q + 2*2^n)%Q.
Proof.
  intros x y q n Hr.
  unfold CRealLe in Hr.
  apply Qnot_lt_le; intros Hq; apply Hr; clear Hr.
  apply (CRealLt_QR_from_single_dist _ _ (n+1)%Z).
  unfold CReal_abs, CReal_abs_seq; rewrite CReal_red_seq.
  unfold CReal_minus, CReal_plus, CReal_plus_seq; rewrite CReal_red_seq, Qred_correct.
  unfold CReal_opp, CReal_opp_seq; rewrite CReal_red_seq.
  ring_simplify (n + 1 - 1)%Z.
  rewrite Qpower_plus by lra.
  ring_simplify; change (seq x n + - seq y n)%Q with (seq x n - seq y n)%Q.
  lra.
Qed.

(** Note: the <= in the conclusion is likely tight *)

Lemma CRealLt_QR_to_single_dist : forall (q : Q) (x : CReal) (n : Z),
    inject_Q q < x -> (-(2^n) <= seq x n - q)%Q.
Proof.
  intros q x n Hqltx.
  destruct (Qlt_le_dec (seq x n - q) (-(2^n))  ) as [Hdec|Hdec].
  - exfalso.
    pose proof CRealLt_RQ_from_single_dist x q n ltac:(lra) as contra.
    apply CRealLt_asym in contra. apply contra, Hqltx.
  - apply Hdec.
Qed.

Lemma CRealLt_RQ_to_single_dist : forall (x : CReal) (q : Q) (n : Z),
    x < inject_Q q -> (-(2^n) <= q - seq x n)%Q.
Proof.
  intros x q n Hxltq.
  destruct (Qlt_le_dec (q - seq x n) (-(2^n))  ) as [Hdec|Hdec].
  - exfalso.
    pose proof CRealLt_QR_from_single_dist q x n ltac:(lra) as contra.
    apply CRealLt_asym in contra. apply contra, Hxltq.
  - apply Hdec.
Qed.

Lemma Pos2Z_pos_is_pos : forall (p : positive),
    (1 <= Z.pos p)%Z.
Proof.
  intros p.
  lia.
Qed.

Lemma Pos_log2floor_plus1_spec_Qpower : forall (p : positive),
    (2 ^ Z.pos (Pos_log2floor_plus1 p) <= 2 * (Z.pos p#1) < 2 * 2 ^ Z.pos (Pos_log2floor_plus1 p))%Q.
Proof.
  intros p; split.
  -  rewrite Qpower_decomp', Pos_pow_1_r.
     unfold Qle, Qmult, Qnum, Qden.
     rewrite Pos.mul_1_r; ring_simplify.
     pose proof Pos_log2floor_plus1_spec p as Hpos.
     lia.
  -  rewrite Qpower_decomp', Pos_pow_1_r.
     unfold Qlt, Qmult, Qnum, Qden.
     rewrite Pos.mul_1_r; ring_simplify.
     pose proof Pos_log2floor_plus1_spec p as Hpos.
     lia.
Qed.

Lemma Qabs_Qgt_condition: forall x y : Q,
  (x < Qabs y)%Q <-> (x < y \/ x < -y)%Q.
Proof.
 intros x y.
 apply Qabs_case; lra.
Qed.

Lemma CReal_from_cauchy_seq_bound :
  forall (xn : nat -> CReal) (xcau : Un_cauchy_mod xn) (i j : Z),
    (Qabs (CReal_from_cauchy_seq xn xcau i - CReal_from_cauchy_seq xn xcau j) <= 1)%Q.
Proof.
  intros xn xcau i j.
  unfold CReal_from_cauchy_seq.
  destruct (xcau (4 * 2 ^ CReal_from_cauchy_cm i)%positive) as [i' imaj].
  destruct (xcau (4 * 2 ^ CReal_from_cauchy_cm j)%positive) as [j' jmaj].

