1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
|
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * Copyright INRIA, CNRS and contributors *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
(************************************************************************)
(** The multiplication and division of Cauchy reals.
WARNING: this file is experimental and likely to change in future releases.
*)
Require Import QArith Qabs Qround Qpower.
Require Import Logic.ConstructiveEpsilon.
Require Export ConstructiveCauchyReals.
Require CMorphisms.
Require Import Lia.
Require Import Lqa.
Require Import QExtra.
Local Open Scope CReal_scope.
Definition CReal_mult_seq (x y : CReal) :=
(fun n : Z => seq x (n - scale y - 1)%Z
* seq y (n - scale x - 1)%Z).
Definition CReal_mult_scale (x y : CReal) : Z :=
x.(scale) + y.(scale).
Local Ltac simplify_Qpower_exponent :=
match goal with |- context [(_ ^ ?a)%Q] => ring_simplify a end.
Local Ltac simplify_Qabs :=
match goal with |- context [(Qabs ?a)%Q] => ring_simplify a end.
Local Ltac simplify_Qabs_in H :=
match type of H with context [(Qabs ?a)%Q] => ring_simplify a in H end.
Local Ltac field_simplify_Qabs :=
match goal with |- context [(Qabs ?a)%Q] => field_simplify a end.
Local Ltac pose_Qabs_pos :=
match goal with |- context [(Qabs ?a)%Q] => pose proof Qabs_nonneg a end.
Local Ltac simplify_Qle :=
match goal with |- (?l <= ?r)%Q => ring_simplify l; ring_simplify r end.
Local Ltac simplify_Qle_in H :=
match type of H with (?l <= ?r)%Q => ring_simplify l in H; ring_simplify r in H end.
Local Ltac simplify_Qlt :=
match goal with |- (?l < ?r)%Q => ring_simplify l; ring_simplify r end.
Local Ltac simplify_Qlt_in H :=
match type of H with (?l < ?r)%Q => ring_simplify l in H; ring_simplify r in H end.
Local Ltac simplify_seq_idx :=
match goal with |- context [seq ?x ?n] => progress ring_simplify n end.
Local Lemma Weaken_Qle_QpowerAddExp: forall (q : Q) (n m : Z),
(m >= 0)%Z
-> (q <= 2^n)%Q
-> (q <= 2^(n+m))%Q.
Proof.
intros q n m Hmpos Hle.
pose proof Qpower_le_compat 2 n (n+m) ltac:(lia) ltac:(lra).
lra.
Qed.
Local Lemma Weaken_Qle_QpowerRemSubExp: forall (q : Q) (n m : Z),
(m >= 0)%Z
-> (q <= 2^(n-m))%Q
-> (q <= 2^n)%Q.
Proof.
intros q n m Hmpos Hle.
pose proof Qpower_le_compat 2 (n-m) n ltac:(lia) ltac:(lra).
lra.
Qed.
Local Lemma Weaken_Qle_QpowerFac: forall (q r : Q) (n : Z),
(r >= 1)%Q
-> (q <= 2^n)%Q
-> (q <= r * 2^n)%Q.
Proof.
intros q r n Hrge1 Hle.
rewrite <- (Qmult_1_l (2^n)%Q) in Hle.
pose proof Qmult_le_compat_r 1 r (2^n)%Q Hrge1 (Qpower_pos 2 n ltac:(lra)) as Hpow.
lra.
Qed.
Lemma CReal_mult_cauchy: forall (x y : CReal),
QCauchySeq (CReal_mult_seq x y).
Proof.
intros x y n p q Hp Hq.
unfold CReal_mult_seq.
assert(forall xp xq yp yq : Q, xp * yp - xq * yq == (xp - xq) * yp + xq * (yp - yq))%Q
as H by (intros; ring).
rewrite H; clear H.
apply (Qle_lt_trans _ _ _ (Qabs_triangle _ _)).
do 2 rewrite Qabs_Qmult.
replace n with ((n-1)+1)%Z by ring.
rewrite Qpower_plus by lra.
setoid_replace (2 ^ (n - 1) * 2 ^1)%Q with (2 ^ (n - 1) + 2 ^ (n - 1))%Q by ring.
apply Qplus_lt_le_compat.
- apply (Qle_lt_trans _ ((2 ^ (n - scale y - 1)) * Qabs (seq y (p - scale x - 1)))).
+ apply Qmult_le_compat_r.
2: apply Qabs_nonneg.
apply Qlt_le_weak. apply (cauchy x); lia.
+ apply (Qmult_lt_l _ _ (2 ^ -(n - scale y - 1))%Q).
apply Qpower_pos_lt; lra.
rewrite Qmult_assoc, <- Qpower_plus by lra.
rewrite <- Qpower_plus by lra.
simplify_Qpower_exponent; rewrite Qpower_0_r, Qmult_1_l.
simplify_Qpower_exponent.
apply (bound y).
- apply Qlt_le_weak.
apply (Qle_lt_trans _ ((2 ^ (n - scale x - 1)) * Qabs (seq x (q - scale y - 1)))).
+ rewrite Qmult_comm; apply Qmult_le_compat_r.
2: apply Qabs_nonneg.
apply Qlt_le_weak; apply (cauchy y); lia.
+ apply (Qmult_lt_l _ _ (2 ^ -(n - scale x - 1))%Q).
apply Qpower_pos_lt; lra.
rewrite Qmult_assoc, <- Qpower_plus by lra.
rewrite <- Qpower_plus by lra.
simplify_Qpower_exponent; rewrite Qpower_0_r, Qmult_1_l.
simplify_Qpower_exponent.
apply (bound x).
Qed.
Lemma CReal_mult_bound : forall (x y : CReal),
QBound (CReal_mult_seq x y) (CReal_mult_scale x y).
Proof.
intros x y k.
unfold CReal_mult_seq, CReal_mult_scale.
pose proof (bound x (k - scale y - 1)%Z) as Hxbnd.
pose proof (bound y (k - scale x - 1)%Z) as Hybnd.
pose proof Qabs_nonneg (seq x (k - scale y - 1)) as Habsx.
pose proof Qabs_nonneg (seq y (k - scale x - 1)) as Habsy.
rewrite Qabs_Qmult; rewrite Qpower_plus by lra.
apply Qmult_lt_compat_nonneg; lra.
Qed.
Definition CReal_mult (x y : CReal) : CReal :=
{|
seq := CReal_mult_seq x y;
scale := CReal_mult_scale x y;
cauchy := CReal_mult_cauchy x y;
bound := CReal_mult_bound x y
|}.
Infix "*" := CReal_mult : CReal_scope.
Lemma CReal_mult_comm : forall x y : CReal, x * y == y * x.
Proof.
assert (forall x y : CReal, x * y <= y * x) as H.
