1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
|
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * Copyright INRIA, CNRS and contributors *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
(************************************************************************)
Require Import QArith.
Require Import Qpower.
Require Import Qabs.
Require Import Qround.
Require Import Logic.ConstructiveEpsilon.
Require CMorphisms.
Require Import Lia.
Require Import Lqa.
Require Import QExtra.
Require Import ConstructiveExtra.
(** The constructive Cauchy real numbers, ie the Cauchy sequences
of rational numbers.
Cauchy reals are Cauchy sequences of rational numbers,
equipped with explicit moduli of convergence and
an equivalence relation (the difference converges to zero).
Without convergence moduli, we would fail to prove that a Cauchy
sequence of constructive reals converges.
Because of the Specker sequences (increasing, computable
and bounded sequences of rationals that do not converge
to a computable real number), constructive reals do not
follow the least upper bound principle.
The double quantification on p q is needed to avoid
forall un, QSeqEquiv un (fun _ => un O) (fun q => O)
which says nothing about the limit of un.
We define sequences as Z -> Q instead of nat -> Q,
so that we can compute arguments like 2^n fast.
Todo: doc for Z->Q
WARNING: this module is not meant to be imported directly,
please import `Reals.Abstract.ConstructiveReals` instead.
WARNING: this file is experimental and likely to change in future releases.
*)
Definition QCauchySeq (xn : Z -> Q)
: Prop
:= forall (k : Z) (p q : Z),
Z.le p k
-> Z.le q k
-> Qabs (xn p - xn q) < 2 ^ k.
Definition QBound (xn : Z -> Q) (scale : Z)
: Prop
:= forall (k : Z),
Qabs (xn k) < 2 ^ scale.
(* A Cauchy real is a sequence with a proof that the sequence is Cauchy *)
Record CReal := mkCReal {
seq : Z -> Q;
scale : Z;
cauchy : QCauchySeq seq;
bound : QBound seq scale
}.
Declare Scope CReal_scope.
(* Declare Scope R_scope with Key R *)
Delimit Scope CReal_scope with CReal.
(* Automatically open scope R_scope for arguments of type R *)
Bind Scope CReal_scope with CReal.
Local Open Scope CReal_scope.
Definition CRealLt (x y : CReal) : Set
:= { n : Z | Qlt (2 * 2 ^ n) (seq y n - seq x n) }.
Definition CRealLtProp (x y : CReal) : Prop
:= exists n : Z, Qlt (2 * 2 ^ n)(seq y n - seq x n).
Definition CRealGt (x y : CReal) := CRealLt y x.
Definition CReal_appart (x y : CReal) := sum (CRealLt x y) (CRealLt y x).
Infix "<" := CRealLt : CReal_scope.
Infix ">" := CRealGt : CReal_scope.
Infix "#" := CReal_appart : CReal_scope.
(* This Prop can be extracted as a sigma type *)
Lemma CRealLtEpsilon : forall x y : CReal,
CRealLtProp x y -> x < y.
Proof.
intros x y H. unfold CRealLtProp in H.
apply constructive_indefinite_ground_description_Z in H. apply H.
intros n.
pose proof Qlt_le_dec (2 * 2 ^ n) (seq y n - seq x n) as Hdec.
destruct Hdec as [H1|H1].
- left; exact H1.
- right; apply Qle_not_lt in H1; exact H1.
Qed.
Lemma CRealLtForget : forall x y : CReal,
x < y -> CRealLtProp x y.
Proof.
intros. destruct H. exists x0. exact q.
Qed.
(* CRealLt is decided by the LPO in Type,
which is a non-constructive oracle. *)
Lemma CRealLt_lpo_dec : forall x y : CReal,
(forall (P : nat -> Prop), (forall n:nat, {P n} + {~P n})
-> {n | ~P n} + {forall n, P n})
-> CRealLt x y + (CRealLt x y -> False).
Proof.
intros x y lpo.
destruct (lpo (fun n:nat =>
seq y (Z_inj_nat_rev n) - seq x (Z_inj_nat_rev n) <= 2 * 2 ^ (Z_inj_nat_rev n)
)).
- intro n. destruct (Qlt_le_dec (2 * 2 ^ (Z_inj_nat_rev n))
(seq y (Z_inj_nat_rev n) - seq x (Z_inj_nat_rev n))).
+ right; lra.
+ left; lra.
- left; destruct s as [n nmaj]; exists (Z_inj_nat_rev n); lra.
- right; intro abs; destruct abs as [n majn].
specialize (q (Z_inj_nat n)).
rewrite Z_inj_nat_id in q.
pose proof (Qle_not_lt _ _ q). contradiction.
Qed.
(* Alias the large order *)
Definition CRealLe (x y : CReal) : Prop
:= CRealLt y x -> False.
Definition CRealGe (x y : CReal) := CRealLe y x.
Infix "<=" := CRealLe : CReal_scope.
Infix ">=" := CRealGe : CReal_scope.
Notation "x <= y <= z" := (x <= y /\ y <= z) : CReal_scope.
Notation "x <= y < z" := (prod (x <= y) (y < z)) : CReal_scope.
Notation "x < y < z" := (prod (x < y) (y < z)) : CReal_scope.