  assert (CReal_abs (xn i' - xn j') <= inject_Q (1#4)) as Hxij.
    {
    destruct (le_lt_dec i' j').
    - apply (CReal_le_trans _ _ _ (imaj i' j' (le_refl _) l)).
      apply inject_Q_le; unfold Qle, Qnum, Qden; ring_simplify.
      apply Pos2Z_pos_is_pos.
    - apply le_S, le_S_n in l.
      apply (CReal_le_trans _ _ _ (jmaj i' j' l (le_refl _))).
      apply inject_Q_le; unfold Qle, Qnum, Qden; ring_simplify.
      apply Pos2Z_pos_is_pos.
    }
  clear imaj jmaj.
  unfold CReal_abs, CReal_abs_seq in Hxij.
  unfold CRealLe, CRealLt in Hxij.
  rewrite CReal_red_seq in Hxij.
  apply Qnot_lt_le; intros Hxij'; apply Hxij; clear Hxij.
  exists (-2)%Z.
  unfold inject_Q; rewrite CReal_red_seq.
  unfold CReal_minus, CReal_plus, CReal_plus_seq; rewrite CReal_red_seq, Qred_correct.
  unfold CReal_opp, CReal_opp_seq; rewrite CReal_red_seq.
  change (2 * 2 ^ (-2))%Q with (2#4)%Q.
  pose proof cauchy (xn i') (-3)%Z (-3)%Z (Z.neg (CReal_from_cauchy_cm i) - 2)%Z
    ltac:(lia) ltac:(unfold CReal_from_cauchy_cm; destruct i; lia) as Hxibnd.
  pose proof cauchy (xn j') (-3)%Z (-3)%Z (Z.neg (CReal_from_cauchy_cm j) - 2)%Z
    ltac:(lia) ltac:(unfold CReal_from_cauchy_cm; destruct j; lia) as Hxjbnd.
  apply (Qplus_lt_l _ _ (1 # 4)%Q); ring_simplify.
  (* ToDo: ring_simplify should return reduced fractions *)
  setoid_replace (12#16)%Q with (3#4)%Q by ring.
  change (2^(-3))%Q with (1#8)%Q in Hxibnd, Hxjbnd.
  change (-2-1)%Z with (-3)%Z.
  apply Qabs_Qlt_condition in Hxibnd.
  apply Qabs_Qlt_condition in Hxjbnd.
  apply Qabs_Qgt_condition.
  apply Qabs_Qgt_condition in Hxij'.
  lra.
Qed.

Definition CReal_from_cauchy_scale (xn : nat -> CReal) (xcau : Un_cauchy_mod xn) : Z :=
  Qbound_lt_ZExp2 (Qabs (CReal_from_cauchy_seq xn xcau (-1)) + 2)%Q.

Lemma CReal_from_cauchy_bound : forall (xn : nat -> CReal) (xcau : Un_cauchy_mod xn),
  QBound (CReal_from_cauchy_seq xn xcau) (CReal_from_cauchy_scale xn xcau).
Proof.
  intros xn xcau n.
  unfold CReal_from_cauchy_scale.

  (* Use the spec of Qbound_lt_ZExp2 to linearize the RHS *)
  apply (Qlt_trans_swap_hyp _ _ _ (Qbound_lt_ZExp2_spec _)).

  (* Massage the goal so that CReal_from_cauchy_seq_bound can be applied *)
  apply (Qplus_lt_l _ _ (-Qabs (CReal_from_cauchy_seq xn xcau (-1)))%Q); ring_simplify.
  assert(forall x y : Q, (x + -1*y == x-y)%Q) as Aux
    by (intros x y; lra); rewrite Aux; clear Aux.
  apply (Qle_lt_trans _ _ _ (Qabs_triangle_reverse _ _)).
  apply (Qle_lt_trans _ 1%Q _).
    2: lra.
  apply CReal_from_cauchy_seq_bound.
Qed.

Definition CReal_from_cauchy (xn : nat -> CReal) (xcau : Un_cauchy_mod xn) : CReal :=
{|
  seq := CReal_from_cauchy_seq xn xcau;
  scale := CReal_from_cauchy_scale xn xcau;
  cauchy := CReal_from_cauchy_cauchy xn xcau;
  bound := CReal_from_cauchy_bound xn xcau
|}.

