aboutsummaryrefslogtreecommitdiff
path: root/theories/Reals/Cauchy/ConstructiveCauchyAbs.v
blob: b77a14d6936590a83ecbce09c1136a79d9b82613 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
(************************************************************************)
(*         *   The Coq Proof Assistant / The Coq Development Team       *)
(*  v      *   INRIA, CNRS and contributors - Copyright 1999-2019       *)
(* <O___,, *       (see CREDITS file for the list of authors)           *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)

Require Import QArith.
Require Import Qabs.
Require Import ConstructiveCauchyReals.
Require Import ConstructiveCauchyRealsMult.
Require Import Lia.
Require Import Lqa.
Require Import QExtra.

Local Open Scope CReal_scope.

Local Ltac simplify_Qabs :=
  match goal with |- context [(Qabs ?a)%Q] => ring_simplify a end.

Local Ltac simplify_Qlt :=
  match goal with |- (?l < ?r)%Q => ring_simplify l; ring_simplify r end.

Local Lemma Qopp_mult_mone : forall q : Q,
  (-1 * q == -q)%Q.
Proof.
  intros; ring.
Qed.

Local Lemma Qabs_involutive: forall q : Q,
  (Qabs (Qabs q) == Qabs q)%Q.
Proof.
  intros q; apply Qabs_case; intros Hcase.
  - reflexivity.
  - pose proof Qabs_nonneg q as Habspos.
    pose proof Qle_antisym _ _ Hcase Habspos as Heq0.
    setoid_rewrite Heq0.
    reflexivity.
Qed.

(**
   The constructive formulation of the absolute value on the real numbers.
   This is followed by the constructive definitions of minimum and maximum,
   as min x y := (x + y - |x-y|) / 2.

   WARNING: this file is experimental and likely to change in future releases.
*)


(* If a rational sequence is Cauchy, then so is its absolute value.
   This is how the constructive absolute value is defined.
   A more abstract way to put it is the real numbers are the metric completion
   of the rational numbers, so the uniformly continuous function
   Qabs : Q -> Q
   uniquely extends to a uniformly continuous function
   CReal_abs : CReal -> CReal
*)

Definition CReal_abs_seq (x : CReal) (n : Z) := Qabs (seq x n).

Definition CReal_abs_scale (x : CReal) := scale x.

Lemma CReal_abs_cauchy: forall (x : CReal),
    QCauchySeq (CReal_abs_seq x).
Proof.
  intros x n p q Hp Hq.
  pose proof (cauchy x n p q Hp Hq) as Hxbnd.
  apply (Qle_lt_trans _ (Qabs (seq x p - seq x q))).
  2: exact Hxbnd. apply Qabs_Qle_condition. split.
  2: apply Qabs_triangle_reverse.
  apply (Qplus_le_r _ _ (Qabs (seq x q))).
  rewrite <- Qabs_opp.
  apply (Qle_trans _ _ _ (Qabs_triangle_reverse _ _)).
  ring_simplify.
  unfold CReal_abs_seq.
  simplify_Qabs; setoid_rewrite Qopp_mult_mone.
  do 2 rewrite Qabs_opp.
  lra.
Qed.

Lemma CReal_abs_bound : forall (x : CReal),
  QBound (CReal_abs_seq x) (CReal_abs_scale x).
Proof.
  intros x n.
  unfold CReal_abs_seq, CReal_abs_scale.
  rewrite Qabs_involutive.
  apply (bound x).
Qed.

Definition CReal_abs (x : CReal) : CReal :=
{|
  seq := CReal_abs_seq x;
  scale := CReal_abs_scale x;
  cauchy := CReal_abs_cauchy x;
  bound := CReal_abs_bound x
|}.

Lemma CRealLt_RQ_from_single_dist : forall (r : CReal) (q : Q) (n :Z),
    (2^n < q - seq r n)%Q
 -> r < inject_Q q.
Proof.
  intros r q n Hapart.
  pose proof Qpower_pos_lt 2 n ltac:(lra) as H2npos.
  destruct (QarchimedeanLowExp2_Z (q - seq r n - 2^n) ltac:(lra)) as [k Hk].
  unfold CRealLt; exists (Z.min n (k-1))%Z.
  unfold inject_Q; rewrite CReal_red_seq.
  pose proof cauchy r n n (Z.min n (k-1))%Z ltac:(lia) ltac:(lia) as Hrbnd.
  pose proof Qpower_le_compat 2 (Z.min n (k - 1))%Z (k-1)%Z ltac:(lia) ltac:(lra).
  apply (Qmult_le_l _ _ 2 ltac:(lra)) in H.
  apply (Qle_lt_trans _ _ _ H); clear H.
  rewrite Qpower_minus_pos.
  simplify_Qlt.
  apply Qabs_Qlt_condition in Hrbnd.
  lra.
Qed.