Notation "x < y <= z" := (prod (x < y) (y <= z)) : CReal_scope.
(* Alias the quotient order equality *)
Definition CRealEq (x y : CReal) : Prop
:= (CRealLe y x) /\ (CRealLe x y).
Infix "==" := CRealEq : CReal_scope.
Lemma CRealLe_not_lt : forall x y : CReal,
(forall n : Z, (seq x n - seq y n <= 2 * 2 ^ n)%Q)
<-> x <= y.
Proof.
intros. split.
- intros H H0.
destruct H0 as [n H0]; specialize (H n); lra.
- intros H n.
destruct (Qlt_le_dec (2 * 2 ^ n) (seq x n - seq y n)).
+ exfalso. apply H. exists n. assumption.
+ assumption.
Qed.
Lemma CRealEq_diff : forall (x y : CReal),
CRealEq x y
<-> forall n:Z, ((Qabs (seq x n - seq y n)) <= (2 * 2 ^ n))%Q.
Proof.
intros x y; split.
- intros H n; destruct H as [Hyx Hxy].
pose proof (CRealLe_not_lt x y) as [_ Hxy']. specialize (Hxy' Hxy n).
pose proof (CRealLe_not_lt y x) as [_ Hyx']. specialize (Hyx' Hyx n).
apply Qabs_Qle_condition; lra.
- intros H; split;
apply CRealLe_not_lt; intro n; specialize (H n);
apply Qabs_Qle_condition in H; lra.
Qed.
(** If the elements x(n) and y(n) of two Cauchy sequences x and are apart by
at least 2*eps(n), we can find a k such that all further elements of
the sequences are apart by at least 2*eps(k) *)
Lemma CRealLt_aboveSig : forall (x y : CReal) (n : Z),
(2 * 2^n < seq y n - seq x n)%Q
-> let (k, _) := QarchimedeanExp2_Z (/(seq y n - seq x n - (2 * 2 ^ n)%Q))
in forall p:Z,
(p <= n)%Z
-> (2^(-k) < seq y p - seq x p)%Q.
Proof.
intros x y n maj.
destruct (QarchimedeanExp2_Z (/((seq y) n - (seq x) n - (2*2^n)%Q))) as [k kmaj].
intros p Hp.
apply Qinv_lt_contravar in kmaj.
3: apply Qpower_pos_lt; lra.
2: apply Qinv_lt_0_compat; lra.
rewrite Qinv_involutive, <- Qpower_opp in kmaj; clear maj.
pose proof ((cauchy x) n n p ltac:(lia) ltac:(lia)) as HCSx.
pose proof ((cauchy y) n p n ltac:(lia) ltac:(lia)) as HCSy.
rewrite Qabs_Qlt_condition in HCSx, HCSy.
lra.
Qed.
(** This is a weakened form of CRealLt_aboveSig which a special shape of eps needed below *)
Lemma CRealLt_aboveSig' : forall (x y : CReal) (n : Z),
(2 * 2^n < seq y n - seq x n)%Q
-> let (k, _) := QarchimedeanExp2_Z (/(seq y n - seq x n - (2 * 2 ^ n)%Q))
in forall p:Z,
(p <= n)%Z
-> (2 * 2^(Z.min (-k-1) n) < seq y p - seq x p)%Q.
Proof.
intros x y n Hapart.
pose proof CRealLt_aboveSig x y n Hapart.
destruct (QarchimedeanExp2_Z (/ (seq y n - seq x n - (2 * 2 ^ n))))
as [k kmaj].
intros p Hp; specialize (H p Hp).
pose proof Qpower_le_compat 2 (Z.min (- k -1) n) (- k-1) (Z.le_min_l _ _) ltac:(lra) as H1.
rewrite Qpower_minus_pos in H1.
apply (Qmult_le_compat_r _ _ 2) in H1.
2: lra.
ring_simplify in H1.
exact (Qle_lt_trans _ _ _ H1 H).
Qed.
Lemma CRealLt_above : forall (x y : CReal),
CRealLt x y
-> { n : Z | forall p : Z,
(p <= n)%Z -> (2 * 2 ^ n < seq y p - seq x p)%Q }.
Proof.
intros x y [n maj].
pose proof (CRealLt_aboveSig' x y n maj) as H.
destruct (QarchimedeanExp2_Z (/ (seq y n - seq x n - (2 * 2 ^ n))))
as [k kmaj].
exists (Z.min (-k - 1) n)%Z; intros p Hp.
apply H.
lia.
Qed.
(* The CRealLt index separates the Cauchy sequences *)
Lemma CRealLt_above_same : forall (x y : CReal) (n : Z),
(2 * 2 ^ n < seq y n - seq x n)%Q
-> forall p:Z, (p <= n)%Z -> Qlt (seq x p) (seq y p).
Proof.
intros x y n inf p H.
simpl in inf |- *.
pose proof ((cauchy x) n p n ltac:(lia) ltac:(lia)).
pose proof ((cauchy y) n p n ltac:(lia) ltac:(lia)).
rewrite Qabs_Qlt_condition in *.
lra.
Qed.
Lemma CRealLt_asym : forall x y : CReal, x < y -> x <= y.