{ intros x y [n nmaj]. apply (Qlt_not_le _ _ nmaj). clear nmaj.
unfold CReal_mult, CReal_mult_seq; do 2 rewrite CReal_red_seq.
ring_simplify.
pose proof Qpower_pos_lt 2 n ltac:(lra); lra. }
split; apply H.
Qed.
(* ToDo: make a tactic for this *)
Lemma CReal_red_scale: forall (a : Z -> Q) (b : Z) (c : QCauchySeq a) (d : QBound a b),
scale (mkCReal a b c d) = b.
Proof.
reflexivity.
Qed.
Lemma CReal_mult_proper_0_l : forall x y : CReal,
y == 0 -> x * y == 0.
Proof.
intros x y Hyeq0.
apply CRealEq_diff; intros n.
unfold CReal_mult, CReal_mult_seq, inject_Q; do 2 rewrite CReal_red_seq.
simplify_Qabs.
rewrite CRealEq_diff in Hyeq0.
unfold inject_Q in Hyeq0; rewrite CReal_red_seq in Hyeq0.
specialize (Hyeq0 (n - scale x - 1)%Z).
simplify_Qabs_in Hyeq0.
rewrite Qpower_minus_pos in Hyeq0 by lra; simplify_Qle_in Hyeq0.
pose proof bound x (n - scale y - 1)%Z as Hxbnd.
apply Weaken_Qle_QpowerFac; [lra|].
(* Now split the power of 2 and solve the goal*)
replace n with ((scale x) + (n - scale x))%Z at 3 by ring.
rewrite Qpower_plus by lra.
rewrite Qabs_Qmult.
apply Qmult_le_compat_nonneg;
(pose_Qabs_pos; lra).
Qed.
Lemma CReal_mult_0_r : forall r, r * 0 == 0.
Proof.
intros. apply CReal_mult_proper_0_l. reflexivity.
Qed.
Lemma CReal_mult_0_l : forall r, 0 * r == 0.
Proof.
intros. rewrite CReal_mult_comm. apply CReal_mult_0_r.
Qed.
Lemma CReal_scale_sep0_limit : forall (x : CReal) (n : Z),
(2 * (2^n)%Q < seq x n)%Q
-> (n <= scale x - 2)%Z.
Proof.
intros x n Hnx.
pose proof bound x n as Hxbnd.
apply Qabs_Qlt_condition in Hxbnd.
destruct Hxbnd as [_ Hxbnd].
apply (Qlt_trans _ _ _ Hnx) in Hxbnd.
replace n with ((n+1)-1)%Z in Hxbnd by lia.
rewrite Qpower_minus_pos in Hxbnd by lra.
simplify_Qlt_in Hxbnd.
apply (Qpower_lt_compat_inv) in Hxbnd.
- lia.
- lra.
Qed.
(* Correctness lemma for the Definition CReal_mult_lt_0_compat below. *)
Lemma CReal_mult_lt_0_compat_correct
: forall (x y : CReal) (Hx : 0 < x) (Hy : 0 < y),
(2 * 2^(proj1_sig Hx + proj1_sig Hy - 1)%Z <
seq (x * y)%CReal (proj1_sig Hx + proj1_sig Hy - 1)%Z -
seq (inject_Q 0) (proj1_sig Hx + proj1_sig Hy - 1)%Z)%Q.
Proof.
intros x y Hx Hy.
destruct Hx as [nx Hx], Hy as [ny Hy]; unfold proj1_sig.
unfold inject_Q, Qminus in Hx. rewrite CReal_red_seq, Qplus_0_r in Hx.
unfold inject_Q, Qminus in Hy. rewrite CReal_red_seq, Qplus_0_r in Hy.
unfold CReal_mult, CReal_mult_seq, inject_Q; do 2 rewrite CReal_red_seq.
rewrite Qpower_minus_pos by lra.
rewrite Qpower_plus by lra.
simplify_Qlt.
do 2 simplify_seq_idx.
apply Qmult_lt_compat_nonneg.
- split.
+ pose proof Qpower_pos_lt 2 nx; lra.
+ pose proof CReal_scale_sep0_limit y ny Hy as Hlimy.
pose proof cauchy x nx nx (nx + ny - scale y - 2)%Z ltac:(lia) ltac:(lia) as Hbndx.
apply Qabs_Qlt_condition in Hbndx.
lra.
- split.
+ pose proof Qpower_pos_lt 2 ny; lra.
+ pose proof CReal_scale_sep0_limit x nx Hx as Hlimx.
pose proof cauchy y ny ny (nx + ny - scale x - 2)%Z ltac:(lia) ltac:(lia) as Hbndy.
apply Qabs_Qlt_condition in Hbndy.
lra.
Qed.
(* Strict inequality on CReal is in sort Type, for example
used in the computation of division. *)
Definition CReal_mult_lt_0_compat : forall x y : CReal,
0 < x -> 0 < y -> 0 < x * y
:= fun x y Hx Hy => exist _ (proj1_sig Hx + proj1_sig Hy - 1)%Z
(CReal_mult_lt_0_compat_correct
x y Hx Hy).
Lemma CReal_mult_plus_distr_l : forall r1 r2 r3 : CReal,
r1 * (r2 + r3) == (r1 * r2) + (r1 * r3).
Proof.
intros x y z; apply CRealEq_diff; intros n.
unfold CReal_mult, CReal_mult_seq, CReal_mult_scale, CReal_plus, CReal_plus_seq, CReal_plus_scale.
do 5 rewrite CReal_red_seq.
do 1 rewrite CReal_red_scale.
do 2 rewrite Qred_correct.
do 5 simplify_seq_idx.
simplify_Qabs.
assert (forall y' z': CReal,
Qabs (
seq x (n - Z.max (scale y') (scale z') - 2) * seq y' (n - scale x - 2)
- seq x (n - scale y' - 2) * seq y' (n - scale x - 2))
<= 2 ^ n )%Q as Hdiffbnd.
{
intros y' z'.
assert (forall a b c : Q, a*c-b*c==(a-b)*c)%Q as H by (intros; ring).
rewrite H; clear H.
pose proof cauchy x (n - (scale y') - 2)%Z (n - Z.max (scale y') (scale z') - 2)%Z (n - scale y' - 2)%Z
ltac:(lia) ltac:(lia) as Hxbnd.
pose proof bound y' (n - scale x - 2)%Z as Hybnd.
replace n with ((n - scale y' - 2) + scale y' + 2)%Z at 4 by lia.
apply Weaken_Qle_QpowerAddExp.
lia.
rewrite Qpower_plus, Qabs_Qmult by lra.
apply Qmult_le_compat_nonneg; (split; [apply Qabs_nonneg | lra]).