Lemma Rcauchy_complete : forall (xn : nat -> CReal),
    Un_cauchy_mod xn
    -> { l : CReal  &  seq_cv xn l }.
Proof.
  intros xn cau.
  exists (CReal_from_cauchy xn cau).

  intro p.
  pose proof (CReal_cv_self' (CReal_from_cauchy xn cau) (Z.neg p - 1)%Z) as H.

  pose proof (cau (2*p)%positive) as [k cv].

  rewrite CReal_abs_minus_sym in H.
  unfold CReal_from_cauchy at 1 in H.
  rewrite CReal_red_seq in H.
  unfold CReal_from_cauchy_seq in H.
  remember (CReal_from_cauchy_cm (Z.neg p - 1))%positive as i'.
  destruct (cau (4 * 2 ^ i')%positive) as [i imaj].
  exists (max k i).

  intros j H0.
  setoid_replace (xn j - CReal_from_cauchy xn cau)
  with (xn j -  inject_Q (seq (xn i) (Z.neg i' - 2)%Z)
     + (inject_Q (seq (xn i) (Z.neg i' - 2)%Z) - CReal_from_cauchy xn cau)).
  2: ring.
  apply (CReal_le_trans _ _ _ (CReal_abs_triang _ _)).
  apply (CReal_le_trans _ (inject_Q (1#2*p) + inject_Q (1#2*p))).
  apply CReal_plus_le_compat.
  2: { apply (CReal_le_trans _ _ _ H). apply inject_Q_le.
       rewrite Qpower_minus_pos.
       assert(forall (n:Z) (p q : positive), n#(p*q) == (n#p) * (1#q))%Q as Aux
         by ( intros; unfold Qeq, Qmult, Qnum, Qden; ring ); rewrite Aux; clear Aux.
       rewrite Qmult_comm; apply Qmult_le_l; [lra|].
       pose proof Qpower_2powneg_le_inv p.
       pose proof Qpower_pos_lt 2 (Z.neg p)%Z; lra. }

  (* Use imaj to relate xn i and xn j *)
  specialize (imaj j i (le_trans _ _ _ (Nat.le_max_r _ _) H0) (le_refl _)).
    apply (CReal_le_trans _ (inject_Q (1 # 4 * p) + inject_Q (1 # 4 * p))).
    setoid_replace (xn j - inject_Q (seq (xn i) (Z.neg i' - 2)))
    with (xn j - xn i + (xn i - inject_Q (seq (xn i) (Z.neg i' - 2)))).
      2: ring.
    apply (CReal_le_trans _ _ _ (CReal_abs_triang _ _)).
    apply CReal_plus_le_compat. apply (CReal_le_trans _ _ _ imaj).
    rewrite Heqi'. change (Z.neg p - 1)%Z with (Z.neg (p + 1))%Z.
    unfold CReal_from_cauchy_cm.
    apply inject_Q_le.
    unfold Qle, Qnum, Qden.
    rewrite Z.mul_1_l, Z.mul_1_l.
    apply Pos2Z.pos_le_pos, Pos.mul_le_mono_l.
    pose proof Pospow_lin_le_2pow p.
    rewrite Pos.add_1_r, Pos.pow_succ_r.
    lia.
    clear imaj.

  (* Use CReal_cv_self' to relate xn i and seq (xn i) (...) *)
  pose proof CReal_cv_self' (xn i) (Z.neg i' - 2).
    apply (CReal_le_trans _ _ _ H1).
    apply inject_Q_le.
    rewrite Heqi'. change (Z.neg p - 1)%Z with (Z.neg (p + 1))%Z.
    unfold CReal_from_cauchy_cm.
    change (Z.neg (p + 1))%Z with (Z.neg p - 1)%Z.
    ring_simplify (Z.neg p - 1 - 2)%Z.
    rewrite Qpower_minus_pos.
    assert(forall (n:Z) (p q : positive), n#(p*q) == (n#p) * (1#q))%Q as Aux
      by ( intros; unfold Qeq, Qmult, Qnum, Qden; ring ); rewrite Aux; clear Aux.
    pose proof Qpower_2powneg_le_inv p.
    pose proof Qpower_pos_lt 2 (Z.neg p)%Z; lra.

  (* Solve remaining aux goals *)
  rewrite <- inject_Q_plus. rewrite (inject_Q_morph _ (1#2*p)).
  apply CRealLe_refl. rewrite Qinv_plus_distr; reflexivity.
  rewrite <- inject_Q_plus. rewrite (inject_Q_morph _ (1#p)).
  apply CRealLe_refl. rewrite Qinv_plus_distr; reflexivity.
Qed.