Proof.
intros x y H [n q].
apply CRealLt_above in H. destruct H as [p H].
pose proof (CRealLt_above_same y x n q).
apply (Qlt_not_le (seq y (Z.min n p))
(seq x (Z.min n p))).
apply H0. apply Z.le_min_l.
apply Qlt_le_weak. apply (Qplus_lt_l _ _ (-seq x (Z.min n p))).
rewrite Qplus_opp_r. apply (Qlt_trans _ (2*2^p)).
- pose proof Qpower_pos_lt 2 p ltac:(lra). lra.
- apply H. lia.
(* ToDo: use lra *)
Qed.
Lemma CRealLt_irrefl : forall x:CReal, x < x -> False.
Proof.
intros x abs. exact (CRealLt_asym x x abs abs).
Qed.
Lemma CRealLe_refl : forall x : CReal, x <= x.
Proof.
intros. intro abs.
pose proof (CRealLt_asym x x abs). contradiction.
Qed.
Lemma CRealEq_refl : forall x : CReal, x == x.
Proof.
intros. split; apply CRealLe_refl.
Qed.
Lemma CRealEq_sym : forall x y : CReal, CRealEq x y -> CRealEq y x.
Proof.
intros. destruct H. split; intro abs; contradiction.
Qed.
Lemma CRealLt_dec : forall x y z : CReal,
x < y -> sum (x < z) (z < y).
Proof.
intros x y z [n inf].
destruct (QarchimedeanExp2_Z (/((seq y) n - (seq x) n - (2 * 2 ^ n)))) as [k kmaj].
rewrite Qinv_lt_contravar, Qinv_involutive, <- Qpower_opp in kmaj.
3: apply Qpower_pos_lt; lra.
2: apply Qinv_lt_0_compat; lra.
destruct (Qlt_le_dec ((1#2) * ((seq y) n + (seq x) n)) ((seq z) (Z.min n (- k - 2))))
as [Hxyltz|Hzlexy]; [left; pose (cauchy x) as HCS|right; pose (cauchy y) as HCS].
all: exists (Z.min (n)%Z (-k - 2))%Z.
all: specialize (HCS n n (Z.min n (-k-2))%Z ltac:(lia) ltac:(lia)).
all: rewrite Qabs_Qlt_condition in HCS.
all: assert (2 ^ Z.min n (- k - 2) <= 2 ^ (- k - 2))%Q as Hpowmin
by (apply Qpower_le_compat; [lia|lra]).
all: rewrite Qpower_minus_pos in Hpowmin; lra.
Qed.
Definition linear_order_T x y z := CRealLt_dec x z y.
Lemma CReal_le_lt_trans : forall x y z : CReal,
x <= y -> y < z -> x < z.
Proof.
intros x y z Hle Hlt.
destruct (linear_order_T y x z Hlt) as [Hyltx|Hxltz].
- contradiction.
- exact Hxltz.
Qed.
Lemma CReal_lt_le_trans : forall x y z : CReal,
x < y -> y <= z -> x < z.
Proof.
intros x y z Hlt Hle.
destruct (linear_order_T x z y Hlt) as [Hxltz|Hzlty].
- exact Hxltz.
- contradiction.
Qed.
Lemma CReal_le_trans : forall x y z : CReal,
x <= y -> y <= z -> x <= z.
Proof.
intros x y z Hxley Hylez contra.
apply Hylez.
apply (CReal_lt_le_trans _ x); assumption.
Qed.
Lemma CReal_lt_trans : forall x y z : CReal,
x < y -> y < z -> x < z.
Proof.
intros x y z Hxlty Hyltz.
apply (CReal_lt_le_trans _ y _ Hxlty).
apply CRealLt_asym; exact Hyltz.
Qed.
Lemma CRealEq_trans : forall x y z : CReal,
CRealEq x y -> CRealEq y z -> CRealEq x z.
Proof.
intros x y z Hxeqy Hyeqz.
destruct Hxeqy as [Hylex Hxley].
destruct Hyeqz as [Hzley Hylez].
split.
- intro contra. destruct (CRealLt_dec _ _ y contra); contradiction.
- intro contra. destruct (CRealLt_dec _ _ y contra); contradiction.
Qed.
Add Parametric Relation : CReal CRealEq
reflexivity proved by CRealEq_refl
symmetry proved by CRealEq_sym
transitivity proved by CRealEq_trans
as CRealEq_rel.
Instance CRealEq_relT : CRelationClasses.Equivalence CRealEq.
Proof.
split.
- exact CRealEq_refl.
- exact CRealEq_sym.
- exact CRealEq_trans.
Qed.
Instance CRealLt_morph
: CMorphisms.Proper
(CMorphisms.respectful CRealEq (CMorphisms.respectful CRealEq CRelationClasses.iffT)) CRealLt.
Proof.
intros x y Hxeqy x0 y0 Hx0eqy0.
destruct Hxeqy as [Hylex Hxley].
destruct Hx0eqy0 as [Hy0lex0 Hx0ley0].
split.
- intro Hxltx0; destruct (CRealLt_dec x x0 y).
+ assumption.
+ contradiction.