}
pose proof Hdiffbnd y z as Hyz.
pose proof Hdiffbnd z y as Hzy; clear Hdiffbnd.
pose proof Qplus_le_compat _ _ _ _ Hyz Hzy as Hcomb; clear Hyz Hzy.
apply (Qle_trans _ _ _ (Qabs_triangle _ _)) in Hcomb.
rewrite (Z.max_comm (scale z) (scale y)) in Hcomb .
rewrite Qabs_Qle_condition in Hcomb |- *.
lra.
Qed.
Lemma CReal_mult_plus_distr_r : forall r1 r2 r3 : CReal,
(r2 + r3) * r1 == (r2 * r1) + (r3 * r1).
Proof.
intros.
rewrite CReal_mult_comm, CReal_mult_plus_distr_l,
<- (CReal_mult_comm r1), <- (CReal_mult_comm r1).
reflexivity.
Qed.
Lemma CReal_opp_mult_distr_r
: forall r1 r2 : CReal, - (r1 * r2) == r1 * (- r2).
Proof.
intros. apply (CReal_plus_eq_reg_l (r1*r2)).
rewrite CReal_plus_opp_r, <- CReal_mult_plus_distr_l.
symmetry. apply CReal_mult_proper_0_l.
apply CReal_plus_opp_r.
Qed.
Lemma CReal_mult_proper_l : forall x y z : CReal,
y == z -> x * y == x * z.
Proof.
intros. apply (CReal_plus_eq_reg_l (-(x*z))).
rewrite CReal_plus_opp_l, CReal_opp_mult_distr_r.
rewrite <- CReal_mult_plus_distr_l.
apply CReal_mult_proper_0_l. rewrite H. apply CReal_plus_opp_l.
Qed.
Lemma CReal_mult_proper_r : forall x y z : CReal,
y == z -> y * x == z * x.
Proof.
intros. rewrite CReal_mult_comm, (CReal_mult_comm z).
apply CReal_mult_proper_l, H.
Qed.
Lemma CReal_mult_assoc : forall x y z : CReal,
(x * y) * z == x * (y * z).
Proof.
intros x y z; apply CRealEq_diff; intros n.
(* Expand and simplify the goal *)
unfold CReal_mult, CReal_mult_seq, CReal_mult_scale.
do 4 rewrite CReal_red_seq.
do 2 rewrite CReal_red_scale.
do 6 simplify_seq_idx.
(* Todo: it is a bug in ring_simplify that the scales are not sorted *)
replace (n - scale z - scale y)%Z with (n - scale y - scale z)%Z by ring.
replace (n - scale z - scale x)%Z with (n - scale x - scale z)%Z by ring.
simplify_Qabs.
(* Rearrange the goal such that it used only scale and cauchy bounds *)
(* Todo: it is also a bug in ring_simplify that the seq terms are not sorted by the first variable *)
assert (forall a1 a2 b c1 c2 : Q, a1*b*c1+(-1)*b*a2*c2==(a1*c1-a2*c2)*b)%Q as H by (intros; ring).
rewrite H; clear H.
remember (seq x (n - scale y - scale z - 1) - seq x (n - scale y - scale z - 2))%Q as dx eqn:Heqdx.
remember (seq z (n - scale x - scale y - 1) - seq z (n - scale x - scale y - 2))%Q as dz eqn:Heqdz.
setoid_replace (seq x (n - scale y - scale z - 1)) with (seq x (n - scale y - scale z - 2) + dx)%Q
by (rewrite Heqdx; ring).
setoid_replace (seq z (n - scale x - scale y - 1)) with (seq z (n - scale x - scale y - 2) + dz)%Q
by (rewrite Heqdz; ring).
match goal with |- (Qabs (?a * _) <= _)%Q => ring_simplify a end.
(* Now pose the scale and cauchy bounds we need to prove this, so that we see how to split the deviation budget *)
pose proof bound x (n - scale y - scale z - 2)%Z as Hbndx.
pose proof bound z (n - scale x - scale y - 2)%Z as Hbndz.
pose proof bound y (n - scale x - scale z - 2)%Z as Hbndy.
pose proof cauchy x (n - scale y - scale z - 1)%Z (n - scale y - scale z - 1)%Z (n - scale y - scale z - 2)%Z
ltac:(lia) ltac:(lia) as Hbnddx; rewrite <- Heqdx in Hbnddx; clear Heqdx.
pose proof cauchy z (n - scale x - scale y - 1)%Z (n - scale x - scale y - 1)%Z (n - scale x - scale y - 2)%Z
ltac:(lia) ltac:(lia) as Hbnddz; rewrite <- Heqdz in Hbnddz; clear Heqdz.
(* The rest is elementary arithmetic ... *)
rewrite Qabs_Qmult.
replace n with ((n - scale y) + scale y)%Z at 4 by lia.
rewrite Qpower_plus by lra.
rewrite Qmult_assoc.
apply Qmult_le_compat_nonneg.
2: (split; [apply Qabs_nonneg | lra]).
split; [apply Qabs_nonneg|].
apply (Qle_trans _ _ _ (Qabs_triangle _ _)).
setoid_replace (2 * 2 ^ (n - scale y))%Q with (2 ^ (n - scale y) + 2 ^ (n - scale y))%Q by ring.
apply Qplus_le_compat.
- rewrite Qabs_Qmult.
replace (n - scale y)%Z with (scale x + (n - scale x - scale y))%Z at 2 by lia.
rewrite Qpower_plus by lra.
apply Qmult_le_compat_nonneg.
+ (split; [apply Qabs_nonneg | lra]).
+ split; [apply Qabs_nonneg|].
apply (Weaken_Qle_QpowerRemSubExp _ _ 1 ltac:(lia)), Qlt_le_weak, Hbnddz.
- rewrite Qabs_Qmult.
replace (n - scale y)%Z with (scale z + (n - scale y - scale z))%Z by lia.
rewrite Qpower_plus by lra.
apply Qmult_le_compat_nonneg.
+ split; [apply Qabs_nonneg|].
rewrite <- Qabs_opp; simplify_Qabs; lra.
+ split; [apply Qabs_nonneg|].
apply (Weaken_Qle_QpowerRemSubExp _ _ 1 ltac:(lia)), Qlt_le_weak, Hbnddx.
Qed.
Lemma CReal_mult_1_l : forall r: CReal,
1 * r == r.
Proof.
intros r; apply CRealEq_diff; intros n.
unfold inject_Q, CReal_mult, CReal_mult_seq, CReal_mult_scale.
do 2 rewrite CReal_red_seq.
do 1 rewrite CReal_red_scale.
change (Qbound_ltabs_ZExp2 1)%Z with 1%Z.
do 1 simplify_seq_idx.
simplify_Qabs.
pose proof cauchy r n (n-2)%Z n ltac:(lia) ltac:(lia) as Hrbnd.
apply Qabs_Qlt_condition in Hrbnd.
apply Qabs_Qle_condition.
lra.
Qed.
Lemma CReal_isRingExt : ring_eq_ext CReal_plus CReal_mult CReal_opp CRealEq.