Lemma CRealLe_0R_to_single_dist : forall (x : CReal) (n : Z),
    0 <= x -> (-(2^n) <= seq x n)%Q.
Proof.
  intros x n Hxnonneg.
  destruct (Qlt_le_dec (seq x n) (-(2^n))) as [Hdec|Hdec].
  - exfalso; apply Hxnonneg.
    apply (CRealLt_RQ_from_single_dist x 0 n); lra.
  - exact Hdec.
Qed.

Lemma CReal_abs_right : forall x : CReal, 0 <= x -> CReal_abs x == x.
Proof.
  intros x Hxnonneg; apply CRealEq_diff; intro n.
  unfold CReal_abs, CReal_abs_seq, CReal_abs_scale;
    rewrite CReal_red_seq.
  pose proof CRealLe_0R_to_single_dist x n Hxnonneg.
  pose proof Qpower_pos_lt 2 n ltac:(lra) as Hpowpos.
  do 2 apply Qabs_case; intros H1 H2; lra.
Qed.

Lemma CReal_le_abs : forall x : CReal, x <= CReal_abs x.
Proof.
  intros x [n nmaj].
  unfold CReal_abs, CReal_abs_seq, CReal_abs_scale in nmaj;
    rewrite CReal_red_seq in nmaj.
  apply (Qle_not_lt _ _ (Qle_Qabs (seq x n))).
  apply Qlt_minus_iff. apply (Qlt_trans _ (2*2^n)).
  - pose proof Qpower_pos_lt 2 n ltac:(lra); lra.
  - exact nmaj.
Qed.

Lemma CReal_abs_pos : forall x : CReal, 0 <= CReal_abs x.
Proof.
  intros x [n nmaj].
  unfold CReal_abs, CReal_abs_seq, CReal_abs_scale in nmaj;
    rewrite CReal_red_seq in nmaj.
  apply (Qle_not_lt _ _ (Qabs_nonneg (seq x n))).
  apply Qlt_minus_iff. apply (Qlt_trans _ (2*2^n)).
  - pose proof Qpower_pos_lt 2 n ltac:(lra); lra.
  - exact nmaj.
Qed.

Lemma CReal_abs_opp : forall x : CReal, CReal_abs (-x) == CReal_abs x.
Proof.
  intros x; apply CRealEq_diff; intro n.
  unfold CReal_abs, CReal_abs_seq, CReal_abs_scale;
  unfold CReal_opp, CReal_opp_seq, CReal_opp_scale;
    do 3 rewrite CReal_red_seq.
  rewrite Qabs_opp. simplify_Qabs.
  rewrite Qabs_pos by lra.
  pose proof Qpower_pos_lt 2 n; lra.
Qed.

Lemma CReal_abs_left : forall x : CReal, x <= 0 -> CReal_abs x == -x.
Proof.
  intros x Hxnonpos.
  apply CReal_opp_ge_le_contravar in Hxnonpos. rewrite CReal_opp_0 in Hxnonpos.
  rewrite <- CReal_abs_opp. apply CReal_abs_right, Hxnonpos.
Qed.

Lemma CReal_abs_appart_0 : forall x : CReal,
    0 < CReal_abs x -> x # 0.
Proof.
  intros x [n nmaj].
  unfold CReal_abs, CReal_abs_seq, CReal_abs_scale in nmaj;
    rewrite CReal_red_seq in nmaj.
  destruct (Qlt_le_dec (seq x n) 0) as [Hdec|Hdec].
  - left. exists n. cbn in nmaj |- * .
    rewrite Qabs_neg in nmaj; lra.
  - right. exists n. cbn. rewrite Qabs_pos in nmaj.
    exact nmaj. exact Hdec.
Qed.