+ destruct (CRealLt_dec y x0 y0).
assumption. assumption. contradiction.
- intro Hylty0; destruct (CRealLt_dec y y0 x).
+ assumption.
+ contradiction.
+ destruct (CRealLt_dec x y0 x0).
assumption. assumption. contradiction.
Qed.
Instance CRealGt_morph
: CMorphisms.Proper
(CMorphisms.respectful CRealEq (CMorphisms.respectful CRealEq CRelationClasses.iffT)) CRealGt.
Proof.
intros x y Hxeqy x0 y0 Hx0eqy0. apply CRealLt_morph; assumption.
Qed.
Instance CReal_appart_morph
: CMorphisms.Proper
(CMorphisms.respectful CRealEq (CMorphisms.respectful CRealEq CRelationClasses.iffT)) CReal_appart.
Proof.
intros x y Hxeqy x0 y0 Hx0eqy0.
split.
- intros Hapart. destruct Hapart as [Hxltx0|Hx0ltx].
+ left. rewrite <- Hx0eqy0, <- Hxeqy. exact Hxltx0.
+ right. rewrite <- Hx0eqy0, <- Hxeqy. exact Hx0ltx.
- intros Hapart. destruct Hapart as [Hylty0|Hy0lty].
+ left. rewrite Hx0eqy0, Hxeqy. exact Hylty0.
+ right. rewrite Hx0eqy0, Hxeqy. exact Hy0lty.
Qed.
Add Parametric Morphism : CRealLtProp
with signature CRealEq ==> CRealEq ==> iff
as CRealLtProp_morph.
Proof.
intros x y Hxeqy x0 y0 Hx0eqy0.
split.
- intro Hxltpx0. apply CRealLtForget. apply CRealLtEpsilon in Hxltpx0.
rewrite <- Hxeqy, <- Hx0eqy0. exact Hxltpx0.
- intro Hylty0. apply CRealLtForget. apply CRealLtEpsilon in Hylty0.
rewrite Hxeqy, Hx0eqy0. exact Hylty0.
Qed.
Add Parametric Morphism : CRealLe
with signature CRealEq ==> CRealEq ==> iff
as CRealLe_morph.
Proof.
intros x y Hxeqy x0 y0 Hx0eqy0.
split.
- intros Hxlex0 Hyley0. unfold CRealLe in Hxlex0.
rewrite <- Hx0eqy0 in Hyley0. rewrite <- Hxeqy in Hyley0. contradiction.
- intros Hxlex0 Hyley0. unfold CRealLe in Hxlex0.
rewrite Hx0eqy0 in Hyley0. rewrite Hxeqy in Hyley0. contradiction.
Qed.
Add Parametric Morphism : CRealGe
with signature CRealEq ==> CRealEq ==> iff
as CRealGe_morph.
Proof.
intros x y Hxeqy x0 y0 Hx0eqy0.
unfold CRealGe. apply CRealLe_morph; assumption.
Qed.
Lemma CRealLt_proper_l : forall x y z : CReal,
CRealEq x y
-> CRealLt x z -> CRealLt y z.
Proof.
intros x y z Hxeqy Hxltz.
apply (CRealLt_morph x y Hxeqy z z).
- apply CRealEq_refl.
- apply Hxltz.
Qed.
Lemma CRealLt_proper_r : forall x y z : CReal,
CRealEq x y
-> CRealLt z x -> CRealLt z y.
Proof.
intros x y z Hxeqy Hzltx.
apply (CRealLt_morph z z (CRealEq_refl z) x y).
- apply Hxeqy.
- apply Hzltx.
Qed.
Lemma CRealLe_proper_l : forall x y z : CReal,
CRealEq x y
-> CRealLe x z -> CRealLe y z.
Proof.
intros x y z Hxeqy Hxlez.
apply (CRealLe_morph x y Hxeqy z z).
- apply CRealEq_refl.
- apply Hxlez.
Qed.
Lemma CRealLe_proper_r : forall x y z : CReal,
CRealEq x y
-> CRealLe z x -> CRealLe z y.
Proof.
intros x y z Hxeqy Hzlex.
apply (CRealLe_morph z z (CRealEq_refl z) x y).
- apply Hxeqy.
- apply Hzlex.
Qed.
(* Injection of Q into CReal *)
Lemma inject_Q_cauchy : forall q : Q, QCauchySeq (fun _ => q).
Proof.
intros q k p r Hp Hr.
apply Qabs_Qlt_condition.
pose proof Qpower_pos_lt 2 k; lra.
Qed.
Definition inject_Q (q : Q) : CReal :=
{|
seq := (fun n : Z => q);
scale := Qbound_ltabs_ZExp2 q;
cauchy := inject_Q_cauchy q;
bound := (fun _ : Z => Qbound_ltabs_ZExp2_spec q)
|}.
Definition inject_Z : Z -> CReal
:= fun n => inject_Q (n # 1).
Notation "0" := (inject_Q 0) : CReal_scope.
Notation "1" := (inject_Q 1) : CReal_scope.
Notation "2" := (inject_Q 2) : CReal_scope.
Lemma CRealLt_0_1 : CRealLt (inject_Q 0) (inject_Q 1).