Proof.
split.
- intros x y H z t H0. apply CReal_plus_morph; assumption.
- intros x y H z t H0. apply (CRealEq_trans _ (CReal_mult x t)).
apply CReal_mult_proper_l. apply H0.
apply (CRealEq_trans _ (CReal_mult t x)). apply CReal_mult_comm.
apply (CRealEq_trans _ (CReal_mult t y)).
apply CReal_mult_proper_l. apply H. apply CReal_mult_comm.
- intros x y H. apply (CReal_plus_eq_reg_l x).
apply (CRealEq_trans _ (inject_Q 0)). apply CReal_plus_opp_r.
apply (CRealEq_trans _ (CReal_plus y (CReal_opp y))).
apply CRealEq_sym. apply CReal_plus_opp_r.
apply CReal_plus_proper_r. apply CRealEq_sym. apply H.
Qed.
Lemma CReal_isRing : ring_theory (inject_Q 0) (inject_Q 1)
CReal_plus CReal_mult
CReal_minus CReal_opp
CRealEq.
Proof.
intros. split.
- apply CReal_plus_0_l.
- apply CReal_plus_comm.
- intros x y z. symmetry. apply CReal_plus_assoc.
- apply CReal_mult_1_l.
- apply CReal_mult_comm.
- intros x y z. symmetry. apply CReal_mult_assoc.
- intros x y z. rewrite <- (CReal_mult_comm z).
rewrite CReal_mult_plus_distr_l.
apply (CRealEq_trans _ (CReal_plus (CReal_mult x z) (CReal_mult z y))).
apply CReal_plus_proper_r. apply CReal_mult_comm.
apply CReal_plus_proper_l. apply CReal_mult_comm.
- intros x y. apply CRealEq_refl.
- apply CReal_plus_opp_r.
Qed.
Add Parametric Morphism : CReal_mult
with signature CRealEq ==> CRealEq ==> CRealEq
as CReal_mult_morph.
Proof.
apply CReal_isRingExt.
Qed.
Instance CReal_mult_morph_T
: CMorphisms.Proper
(CMorphisms.respectful CRealEq (CMorphisms.respectful CRealEq CRealEq)) CReal_mult.
Proof.
apply CReal_isRingExt.
Qed.
Add Parametric Morphism : CReal_opp
with signature CRealEq ==> CRealEq
as CReal_opp_morph.
Proof.
apply (Ropp_ext CReal_isRingExt).
Qed.
Instance CReal_opp_morph_T
: CMorphisms.Proper
(CMorphisms.respectful CRealEq CRealEq) CReal_opp.
Proof.
apply CReal_isRingExt.
Qed.
Add Parametric Morphism : CReal_minus
with signature CRealEq ==> CRealEq ==> CRealEq
as CReal_minus_morph.
Proof.
intros. unfold CReal_minus. rewrite H,H0. reflexivity.
Qed.
Instance CReal_minus_morph_T
: CMorphisms.Proper
(CMorphisms.respectful CRealEq (CMorphisms.respectful CRealEq CRealEq)) CReal_minus.
Proof.
intros x y exy z t ezt. unfold CReal_minus. rewrite exy,ezt. reflexivity.
Qed.
Add Ring CRealRing : CReal_isRing.
(**********)
Lemma CReal_mult_1_r : forall r, r * 1 == r.
Proof.
intro; ring.
Qed.
Lemma CReal_opp_mult_distr_l
: forall r1 r2 : CReal, - (r1 * r2) == (- r1) * r2.
Proof.
intros. ring.
Qed.
Lemma CReal_mult_lt_compat_l : forall x y z : CReal,
0 < x -> y < z -> x*y < x*z.
Proof.
intros. apply (CReal_plus_lt_reg_l
(CReal_opp (CReal_mult x y))).
rewrite CReal_plus_comm. pose proof CReal_plus_opp_r.
unfold CReal_minus in H1. rewrite H1.
rewrite CReal_mult_comm, CReal_opp_mult_distr_l, CReal_mult_comm.
rewrite <- CReal_mult_plus_distr_l.
apply CReal_mult_lt_0_compat. exact H.
apply (CReal_plus_lt_reg_l y).
rewrite CReal_plus_comm, CReal_plus_0_l.
rewrite <- CReal_plus_assoc, H1, CReal_plus_0_l. exact H0.
Qed.
Lemma CReal_mult_lt_compat_r : forall x y z : CReal,
0 < x -> y < z -> y*x < z*x.
Proof.
intros. rewrite <- (CReal_mult_comm x), <- (CReal_mult_comm x).
apply (CReal_mult_lt_compat_l x); assumption.
Qed.
Lemma CReal_mult_eq_reg_l : forall (r r1 r2 : CReal),
r # 0
-> r * r1 == r * r2
-> r1 == r2.
Proof.
intros. destruct H; split.
- intro abs. apply (CReal_mult_lt_compat_l (-r)) in abs.
rewrite <- CReal_opp_mult_distr_l, <- CReal_opp_mult_distr_l, H0 in abs.
exact (CRealLe_refl _ abs). apply (CReal_plus_lt_reg_l r).
rewrite CReal_plus_opp_r, CReal_plus_comm, CReal_plus_0_l. exact c.
- intro abs. apply (CReal_mult_lt_compat_l (-r)) in abs.
rewrite <- CReal_opp_mult_distr_l, <- CReal_opp_mult_distr_l, H0 in abs.
exact (CRealLe_refl _ abs). apply (CReal_plus_lt_reg_l r).
rewrite CReal_plus_opp_r, CReal_plus_comm, CReal_plus_0_l. exact c.
- intro abs. apply (CReal_mult_lt_compat_l r) in abs. rewrite H0 in abs.
exact (CRealLe_refl _ abs). exact c.
- intro abs. apply (CReal_mult_lt_compat_l r) in abs. rewrite H0 in abs.
exact (CRealLe_refl _ abs). exact c.
Qed.
Lemma CReal_abs_appart_zero : forall (x : CReal) (n : Z),
(2*2^n < Qabs (seq x n))%Q
-> 0 # x.
Proof.
intros x n Hapart.
unfold CReal_appart.
destruct (Qlt_le_dec 0 (seq x n)).
- left; exists n; cbn.
rewrite Qabs_pos in Hapart; lra.
- right; exists n; cbn.
rewrite Qabs_neg in Hapart; lra.
Qed.
(*********************************************************)
(** * Field *)
(*********************************************************)
Lemma CRealArchimedean
: forall x:CReal, { n:Z & x < inject_Z n < x+2 }.
Proof.
intros x.
(* We add 3/2: 1/2 for the average rounding of floor + 1 to center in the interval.
This gives a margin of 1/2 in each inequality.