Lemma CRealLtIsLinear : isLinearOrder CRealLt.
Proof.
  repeat split. exact CRealLt_asym.
  exact CReal_lt_trans.
  intros. destruct (CRealLt_dec x z y H).
  left. exact c. right. exact c.
Qed.

Lemma CRealAbsLUB : forall x y : CReal,
  x <= y /\ (- x) <= y <-> (CReal_abs x) <= y.
Proof.
  split.
  - intros [H H0]. apply CReal_abs_le. split. 2: exact H.
    apply (CReal_plus_le_reg_r (y-x)). ring_simplify. exact H0.
  - intros. apply CReal_abs_def2 in H. destruct H. split.
   exact H. fold (-x <= y).
    apply (CReal_plus_le_reg_r (x-y)). ring_simplify. exact H0.
Qed.

Lemma CRealComplete :  forall xn : nat -> CReal,
  (forall p : positive,
   {n : nat |
   forall i j : nat,
   (n <= i)%nat -> (n <= j)%nat -> (CReal_abs (xn i + - xn j)) <= (inject_Q (1 # p))}) ->
  {l : CReal &
  forall p : positive,
  {n : nat |
  forall i : nat, (n <= i)%nat -> (CReal_abs (xn i + - l)) <= (inject_Q (1 # p))}}.
Proof.
  intros. destruct (Rcauchy_complete xn) as [l cv].
  intro p. destruct (H p) as [n a]. exists n. intros.
  exact (a i j H0 H1).
  exists l. intros p. destruct (cv p).
  exists x. exact c.
Qed.

Lemma Qnot_le_iff_lt: forall x y : Q,
  ~ (x <= y)%Q <-> (y < x)%Q.
Proof.
  intros x y; split.
  - apply Qnot_le_lt.
  - apply Qlt_not_le.
Qed.

Lemma Qnot_lt_iff_le: forall x y : Q,
  ~ (x < y)%Q <-> (y <= x)%Q.
Proof.
  intros x y; split.
  - apply Qnot_lt_le.
  - apply Qle_not_lt.
Qed.

Lemma CRealLtDisjunctEpsilon : forall a b c d : CReal,
    (CRealLtProp a b \/ CRealLtProp c d) -> CRealLt a b  +  CRealLt c d.
Proof.
  intros.
  (* Combine both existentials into one *)
  assert (exists n : Z, 2*2^n < seq b n - seq a n \/ 2*2^n < seq d n - seq c n)%Q.
  { destruct H.
    - destruct H as [n maj]. exists n. left. apply maj.
    - destruct H as [n maj]. exists n. right. apply maj. }
  apply constructive_indefinite_ground_description_Z in H0.
  - destruct H0 as [n maj].
    destruct (Qlt_le_dec (2 * 2^n) (seq b n - seq a n)).
    + left. exists n. apply q.
    + assert (2 * 2^n < seq d n - seq c n)%Q.
      { destruct maj. exfalso.
        apply (Qlt_not_le (2 * 2^n) (seq b n - seq a n)); assumption.
        assumption. }
      clear maj. right. exists n.
      apply H0.
  - clear H0 H. intro n.
    destruct (Qlt_le_dec (2 * 2 ^ n)%Q (seq b n - seq a n)%Q) as [H1|H1].
    + now left; left.
    + destruct (Qlt_le_dec (2 * 2 ^ n)%Q (seq d n - seq c n)%Q) as [H2|H2].
      * now left; right.
      * now right; intros [H3|H3]; apply Qle_not_lt with (2 := H3).
Qed.

Definition CRealConstructive : ConstructiveReals
  := Build_ConstructiveReals
       CReal CRealLt CRealLtIsLinear CRealLtProp
       CRealLtEpsilon CRealLtForget CRealLtDisjunctEpsilon
       inject_Q inject_Q_lt lt_inject_Q
       CReal_plus CReal_opp CReal_mult
       inject_Q_plus inject_Q_mult
       CReal_isRing CReal_isRingExt CRealLt_0_1
       CReal_plus_lt_compat_l CReal_plus_lt_reg_l
       CReal_mult_lt_0_compat
       CReal_inv CReal_inv_l CReal_inv_0_lt_compat
       CRealQ_dense Rup_pos CReal_abs CRealAbsLUB CRealComplete.