Proof.
exists (-2)%Z; cbn; lra.
Qed.
Lemma CReal_injectQPos : forall q : Q,
(0 < q)%Q -> CRealLt (inject_Q 0) (inject_Q q).
Proof.
intros q Hq. destruct (QarchimedeanExp2_Z ((2#1) / q)) as [k Hk].
exists (-k)%Z; cbn.
apply (Qmult_lt_compat_r _ _ q) in Hk.
2: assumption.
apply (Qmult_lt_compat_r _ _ (2^(-k))) in Hk.
2: apply Qpower_pos_lt; lra.
field_simplify in Hk.
2: lra.
(* ToDo: field_simplify should collect powers - the next 3 lines ... *)
rewrite <- Qmult_assoc, <- Qpower_plus in Hk by lra.
ring_simplify (-k +k)%Z in Hk.
rewrite Qpower_0_r in Hk.
lra.
Qed.
Lemma inject_Q_compare : forall (x : CReal) (p : Z),
x <= inject_Q (seq x p + (2^p)).
Proof.
intros x p [n nmaj].
cbn in nmaj.
assert(2^n>0)%Q by (apply Qpower_pos_lt; lra).
assert(2^p>0)%Q by (apply Qpower_pos_lt; lra).
pose proof x.(cauchy) as xcau.
destruct (Z.min_dec p n);
[ specialize (xcau n n p ltac:(lia) ltac:(lia)) |
specialize (xcau p n p ltac:(lia) ltac:(lia)) ].
all: apply Qabs_Qlt_condition in xcau; lra.
Qed.
Add Parametric Morphism : inject_Q
with signature Qeq ==> CRealEq
as inject_Q_morph.
Proof.
intros x y Heq; split.
all: intros [n Hapart]; cbn in Hapart; rewrite Heq in Hapart.
all: assert(2^n>0)%Q by (apply Qpower_pos_lt; lra); lra.
Qed.
Instance inject_Q_morph_T
: CMorphisms.Proper
(CMorphisms.respectful Qeq CRealEq) inject_Q.
Proof.
intros x y Heq; split.
all: intros [n Hapart]; cbn in Hapart; rewrite Heq in Hapart.
all: assert(2^n>0)%Q by (apply Qpower_pos_lt; lra); lra.
Qed.
(** * Algebraic operations *)
(** We reduce the rational numbers to accelerate calculations. *)
Definition CReal_plus_seq (x y : CReal) :=
(fun n : Z => Qred (seq x (n-1)%Z + seq y (n-1)%Z)).
Definition CReal_plus_scale (x y : CReal) : Z :=
Z.max x.(scale) y.(scale) + 1.
Lemma CReal_plus_cauchy : forall (x y : CReal),
QCauchySeq (CReal_plus_seq x y).
Proof.
intros x y n p q Hp Hq.
unfold CReal_plus_seq.
pose proof ((cauchy x) (n-1)%Z (p-1)%Z (q-1)%Z ltac:(lia) ltac:(lia)) as Hxbnd.
pose proof ((cauchy y) (n-1)%Z (p-1)%Z (q-1)%Z ltac:(lia) ltac:(lia)) as Hybnd.
do 2 rewrite Qred_correct.
rewrite Qabs_Qlt_condition in Hxbnd, Hybnd |- *.
rewrite Qpower_minus_pos in Hxbnd, Hybnd.
lra.
Qed.
Lemma CReal_plus_bound : forall (x y : CReal),
QBound (CReal_plus_seq x y) (CReal_plus_scale x y).
Proof.
intros x y k.
unfold CReal_plus_seq, CReal_plus_scale.
pose proof (bound x (k-1)%Z) as Hxbnd.
pose proof (bound y (k-1)%Z) as Hybnd.
rewrite Qpower_plus by lra.
pose proof Qpower_le_compat 2 (scale x) (Z.max (scale x) (scale y)) ltac:(lia) ltac:(lra) as Hxmax.
pose proof Qpower_le_compat 2 (scale y) (Z.max (scale x) (scale y)) ltac:(lia) ltac:(lra) as Hymax.
rewrite Qabs_Qlt_condition in Hxbnd, Hybnd |- *.
rewrite Qred_correct.
lra.
Qed.
Definition CReal_plus (x y : CReal) : CReal :=
{|
seq := CReal_plus_seq x y;
scale := CReal_plus_scale x y;
cauchy := CReal_plus_cauchy x y;
bound := CReal_plus_bound x y
|}.
Infix "+" := CReal_plus : CReal_scope.
Definition CReal_opp_seq (x : CReal) :=
(fun n : Z => - seq x n).
Definition CReal_opp_scale (x : CReal) : Z :=
x.(scale).
Lemma CReal_opp_cauchy : forall (x : CReal),
QCauchySeq (CReal_opp_seq x).
Proof.
intros x n p q Hp Hq; unfold CReal_opp_seq.
pose proof ((cauchy x) n p q ltac:(lia) ltac:(lia)) as Hxbnd.
rewrite Qabs_Qlt_condition in Hxbnd |- *.
lra.
Qed.
Lemma CReal_opp_bound : forall (x : CReal),
QBound (CReal_opp_seq x) (CReal_opp_scale x).