Since we need margin for Qlt of 2*2^-n plus 2^-n for the real addition, we need n=-3 *)
remember (seq x (-3)%Z + (3#2))%Q as q eqn: Heqq.
pose proof (Qlt_floor q) as Hltfloor; unfold QArith_base.inject_Z in Hltfloor.
pose proof (Qfloor_le q) as Hfloorle; unfold QArith_base.inject_Z in Hfloorle.
exists (Qfloor q); split.
- unfold inject_Z, inject_Q, CRealLt. rewrite CReal_red_seq.
exists (-3)%Z.
setoid_replace (2 * 2 ^ (-3))%Q with (1#4)%Q by reflexivity.
subst q; rewrite <- Qinv_plus_distr in Hltfloor.
lra.
- unfold inject_Z, inject_Q, CReal_plus, CReal_plus_seq, CRealLt. do 3 rewrite CReal_red_seq.
exists (-3)%Z.
setoid_replace (2 * 2 ^ (-3))%Q with (1#4)%Q by reflexivity.
simplify_seq_idx; rewrite Qred_correct.
pose proof cauchy x (-3)%Z (-3)%Z (-4)%Z ltac:(lia) ltac:(lia) as Hbnddx.
rewrite Qabs_Qlt_condition in Hbnddx.
setoid_replace (2 ^ (-3))%Q with (1#8)%Q in Hbnddx by reflexivity.
subst q; rewrite <- Qinv_plus_distr in Hltfloor.
lra.
Qed.
(* ToDo: This is not efficient.
We take the n for the 2^n lower bound fro x>0.
This limit can be arbitrarily small and far away from beeing tight.
To make this really computational, we need to compute a tight
limit starting from scale x and going down in steps of say 16 bits,
something which is still easy to compute but likely to succeed. *)
Definition CRealLowerBound (x : CReal) (xPos : 0<x) : Z :=
proj1_sig (xPos).
Lemma CRealLowerBoundSpec: forall (x : CReal) (xPos : 0<x),
forall p : Z, (p <= (CRealLowerBound x xPos))%Z
-> (seq x p > 2^(CRealLowerBound x xPos))%Q.
Proof.
intros x xPos p Hp.
unfold CRealLowerBound in *.
destruct xPos as [n Hn]; unfold proj1_sig in *.
unfold inject_Q in Hn; rewrite CReal_red_seq in Hn.
ring_simplify in Hn.
pose proof cauchy x n n p ltac:(lia) ltac:(lia) as Hxbnd.
rewrite Qabs_Qlt_condition in Hxbnd.
lra.
Qed.
Lemma CRealLowerBound_lt_scale: forall (r : CReal) (Hrpos : 0 < r),
(CRealLowerBound r Hrpos < scale r)%Z.
Proof.
intros r Hrpos.
pose proof CRealLowerBoundSpec r Hrpos (CRealLowerBound r Hrpos) ltac:(lia) as Hlow.
pose proof bound r (CRealLowerBound r Hrpos) as Hup; unfold QBound in Hup.
apply Qabs_Qlt_condition in Hup. destruct Hup as [_ Hup].
pose proof Qlt_trans _ _ _ Hlow Hup as Hpow.
apply Qpower_lt_compat_inv in Hpow.
2: lra.
exact Hpow.
Qed.
(**
Note on the convergence modulus for x when computing 1/x:
Thinking in terms of absolute and relative errors and scales we get:
- 2^n is absolute error of 1/x (the requested error)
- 2^k is a lower bound of x -> 2^-k is an upper bound of 1/x
For simplicity lets’ say 2^k is the scale of x and 2^-k is the scale of 1/x.
With this we get:
- relative error of 1/x = absolute error of 1/x / scale of 1/x = 2^n / 2^-k = 2^(n+k)
- 1/x maintains relative error
- relative error of x = relative error 1/x = 2^(n+k)
- absolute error of x = relative error x * scale of x = 2^(n+k) * 2^k
- absolute error of x = 2^(n+2*k)
*)
Definition CReal_inv_pos_cm (x : CReal) (xPos : 0 < x) (n : Z):=
(Z.min (CRealLowerBound x xPos) (n + 2 * (CRealLowerBound x xPos)))%Z.
Definition CReal_inv_pos_seq (x : CReal) (xPos : 0 < x) (n : Z) :=
(/ seq x (CReal_inv_pos_cm x xPos n))%Q.
Definition CReal_inv_pos_scale (x : CReal) (xPos : 0 < x) : Z :=
(- (CRealLowerBound x xPos))%Z.
Lemma CReal_inv_pos_cauchy: forall (x : CReal) (xPos : 0 < x),
QCauchySeq (CReal_inv_pos_seq x xPos).
Proof.
intros x Hxpos n p q Hp Hq; unfold CReal_inv_pos_seq.
unfold CReal_inv_pos_cm; remember (CRealLowerBound x Hxpos) as k.
(* These auxilliary lemmas are required a few times below *)
assert (forall m:Z, (2^k < seq x (Z.min k (m + 2 * k))))%Q as AuxAppart.
{
intros m.
pose proof CRealLowerBoundSpec x Hxpos (Z.min k (m + 2 * k))%Z ltac:(lia) as H1.
rewrite Heqk at 1.
lra.
}
assert (forall m:Z, (0 < seq x (Z.min k (m + 2 * k))))%Q as AuxPos.
{
intros m.
pose proof AuxAppart m as H1.
pose proof Qpower_pos_lt 2 k as H2.
lra.
}
assert( forall a b : Q, (a>0)%Q -> (b>0)%Q -> (/a - /b == (b - a) / (a * b))%Q )
as H by (intros; field; lra); rewrite H by apply AuxPos; clear H.
setoid_rewrite Qabs_Qmult; setoid_rewrite Qabs_Qinv.
apply Qlt_shift_div_r.
setoid_rewrite <- (Qmult_0_l 0); setoid_rewrite Qabs_Qmult.
apply Qmult_lt_compat_nonneg.
1,2: split; [lra | apply Qabs_gt, AuxPos].
assert( forall r:Q, (r == (r/2^k/2^k)*(2^k*2^k))%Q )
as H by (intros r; field; apply Qpower_not_0; lra); rewrite H; clear H.
apply Qmult_lt_compat_nonneg.
- split.
+ do 2 (apply Qle_shift_div_l; [ apply Qpower_pos_lt; lra | rewrite Qmult_0_l ]).
apply Qabs_nonneg.
+ do 2 (apply Qlt_shift_div_r; [apply Qpower_pos_lt; lra|]).
do 2 rewrite <- Qpower_plus by lra.
apply (cauchy x (n+k+k)%Z); lia.
- split.
+ rewrite <- Qpower_plus by lra.
apply Qpower_pos; lra.
+ setoid_rewrite Qabs_Qmult; apply Qmult_lt_compat_nonneg.
1,2: split; [apply Qpower_pos; lra | ].
1,2: apply Qabs_gt, AuxAppart.
Qed.