Add Parametric Morphism : CReal_abs
    with signature CRealEq ==> CRealEq
      as CReal_abs_morph.
Proof.
  intros. split.
  - intro abs. destruct (CReal_abs_appart_0 y).
    apply (CReal_le_lt_trans _ (CReal_abs x)).
    apply CReal_abs_pos. apply abs.
    rewrite CReal_abs_left, CReal_abs_left, H in abs.
    exact (CRealLt_asym _ _ abs abs). apply CRealLt_asym, c.
    rewrite H. apply CRealLt_asym, c.
    rewrite CReal_abs_right, CReal_abs_right, H in abs.
    exact (CRealLt_asym _ _ abs abs). apply CRealLt_asym, c.
    rewrite H. apply CRealLt_asym, c.
  - intro abs. destruct (CReal_abs_appart_0 x).
    apply (CReal_le_lt_trans _ (CReal_abs y)).
    apply CReal_abs_pos. apply abs.
    rewrite CReal_abs_left, CReal_abs_left, H in abs.
    exact (CRealLt_asym _ _ abs abs). apply CRealLt_asym, c.
    rewrite <- H. apply CRealLt_asym, c.
    rewrite CReal_abs_right, CReal_abs_right, H in abs.
    exact (CRealLt_asym _ _ abs abs). apply CRealLt_asym, c.
    rewrite <- H. apply CRealLt_asym, c.
Qed.

Lemma CReal_abs_le : forall a b:CReal, -b <= a <= b -> CReal_abs a <= b.
Proof.
  intros a b H [n nmaj].
  unfold CReal_abs, CReal_abs_seq, CReal_abs_scale in nmaj;
    rewrite CReal_red_seq in nmaj.
  destruct (Qlt_le_dec (seq a n) 0) as [Hdec|Hdec].
  - rewrite Qabs_neg in nmaj by lra. destruct H as [Hl Hr]. apply Hl. clear Hl Hr.
    exists n; cbn.
    unfold CReal_opp_seq; lra.
  - rewrite Qabs_pos in nmaj. destruct H as [Hl Hr]. apply Hr. clear Hl Hr.
    exists n; cbn. exact nmaj. exact Hdec.
Qed.

Lemma CReal_abs_minus_sym : forall x y : CReal,
    CReal_abs (x - y) == CReal_abs (y - x).
Proof.
  intros x y. setoid_replace (x - y) with (-(y-x)).
  rewrite CReal_abs_opp. reflexivity. ring.
Qed.

Lemma CReal_abs_lt : forall x y : CReal,
    CReal_abs x < y -> prod (x < y) (-x < y).
Proof.
  split.
  - apply (CReal_le_lt_trans _ _ _ (CReal_le_abs x)), H.
  - apply (CReal_le_lt_trans _ _ _ (CReal_le_abs (-x))).
    rewrite CReal_abs_opp. exact H.
Qed.

Lemma CReal_abs_triang : forall x y : CReal,
    CReal_abs (x + y) <= CReal_abs x + CReal_abs y.
Proof.
  intros. apply CReal_abs_le. split.
  - setoid_replace (x + y) with (-(-x - y)). 2: ring.
    apply CReal_opp_ge_le_contravar.
    apply CReal_plus_le_compat; rewrite <- CReal_abs_opp; apply CReal_le_abs.
  - apply CReal_plus_le_compat; apply CReal_le_abs.
Qed.

Lemma CReal_abs_triang_inv : forall x y : CReal,
    CReal_abs x - CReal_abs y <= CReal_abs (x - y).
Proof.
  intros. apply (CReal_plus_le_reg_l (CReal_abs y)).
  ring_simplify. rewrite CReal_plus_comm.
  apply (CReal_le_trans _ (CReal_abs (x - y + y))).
  setoid_replace (x - y + y) with x. apply CRealLe_refl. ring.
  apply CReal_abs_triang.
Qed.

Lemma CReal_abs_triang_inv2 : forall x y : CReal,
    CReal_abs (CReal_abs x - CReal_abs y) <= CReal_abs (x - y).
Proof.
  intros. apply CReal_abs_le. split.
  2: apply CReal_abs_triang_inv.
  apply (CReal_plus_le_reg_r (CReal_abs y)). ring_simplify.
  rewrite CReal_plus_comm, CReal_abs_minus_sym.
  apply (CReal_le_trans _ _ _ (CReal_abs_triang_inv y (y-x))).
  setoid_replace (y - (y - x)) with x. 2: ring. apply CRealLe_refl.
Qed.

Lemma CReal_abs_gt : forall x : CReal,
    x < CReal_abs x -> x < 0.
Proof.
  intros x [n nmaj].
  unfold CReal_abs, CReal_abs_seq, CReal_abs_scale in nmaj;
    rewrite CReal_red_seq in nmaj.
  assert (seq x n < 0)%Q.
  { destruct (Qlt_le_dec (seq x n) 0) as [Hdec|Hdec].
    - exact Hdec.
    - exfalso. rewrite Qabs_pos in nmaj by apply Hdec.
      pose proof Qpower_pos_lt 2 n; lra. }
  rewrite Qabs_neg in nmaj by apply Qlt_le_weak, H.
  apply (CRealLt_RQ_from_single_dist _ _ n); lra.
Qed.