Proof.
intros x k.
unfold CReal_opp_seq, CReal_opp_scale.
pose proof (bound x k) as Hxbnd.
rewrite Qabs_Qlt_condition in Hxbnd |- *.
lra.
Qed.
Definition CReal_opp (x : CReal) : CReal :=
{|
seq := CReal_opp_seq x;
scale := CReal_opp_scale x;
cauchy := CReal_opp_cauchy x;
bound := CReal_opp_bound x
|}.
Notation "- x" := (CReal_opp x) : CReal_scope.
Definition CReal_minus (x y : CReal) : CReal
:= CReal_plus x (CReal_opp y).
Infix "-" := CReal_minus : CReal_scope.
(* ToDo: make a tactic for this *)
Lemma CReal_red_seq: forall (a : Z -> Q) (b : Z) (c : QCauchySeq a) (d : QBound a b),
seq (mkCReal a b c d) = a.
Proof.
reflexivity.
Qed.
Lemma CReal_plus_assoc : forall (x y z : CReal),
(x + y) + z == x + (y + z).
Proof.
intros x y z; apply CRealEq_diff; intro n.
unfold CReal_plus, CReal_plus_seq. do 4 rewrite CReal_red_seq.
do 4 rewrite Qred_correct.
ring_simplify (n-1-1)%Z.
pose proof ((cauchy x) (n-1)%Z (n-2)%Z (n-1)%Z ltac:(lia) ltac:(lia)) as Hxbnd.
specialize ((cauchy z) (n-1)%Z (n-2)%Z (n-1)%Z ltac:(lia) ltac:(lia)) as Hzbnd.
apply Qlt_le_weak.
rewrite Qabs_Qlt_condition in Hxbnd, Hzbnd |- *.
rewrite Qpower_minus_pos in Hxbnd, Hzbnd.
lra.
Qed.
Lemma CReal_plus_comm : forall x y : CReal,
x + y == y + x.
Proof.
intros x y; apply CRealEq_diff; intros n.
unfold CReal_plus, CReal_plus_seq. do 2 rewrite CReal_red_seq.
do 2 rewrite Qred_correct.
pose proof ((cauchy x) (n-1)%Z (n-1)%Z (n-1)%Z ltac:(lia) ltac:(lia)) as Hxbnd.
pose proof ((cauchy y) (n-1)%Z (n-1)%Z (n-1)%Z ltac:(lia) ltac:(lia)) as Hybnd.
apply Qlt_le_weak.
rewrite Qabs_Qlt_condition in Hxbnd, Hybnd |- *.
rewrite Qpower_minus_pos in Hxbnd, Hybnd.
lra.
Qed.
Lemma CReal_plus_0_l : forall r : CReal,
inject_Q 0 + r == r.
Proof.
intros x; apply CRealEq_diff; intros n.
unfold CReal_plus, CReal_plus_seq, inject_Q. do 2 rewrite CReal_red_seq.
rewrite Qred_correct.
pose proof ((cauchy x) (n)%Z (n-1)%Z (n)%Z ltac:(lia) ltac:(lia)) as Hxbnd.
apply Qlt_le_weak.
rewrite Qabs_Qlt_condition in Hxbnd |- *.
lra.
Qed.
Lemma CReal_plus_0_r : forall r : CReal,
r + 0 == r.
Proof.
intro r. rewrite CReal_plus_comm. apply CReal_plus_0_l.
Qed.
Lemma CReal_plus_lt_compat_l :
forall x y z : CReal, y < z -> x + y < x + z.
Proof.
intros x y z Hlt.
apply CRealLt_above in Hlt; destruct Hlt as [n Hapart]; exists n.
unfold CReal_plus, CReal_plus_seq in Hapart |- *. do 2 rewrite CReal_red_seq.
do 2 rewrite Qred_correct.
specialize (Hapart (n-1)%Z ltac:(lia)).
lra.
Qed.
Lemma CReal_plus_lt_compat_r :
forall x y z : CReal, y < z -> y + x < z + x.
Proof.
intros x y z.
do 2 rewrite <- (CReal_plus_comm x).
apply CReal_plus_lt_compat_l.
Qed.
Lemma CReal_plus_lt_reg_l :
forall x y z : CReal, x + y < x + z -> y < z.
Proof.
intros x y z Hlt.
destruct Hlt as [n maj]; exists (n - 1)%Z.
setoid_replace (seq z (n - 1)%Z - seq y (n - 1)%Z)%Q
with (seq (CReal_plus x z) n - seq (CReal_plus x y) n)%Q.
- rewrite Qpower_minus_pos.
assert (2 ^ n > 0)%Q by (apply Qpower_pos_lt; lra); lra.
- unfold CReal_plus, CReal_plus_seq in maj |- *.
do 2 rewrite CReal_red_seq in maj |- *.
do 2 rewrite Qred_correct; ring.
Qed.
Lemma CReal_plus_lt_reg_r :
forall x y z : CReal, y + x < z + x -> y < z.
Proof.
intros x y z Hlt.
rewrite (CReal_plus_comm y), (CReal_plus_comm z) in Hlt.
apply CReal_plus_lt_reg_l in Hlt; exact Hlt.