Lemma CReal_inv_pos_bound : forall (x : CReal) (Hxpos : 0 < x),
QBound (CReal_inv_pos_seq x Hxpos) (CReal_inv_pos_scale x Hxpos).
Proof.
intros x Hxpos n.
unfold CReal_inv_pos_seq, CReal_inv_pos_scale, CReal_inv_pos_cm.
remember (CRealLowerBound x Hxpos) as k.
pose proof CRealLowerBoundSpec x Hxpos (Z.min k (n + 2 * k))%Z ltac:(lia) as Hlb.
rewrite <- Heqk in Hlb.
rewrite Qabs_pos.
2: apply Qinv_le_0_compat; pose proof Qpower_pos 2 k; lra.
rewrite Qpower_opp; apply -> Qinv_lt_contravar.
- exact Hlb.
- pose proof Qpower_pos_lt 2 k; lra.
- apply Qpower_pos_lt; lra.
Qed.
Definition CReal_inv_pos (x : CReal) (Hxpos : 0 < x) : CReal :=
{|
seq := CReal_inv_pos_seq x Hxpos;
scale := CReal_inv_pos_scale x Hxpos;
cauchy := CReal_inv_pos_cauchy x Hxpos;
bound := CReal_inv_pos_bound x Hxpos
|}.
Definition CReal_neg_lt_pos : forall x : CReal, x < 0 -> 0 < -x.
Proof.
intros x [n nmaj]. exists n.
simpl in *. unfold CReal_opp_seq, Qminus.
abstract now rewrite Qplus_0_r, <- (Qplus_0_l (- seq x n)).
Defined.
Definition CReal_inv (x : CReal) (xnz : x # 0) : CReal
:= match xnz with
| inl xNeg => - CReal_inv_pos (-x) (CReal_neg_lt_pos x xNeg)
| inr xPos => CReal_inv_pos x xPos
end.
Notation "/ x" := (CReal_inv x) (at level 35, right associativity) : CReal_scope.
Lemma CReal_inv_0_lt_compat
: forall (r : CReal) (rnz : r # 0),
0 < r -> 0 < ((/ r) rnz).
Proof.
intros r Hrnz Hrpos; unfold CReal_inv; cbn.
destruct Hrnz.
- exfalso. apply CRealLt_asym in Hrpos. contradiction.
- unfold CRealLt.
exists (- (scale r) - 1)%Z.
unfold inject_Q; rewrite CReal_red_seq; simplify_Qlt.
unfold CReal_inv_pos; rewrite CReal_red_seq.
unfold CReal_inv_pos_seq.
pose proof bound r as Hrbnd; unfold QBound in Hrbnd.
rewrite Qpower_minus by lra.
field_simplify (2 * (2 ^ (- scale r) / 2 ^ 1))%Q.
rewrite Qpower_opp; apply -> Qinv_lt_contravar.
+ setoid_rewrite Qabs_Qlt_condition in Hrbnd.
specialize (Hrbnd (CReal_inv_pos_cm r c (- scale r - 1))%Z).
lra.
+ apply Qpower_pos_lt; lra.
+ unfold CReal_inv_pos_cm.
pose proof CRealLowerBoundSpec r c
((Z.min (CRealLowerBound r c) (- scale r - 1 + 2 * CRealLowerBound r c)))%Z ltac:(lia) as Hlowbnd.
pose proof Qpower_pos_lt 2 (CRealLowerBound r c) as Hpow.
lra.
Qed.
Lemma CReal_inv_l_pos : forall (r:CReal) (Hrpos : 0 < r),
(CReal_inv_pos r Hrpos) * r == 1.
Proof.
intros r Hrpos; apply CRealEq_diff; intros n.
unfold CReal_mult, CReal_mult_seq, CReal_mult_scale;
unfold CReal_inv_pos, CReal_inv_pos_seq, CReal_inv_pos_scale, CReal_inv_pos_cm;
unfold inject_Q.
do 3 rewrite CReal_red_seq.
do 1 rewrite CReal_red_scale.
simplify_seq_idx.
(* This is needed several times below *)
remember (Z.min (CRealLowerBound r Hrpos) (n - scale r - 1 + 2 * CRealLowerBound r Hrpos))%Z as k.
assert (0 < seq r k)%Q as Hrseqpos.
{ pose proof Qpower_pos_lt 2 (CRealLowerBound r Hrpos)%Z ltac:(lra) as Hpow.
pose proof CRealLowerBoundSpec r Hrpos k ltac:(lia) as Hlowbnd.
lra.
}
field_simplify_Qabs; [|lra]; unfold Qdiv.
rewrite Qabs_Qmult, Qabs_Qinv.
apply Qle_shift_div_r.
1: apply Qabs_gt; lra.
pose proof cauchy r (n + CRealLowerBound r Hrpos)%Z
(n + CRealLowerBound r Hrpos - 1)%Z k as Hrbnd.
pose proof CRealLowerBound_lt_scale r Hrpos as Hscale_lowbnd.
specialize (Hrbnd ltac:(lia) ltac:(lia)).
simplify_Qabs_in Hrbnd; simplify_Qabs.
rewrite Qplus_comm in Hrbnd.
apply Qlt_le_weak in Hrbnd.
apply (Qle_trans _ _ _ Hrbnd).
pose proof CRealLowerBoundSpec r Hrpos k ltac:(lia) as Hlowbnd.
rewrite Qpower_plus; [|lra].
apply Qmult_le_compat_nonneg.
pose proof Qpower_pos 2 n; split; lra.
split.
- apply Qpower_pos; lra.
- rewrite Qabs_pos; [lra|].
pose proof Qpower_pos_lt 2 (CRealLowerBound r Hrpos)%Z ltac:(lra) as Hpow.
lra.
Qed.
Lemma CReal_inv_l : forall (r:CReal) (rnz : r # 0),
((/ r) rnz) * r == 1.
Proof.
intros. unfold CReal_inv. destruct rnz.
- rewrite <- CReal_opp_mult_distr_l, CReal_opp_mult_distr_r.
apply CReal_inv_l_pos.
- apply CReal_inv_l_pos.
Qed.
Lemma CReal_inv_r : forall (r:CReal) (rnz : r # 0),
r * ((/ r) rnz) == 1.
Proof.
intros. rewrite CReal_mult_comm, CReal_inv_l.
reflexivity.
Qed.
Lemma CReal_inv_1 : forall nz : 1 # 0, (/ 1) nz == 1.
Proof.
intros. rewrite <- (CReal_mult_1_l ((/1) nz)). rewrite CReal_inv_r.
reflexivity.
Qed.
Lemma CReal_inv_mult_distr :
forall r1 r2 (r1nz : r1 # 0) (r2nz : r2 # 0) (rmnz : (r1*r2) # 0),
(/ (r1 * r2)) rmnz == (/ r1) r1nz * (/ r2) r2nz.