Lemma Rabs_def1 : forall x y : CReal,
    x < y -> -x < y -> CReal_abs x < y.
Proof.
  intros x y Hxlty Hmxlty.

  apply CRealLt_above in Hxlty. apply CRealLt_above in Hmxlty.
  destruct Hxlty as [i imaj]. destruct Hmxlty as [j jmaj].
  specialize (imaj (Z.min i j) ltac:(lia)).
  specialize (jmaj (Z.min i j) ltac:(lia)).
  cbn in jmaj; unfold CReal_opp_seq in jmaj.

  exists (Z.min i j).
  unfold CReal_abs, CReal_abs_seq, CReal_abs_scale;
    rewrite CReal_red_seq.

  pose proof Qpower_pos_lt 2 (Z.min i j)%Z ltac:(lra) as Hpowij.
  pose proof Qpower_le_compat 2 (Z.min i j)%Z i ltac:(lia) ltac:(lra) as Hpowlei.
  pose proof Qpower_le_compat 2 (Z.min i j)%Z j ltac:(lia) ltac:(lra) as Hpowlej.
  apply Qabs_case; intros Hcase; lra.
Qed.

(* The proof by cases on the signs of x and y applies constructively,
   because of the positivity hypotheses. *)
Lemma CReal_abs_mult : forall x y : CReal,
    CReal_abs (x * y) == CReal_abs x * CReal_abs y.
Proof.
  assert (forall x y : CReal,
             x # 0
             -> y # 0
             -> CReal_abs (x * y) == CReal_abs x * CReal_abs y) as prep.
  { intros. destruct H, H0.
    + rewrite CReal_abs_right, CReal_abs_left, CReal_abs_left. ring.
      apply CRealLt_asym, c0. apply CRealLt_asym, c.
      setoid_replace (x*y) with (- x * - y).
      apply CRealLt_asym, CReal_mult_lt_0_compat.
      rewrite <- CReal_opp_0. apply CReal_opp_gt_lt_contravar, c.
      rewrite <- CReal_opp_0. apply CReal_opp_gt_lt_contravar, c0. ring.
    + rewrite CReal_abs_left, CReal_abs_left, CReal_abs_right. ring.
      apply CRealLt_asym, c0. apply CRealLt_asym, c.
      rewrite <- (CReal_mult_0_l y).
      apply CReal_mult_le_compat_r.
      apply CRealLt_asym, c0. apply CRealLt_asym, c.
    + rewrite CReal_abs_left, CReal_abs_right, CReal_abs_left. ring.
      apply CRealLt_asym, c0. apply CRealLt_asym, c.
      rewrite <- (CReal_mult_0_r x).
      apply CReal_mult_le_compat_l.
      apply CRealLt_asym, c. apply CRealLt_asym, c0.
    + rewrite CReal_abs_right, CReal_abs_right, CReal_abs_right. ring.
      apply CRealLt_asym, c0. apply CRealLt_asym, c.
      apply CRealLt_asym, CReal_mult_lt_0_compat; assumption. }
  split.
  - intro abs.
    assert (0 < CReal_abs x * CReal_abs y).
    { apply (CReal_le_lt_trans _ (CReal_abs (x*y))).
      apply CReal_abs_pos. exact abs. }
    pose proof (CReal_mult_pos_appart_zero _ _ H).
    rewrite CReal_mult_comm in H.
    apply CReal_mult_pos_appart_zero in H.
    destruct H. 2: apply (CReal_abs_pos y c).
    destruct H0. 2: apply (CReal_abs_pos x c0).
    apply CReal_abs_appart_0 in c.
    apply CReal_abs_appart_0 in c0.
    rewrite (prep x y) in abs.
    exact (CRealLt_asym _ _ abs abs). exact c0. exact c.
  - intro abs.
    assert (0 < CReal_abs (x * y)).
    { apply (CReal_le_lt_trans _ (CReal_abs x * CReal_abs y)).
      rewrite <- (CReal_mult_0_l (CReal_abs y)).
      apply CReal_mult_le_compat_r.
      apply CReal_abs_pos. apply CReal_abs_pos. exact abs. }
    apply CReal_abs_appart_0 in H. destruct H.
    + apply CReal_opp_gt_lt_contravar in c.
      rewrite CReal_opp_0, CReal_opp_mult_distr_l in c.
      pose proof (CReal_mult_pos_appart_zero _ _ c).
      rewrite CReal_mult_comm in c.
      apply CReal_mult_pos_appart_zero in c.
      rewrite (prep x y) in abs.
      exact (CRealLt_asym _ _ abs abs).
      destruct H. left. apply CReal_opp_gt_lt_contravar in c0.
      rewrite CReal_opp_involutive, CReal_opp_0 in c0. exact c0.
      right. apply CReal_opp_gt_lt_contravar in c0.
      rewrite CReal_opp_involutive, CReal_opp_0 in c0. exact c0.
      destruct c. right. exact c. left. exact c.
    + pose proof (CReal_mult_pos_appart_zero _ _ c).
      rewrite CReal_mult_comm in c.
      apply CReal_mult_pos_appart_zero in c.
      rewrite (prep x y) in abs.
      exact (CRealLt_asym _ _ abs abs).
      destruct H. right. exact c0. left. exact c0.
      destruct c. right. exact c. left. exact c.
Qed.