Qed.
Lemma CReal_plus_le_reg_l :
forall x y z : CReal, x + y <= x + z -> y <= z.
Proof.
intros x y z Hlt contra.
apply Hlt.
apply CReal_plus_lt_compat_l; exact contra.
Qed.
Lemma CReal_plus_le_reg_r :
forall x y z : CReal, y + x <= z + x -> y <= z.
Proof.
intros x y z Hlt contra.
apply Hlt.
apply CReal_plus_lt_compat_r; exact contra.
Qed.
Lemma CReal_plus_le_compat_l : forall r r1 r2, r1 <= r2 -> r + r1 <= r + r2.
Proof.
intros x y z Hlt contra.
apply Hlt.
apply CReal_plus_lt_reg_l in contra; exact contra.
Qed.
Lemma CReal_plus_le_lt_compat :
forall r1 r2 r3 r4 : CReal, r1 <= r2 -> r3 < r4 -> r1 + r3 < r2 + r4.
Proof.
intros r1 r2 r3 r4 Hr1ler2 Hr3ltr4.
apply CReal_le_lt_trans with (r2 + r3).
intro contra; rewrite CReal_plus_comm, (CReal_plus_comm r1) in contra.
apply CReal_plus_lt_reg_l in contra. contradiction.
apply CReal_plus_lt_compat_l. exact Hr3ltr4.
Qed.
Lemma CReal_plus_le_compat :
forall r1 r2 r3 r4 : CReal, r1 <= r2 -> r3 <= r4 -> r1 + r3 <= r2 + r4.
Proof.
intros r1 r2 r3 r4 Hr1ler2 Hr3ler4.
apply CReal_le_trans with (r2 + r3).
intro contra; rewrite CReal_plus_comm, (CReal_plus_comm r1) in contra.
apply CReal_plus_lt_reg_l in contra. contradiction.
apply CReal_plus_le_compat_l; exact Hr3ler4.
Qed.
Lemma CReal_plus_opp_r : forall x : CReal,
x + - x == 0.
Proof.
intros x; apply CRealEq_diff; intros n.
unfold CReal_plus, CReal_plus_seq, CReal_opp, CReal_opp_seq, inject_Q.
do 3 rewrite CReal_red_seq.
rewrite Qred_correct.
pose proof ((cauchy x) (n)%Z (n-1)%Z (n)%Z ltac:(lia) ltac:(lia)) as Hxbnd.
apply Qlt_le_weak.
rewrite Qabs_Qlt_condition in Hxbnd |- *.
lra.
Qed.
Lemma CReal_plus_opp_l : forall x : CReal,
- x + x == 0.
Proof.
intro x. rewrite CReal_plus_comm. apply CReal_plus_opp_r.
Qed.
Lemma CReal_plus_proper_r : forall x y z : CReal,
CRealEq x y -> CRealEq (CReal_plus x z) (CReal_plus y z).
Proof.
intros. apply (CRealEq_trans _ (CReal_plus z x)).
apply CReal_plus_comm. apply (CRealEq_trans _ (CReal_plus z y)).
2: apply CReal_plus_comm.
split. intro abs. apply CReal_plus_lt_reg_l in abs.
destruct H. contradiction. intro abs. apply CReal_plus_lt_reg_l in abs.
destruct H. contradiction.
Qed.
Lemma CReal_plus_proper_l : forall x y z : CReal,
CRealEq x y -> CRealEq (CReal_plus z x) (CReal_plus z y).
Proof.
intros. split. intro abs. apply CReal_plus_lt_reg_l in abs.
destruct H. contradiction. intro abs. apply CReal_plus_lt_reg_l in abs.
destruct H. contradiction.
Qed.
Add Parametric Morphism : CReal_plus
with signature CRealEq ==> CRealEq ==> CRealEq
as CReal_plus_morph.
Proof.
intros x y H z t H0. apply (CRealEq_trans _ (CReal_plus x t)).
- destruct H0.
split. intro abs. apply CReal_plus_lt_reg_l in abs. contradiction.
intro abs. apply CReal_plus_lt_reg_l in abs. contradiction.
- apply CReal_plus_proper_r. apply H.
Qed.
Instance CReal_plus_morph_T
: CMorphisms.Proper
(CMorphisms.respectful CRealEq (CMorphisms.respectful CRealEq CRealEq)) CReal_plus.
Proof.
intros x y H z t H0. apply (CRealEq_trans _ (CReal_plus x t)).
- destruct H0.
split. intro abs. apply CReal_plus_lt_reg_l in abs. contradiction.
intro abs. apply CReal_plus_lt_reg_l in abs. contradiction.
- apply CReal_plus_proper_r. apply H.
Qed.
Lemma CReal_plus_eq_reg_l : forall (r r1 r2 : CReal),
r + r1 == r + r2 -> r1 == r2.
Proof.
intros. destruct H. split.
- intro abs. apply (CReal_plus_lt_compat_l r) in abs. contradiction.
- intro abs. apply (CReal_plus_lt_compat_l r) in abs. contradiction.
Qed.
Lemma CReal_opp_0 : -0 == 0.