Proof.
intros. apply (CReal_mult_eq_reg_l r1). exact r1nz.
rewrite <- CReal_mult_assoc. rewrite CReal_inv_r. rewrite CReal_mult_1_l.
apply (CReal_mult_eq_reg_l r2). exact r2nz.
rewrite CReal_inv_r. rewrite <- CReal_mult_assoc.
rewrite (CReal_mult_comm r2 r1). rewrite CReal_inv_r.
reflexivity.
Qed.
Lemma Rinv_eq_compat : forall x y (rxnz : x # 0) (rynz : y # 0),
x == y
-> (/ x) rxnz == (/ y) rynz.
Proof.
intros. apply (CReal_mult_eq_reg_l x). exact rxnz.
rewrite CReal_inv_r, H, CReal_inv_r. reflexivity.
Qed.
Lemma CReal_mult_lt_reg_l : forall r r1 r2, 0 < r -> r * r1 < r * r2 -> r1 < r2.
Proof.
intros z x y H H0.
apply (CReal_mult_lt_compat_l ((/z) (inr H))) in H0.
repeat rewrite <- CReal_mult_assoc in H0. rewrite CReal_inv_l in H0.
repeat rewrite CReal_mult_1_l in H0. apply H0.
apply CReal_inv_0_lt_compat. exact H.
Qed.
Lemma CReal_mult_lt_reg_r : forall r r1 r2, 0 < r -> r1 * r < r2 * r -> r1 < r2.
Proof.
intros.
apply CReal_mult_lt_reg_l with r.
exact H.
now rewrite 2!(CReal_mult_comm r).
Qed.
Lemma CReal_mult_eq_reg_r : forall r r1 r2, r1 * r == r2 * r -> r # 0 -> r1 == r2.
Proof.
intros. apply (CReal_mult_eq_reg_l r). exact H0.
now rewrite 2!(CReal_mult_comm r).
Qed.
Lemma CReal_mult_eq_compat_l : forall r r1 r2, r1 == r2 -> r * r1 == r * r2.
Proof.
intros. rewrite H. reflexivity.
Qed.
Lemma CReal_mult_eq_compat_r : forall r r1 r2, r1 == r2 -> r1 * r == r2 * r.
Proof.
intros. rewrite H. reflexivity.
Qed.
(* In particular x * y == 1 implies that 0 # x, 0 # y and
that x and y are inverses of each other. *)
Lemma CReal_mult_pos_appart_zero : forall x y : CReal, 0 < x * y -> 0 # x.
Proof.
intros x y H0ltxy.
unfold CRealLt, CReal_mult, CReal_mult_seq, CReal_mult_scale in H0ltxy;
rewrite CReal_red_seq in H0ltxy.
destruct H0ltxy as [n nmaj].
cbn in nmaj; setoid_rewrite Qplus_0_r in nmaj.
destruct (Q_dec 0 (seq y (n - scale x - 1)))%Q as [[H0lty|Hylt0]|Hyeq0].
- apply (Qmult_lt_compat_r _ _ (/(seq y (n - scale x - 1)))%Q ) in nmaj.
2: apply Qinv_lt_0_compat, H0lty.
setoid_rewrite <- Qmult_assoc in nmaj at 2.
setoid_rewrite Qmult_inv_r in nmaj.
2: lra.
setoid_rewrite Qmult_1_r in nmaj.
pose proof bound y (n - scale x - 1)%Z as Hybnd.
apply Qabs_Qlt_condition, proj2 in Hybnd.
apply Qinv_lt_contravar in Hybnd.
3: apply Qpower_pos_lt; lra.
2: exact H0lty.
apply (Qmult_lt_l _ _ (2 * (2 ^ n))) in Hybnd.
2: pose proof Qpower_pos_lt 2 n; lra.
apply (Qlt_trans _ _ _ Hybnd) in nmaj; clear Hybnd.
rewrite <- Qpower_opp, <- Qmult_assoc, <- Qpower_plus in nmaj by lra.
apply (CReal_abs_appart_zero x (n - scale y - 1)%Z), Qabs_gt.
rewrite Qpower_minus_pos.
ring_simplify. ring_simplify (n + - scale y)%Z in nmaj.
pose proof Qpower_pos_lt 2 (n - scale y)%Z; lra.
- (* This proof is the same as above, except that we swap the signs of x and y *)
(* ToDo: maybe assert teh goal for arbitrary y>0 and then apply twice *)
assert (forall a b : Q, ((-a)*(-b)==a*b)%Q) by (intros; ring).
setoid_rewrite <- H in nmaj at 2; clear H.
apply (Qmult_lt_compat_r _ _ (/-(seq y (n - scale x - 1)))%Q ) in nmaj.
2: apply Qinv_lt_0_compat; lra.
setoid_rewrite <- Qmult_assoc in nmaj at 2.
setoid_rewrite Qmult_inv_r in nmaj.
2: lra.
setoid_rewrite Qmult_1_r in nmaj.
pose proof bound y (n - scale x - 1)%Z as Hybnd.
apply Qabs_Qlt_condition, proj1 in Hybnd.
apply Qopp_lt_compat in Hybnd; rewrite Qopp_involutive in Hybnd.
apply Qinv_lt_contravar in Hybnd.
3: apply Qpower_pos_lt; lra.
2: lra.
apply (Qmult_lt_l _ _ (2 * (2 ^ n))) in Hybnd.
2: pose proof Qpower_pos_lt 2 n; lra.
apply (Qlt_trans _ _ _ Hybnd) in nmaj; clear Hybnd.
rewrite <- Qpower_opp, <- Qmult_assoc, <- Qpower_plus in nmaj by lra.
apply (CReal_abs_appart_zero x (n - scale y - 1)%Z).
pose proof Qpower_pos_lt 2 (n + - scale y)%Z ltac:(lra) as Hpowpos.
rewrite Qabs_neg by lra.
rewrite Qpower_minus_pos.
ring_simplify. ring_simplify (n + - scale y)%Z in nmaj.
pose proof Qpower_pos_lt 2 (n - scale y)%Z; lra.
- pose proof Qpower_pos_lt 2 n ltac:(lra).
rewrite <- Hyeq0 in nmaj. lra.
Qed.
Fixpoint pow (r:CReal) (n:nat) : CReal :=
match n with
| O => 1
| S n => r * (pow r n)
end.
Lemma CReal_mult_le_compat_l_half : forall r r1 r2,
0 < r -> r1 <= r2 -> r * r1 <= r * r2.
Proof.
intros. intro abs. apply (CReal_mult_lt_reg_l) in abs.
contradiction. apply H.
Qed.
Lemma CReal_invQ : forall (b : positive) (pos : Qlt 0 (Z.pos b # 1)),
CReal_inv (inject_Q (Z.pos b # 1)) (inr (CReal_injectQPos (Z.pos b # 1) pos))
== inject_Q (1 # b).