Proof.
apply (CReal_plus_eq_reg_l 0).
rewrite CReal_plus_0_r, CReal_plus_opp_r. reflexivity.
Qed.
Lemma CReal_opp_plus_distr : forall r1 r2, - (r1 + r2) == - r1 + - r2.
Proof.
intros. apply (CReal_plus_eq_reg_l (r1+r2)).
rewrite CReal_plus_opp_r, (CReal_plus_comm (-r1)), CReal_plus_assoc.
rewrite <- (CReal_plus_assoc r2), CReal_plus_opp_r, CReal_plus_0_l.
rewrite CReal_plus_opp_r. reflexivity.
Qed.
Lemma CReal_opp_involutive : forall x:CReal, --x == x.
Proof.
intros. apply (CReal_plus_eq_reg_l (-x)).
rewrite CReal_plus_opp_l, CReal_plus_opp_r. reflexivity.
Qed.
Lemma CReal_opp_gt_lt_contravar : forall r1 r2, r1 > r2 -> - r1 < - r2.
Proof.
unfold CRealGt; intros.
apply (CReal_plus_lt_reg_l (r2 + r1)).
rewrite CReal_plus_assoc, CReal_plus_opp_r, CReal_plus_0_r.
rewrite CReal_plus_comm, <- CReal_plus_assoc, CReal_plus_opp_l.
rewrite CReal_plus_0_l. exact H.
Qed.
Lemma CReal_opp_ge_le_contravar : forall r1 r2, r1 >= r2 -> - r1 <= - r2.
Proof.
intros. intro abs. apply H. clear H.
apply (CReal_plus_lt_reg_r (-r1-r2)).
unfold CReal_minus. rewrite <- CReal_plus_assoc, CReal_plus_opp_r, CReal_plus_0_l.
rewrite (CReal_plus_comm (-r1)), <- CReal_plus_assoc, CReal_plus_opp_r, CReal_plus_0_l.
exact abs.
Qed.
Lemma inject_Q_plus : forall q r : Q,
inject_Q (q + r) == inject_Q q + inject_Q r.
Proof.
intros q r.
split.
all: intros [n nmaj]; unfold CReal_plus, CReal_plus_seq, inject_Q in nmaj.
all: do 4 rewrite CReal_red_seq in nmaj.
all: rewrite Qred_correct in nmaj.
all: assert(2^n>0)%Q by (apply Qpower_pos_lt; lra); lra.
Qed.
Lemma inject_Q_one : inject_Q 1 == 1.
Proof.
split.
all: intros [n nmaj]; cbn in nmaj.
all: assert(2^n>0)%Q by (apply Qpower_pos_lt; lra); lra.
Qed.
Lemma inject_Q_lt : forall q r : Q,
Qlt q r -> inject_Q q < inject_Q r.
Proof.
intros q r Hlt.
destruct (QarchimedeanExp2_Z (/(r-q))) as [n Hn].
rewrite Qinv_lt_contravar, Qinv_involutive, <- Qpower_opp in Hn.
- exists (-n-1)%Z; cbn.
rewrite Qpower_minus_pos; lra.
- apply Qlt_shift_inv_l; lra.
- apply Qpower_pos_lt; lra.
Qed.
Lemma opp_inject_Q : forall q : Q,
inject_Q (-q) == - inject_Q q.
Proof.
intros q.
split.
all: intros [n maj]; cbn in maj.
all: unfold CReal_opp_seq, inject_Q in maj.
all: rewrite CReal_red_seq in maj.
all: assert(2^n>0)%Q by (apply Qpower_pos_lt; lra); lra.
Qed.
Lemma lt_inject_Q : forall q r : Q,
inject_Q q < inject_Q r -> (q < r)%Q.
Proof.
intros q r [n Hn]; cbn in Hn.
apply Qlt_minus_iff.
assert(2^n>0)%Q by (apply Qpower_pos_lt; lra); lra.
Qed.
Lemma le_inject_Q : forall q r : Q,
inject_Q q <= inject_Q r -> (q <= r)%Q.
Proof.
intros q r Hle.
destruct (Qlt_le_dec r q) as [Hdec|Hdec].
- exfalso.
apply Hle; apply inject_Q_lt; exact Hdec.
- exact Hdec.
Qed.
Lemma inject_Q_le : forall q r : Q,
(q <= r)%Q -> inject_Q q <= inject_Q r.
Proof.
intros q r Hle [n maj]; cbn in maj.
assert(2^n>0)%Q by (apply Qpower_pos_lt; lra); lra.
Qed.
Lemma inject_Z_plus : forall q r : Z,
inject_Z (q + r) == inject_Z q + inject_Z r.
Proof.
intros q r; unfold inject_Z.
setoid_replace (q + r # 1)%Q with ((q#1) + (r#1))%Q.
- apply inject_Q_plus.
- rewrite Qinv_plus_distr; reflexivity.
Qed.
Lemma opp_inject_Z : forall n : Z,
inject_Z (-n) == - inject_Z n.
Proof.
intros n; unfold inject_Z.
setoid_replace (-n # 1)%Q with (-(n#1))%Q.
- rewrite opp_inject_Q; reflexivity.
- reflexivity.
Qed.
|