Proof.
intros.
apply (CReal_mult_eq_reg_l (inject_Q (Z.pos b # 1))).
- right. apply CReal_injectQPos. exact pos.
- rewrite CReal_mult_comm, CReal_inv_l.
apply CRealEq_diff. intro n. simpl.
do 2 rewrite Pos.mul_1_r. rewrite Z.pos_sub_diag.
pose proof Qpower_pos 2 n ltac:(lra). rewrite Z.abs_0, Qzero_eq. lra.
Qed.
Definition CRealQ_dense (a b : CReal)
: a < b -> { q : Q & a < inject_Q q < b }.
Proof.
(* Locate a and b at the index given by a<b,
and pick the middle rational number. *)
intros [p pmaj].
exists ((seq a p + seq b p) * (1#2))%Q.
split.
- apply (CReal_le_lt_trans _ _ _ (inject_Q_compare a p)). apply inject_Q_lt.
lra.
- apply (CReal_plus_lt_reg_l (-b)).
rewrite CReal_plus_opp_l.
apply (CReal_plus_lt_reg_r
(-inject_Q ((seq a p + seq b p) * (1 # 2)))).
rewrite CReal_plus_assoc, CReal_plus_opp_r, CReal_plus_0_r, CReal_plus_0_l.
rewrite <- opp_inject_Q.
apply (CReal_le_lt_trans _ _ _ (inject_Q_compare (-b) p)). apply inject_Q_lt.
destruct b as [bseq]; simpl in pmaj |- *.
unfold CReal_opp_seq; rewrite CReal_red_seq.
lra.
Qed.
Lemma inject_Q_mult : forall q r : Q,
inject_Q (q * r) == inject_Q q * inject_Q r.
Proof.
split.
- intros [n maj]; cbn in maj.
unfold CReal_mult_seq in maj; cbn in maj.
pose proof Qpower_pos_lt 2 n; lra.
- intros [n maj]; cbn in maj.
unfold CReal_mult_seq in maj; cbn in maj.
pose proof Qpower_pos_lt 2 n; lra.
Qed.
Definition Rup_nat (x : CReal)
: { n : nat & x < inject_Q (Z.of_nat n #1) }.
Proof.
intros. destruct (CRealArchimedean x) as [p maj].
destruct p.
- exists O. apply maj.
- exists (Pos.to_nat p). rewrite positive_nat_Z. apply maj.
- exists O. apply (CReal_lt_trans _ (inject_Q (Z.neg p # 1))).
apply maj. apply inject_Q_lt. reflexivity.
Qed.
Lemma CReal_mult_le_0_compat : forall (a b : CReal),
0 <= a -> 0 <= b -> 0 <= a * b.
Proof.
(* Limit of (a + 1/n)*b when n -> infty. *)
intros. intro abs.
assert (0 < -(a*b)) as epsPos.
{ rewrite <- CReal_opp_0. apply CReal_opp_gt_lt_contravar. exact abs. }
destruct (Rup_nat (b * (/ (-(a*b))) (inr epsPos)))
as [n maj].
destruct n as [|n].
- apply (CReal_mult_lt_compat_r (-(a*b))) in maj.
rewrite CReal_mult_0_l, CReal_mult_assoc, CReal_inv_l, CReal_mult_1_r in maj.
contradiction. exact epsPos.
- (* n > 0 *)
assert (0 < inject_Q (Z.of_nat (S n) #1)) as nPos.
{ apply inject_Q_lt. unfold Qlt, Qnum, Qden.
do 2 rewrite Z.mul_1_r. apply Z2Nat.inj_lt. discriminate.
apply Zle_0_nat. rewrite Nat2Z.id. apply le_n_S, le_0_n. }
assert (b * (/ inject_Q (Z.of_nat (S n) #1)) (inr nPos) < -(a*b)).
{ apply (CReal_mult_lt_reg_r (inject_Q (Z.of_nat (S n) #1))). apply nPos.
rewrite CReal_mult_assoc, CReal_inv_l, CReal_mult_1_r.
apply (CReal_mult_lt_compat_r (-(a*b))) in maj.
rewrite CReal_mult_assoc, CReal_inv_l, CReal_mult_1_r in maj.
rewrite CReal_mult_comm. apply maj. apply epsPos. }
pose proof (CReal_mult_le_compat_l_half
(a + (/ inject_Q (Z.of_nat (S n) #1)) (inr nPos)) 0 b).
assert (0 + 0 < a + (/ inject_Q (Z.of_nat (S n) #1)) (inr nPos)).
{ apply CReal_plus_le_lt_compat. apply H. apply CReal_inv_0_lt_compat. apply nPos. }
rewrite CReal_plus_0_l in H3. specialize (H2 H3 H0).
clear H3. rewrite CReal_mult_0_r in H2.
apply H2. clear H2. rewrite CReal_mult_plus_distr_r.
apply (CReal_plus_lt_compat_l (a*b)) in H1.
rewrite CReal_plus_opp_r in H1.
rewrite (CReal_mult_comm ((/ inject_Q (Z.of_nat (S n) #1)) (inr nPos))).
apply H1.
Qed.
Lemma CReal_mult_le_compat_l : forall (r r1 r2:CReal),
0 <= r -> r1 <= r2 -> r * r1 <= r * r2.
Proof.
intros. apply (CReal_plus_le_reg_r (-(r*r1))).
rewrite CReal_plus_opp_r, CReal_opp_mult_distr_r.
rewrite <- CReal_mult_plus_distr_l.
apply CReal_mult_le_0_compat. exact H.
apply (CReal_plus_le_reg_r r1).
rewrite CReal_plus_0_l, CReal_plus_assoc, CReal_plus_opp_l, CReal_plus_0_r.
exact H0.
Qed.
Lemma CReal_mult_le_compat_r : forall (r r1 r2:CReal),
0 <= r -> r1 <= r2 -> r1 * r <= r2 * r.
Proof.
intros. apply (CReal_plus_le_reg_r (-(r1*r))).
rewrite CReal_plus_opp_r, CReal_opp_mult_distr_l.
rewrite <- CReal_mult_plus_distr_r.
apply CReal_mult_le_0_compat. 2: exact H.
apply (CReal_plus_le_reg_r r1). ring_simplify. exact H0.
Qed.
Lemma CReal_mult_le_reg_l :
forall x y z : CReal,
0 < x -> x * y <= x * z -> y <= z.
Proof.
intros. intro abs.
apply (CReal_mult_lt_compat_l x) in abs. contradiction.
exact H.
Qed.
Lemma CReal_mult_le_reg_r :
forall x y z : CReal,
0 < x -> y * x <= z * x -> y <= z.
Proof.
intros. intro abs.
apply (CReal_mult_lt_compat_r x) in abs. contradiction.
exact H.
Qed.
|