Lemma CReal_abs_def2 : forall x a:CReal,
    CReal_abs x <= a -> (x <= a) /\ (- a <= x).
Proof.
  split.
  - exact (CReal_le_trans _ _ _ (CReal_le_abs _) H).
  - rewrite <- (CReal_opp_involutive x).
    apply CReal_opp_ge_le_contravar.
    rewrite <- CReal_abs_opp in H.
    exact (CReal_le_trans _ _ _ (CReal_le_abs _) H).
Qed.


(* Min and max *)

Definition CReal_min (x y : CReal) : CReal
  := (x + y - CReal_abs (y - x)) * inject_Q (1#2).

Definition CReal_max (x y : CReal) : CReal
  := (x + y + CReal_abs (y - x)) * inject_Q (1#2).

Add Parametric Morphism : CReal_min
    with signature CRealEq ==> CRealEq ==> CRealEq
      as CReal_min_morph.
Proof.
  intros. unfold CReal_min.
  rewrite H, H0. reflexivity.
Qed.

Add Parametric Morphism : CReal_max
    with signature CRealEq ==> CRealEq ==> CRealEq
      as CReal_max_morph.
Proof.
  intros. unfold CReal_max.
  rewrite H, H0. reflexivity.
Qed.

Lemma CReal_double : forall x:CReal, 2 * x == x + x.
Proof.
  intro x. rewrite (inject_Q_plus 1 1). ring.
Qed.

Lemma CReal_max_lub : forall x y z:CReal,
    x <= z -> y <= z -> CReal_max x y <= z.
Proof.
  intros. unfold CReal_max.
  apply (CReal_mult_le_reg_r 2). apply inject_Q_lt; reflexivity.
  rewrite CReal_mult_assoc, <- inject_Q_mult.
  setoid_replace ((1 # 2) * 2)%Q with 1%Q. 2: reflexivity.
  rewrite CReal_mult_1_r.
  apply (CReal_plus_le_reg_l (-x-y)). ring_simplify.
  apply CReal_abs_le. split.
  - unfold CReal_minus. repeat rewrite CReal_opp_plus_distr.
    do 2 rewrite CReal_opp_involutive.
    rewrite (CReal_plus_comm x), CReal_plus_assoc. apply CReal_plus_le_compat_l.
    apply (CReal_plus_le_reg_l (-x)).
    rewrite <- CReal_plus_assoc, CReal_plus_opp_l, CReal_plus_0_l.
    rewrite CReal_mult_comm, CReal_double. rewrite CReal_opp_plus_distr.
    apply CReal_plus_le_compat; apply CReal_opp_ge_le_contravar; assumption.
  - unfold CReal_minus.
    rewrite (CReal_plus_comm y), CReal_plus_assoc. apply CReal_plus_le_compat_l.
    apply (CReal_plus_le_reg_l y).
    rewrite <- CReal_plus_assoc, CReal_plus_opp_r, CReal_plus_0_l.
    rewrite CReal_mult_comm, CReal_double.
    apply CReal_plus_le_compat; assumption.
Qed.

Lemma CReal_min_glb : forall x y z:CReal,
    z <= x -> z <= y -> z <= CReal_min x y.
Proof.
  intros. unfold CReal_min.
  apply (CReal_mult_le_reg_r 2). apply inject_Q_lt; reflexivity.
  rewrite CReal_mult_assoc, <- inject_Q_mult.
  setoid_replace ((1 # 2) * 2)%Q with 1%Q. 2: reflexivity.
  rewrite CReal_mult_1_r.
  apply (CReal_plus_le_reg_l (CReal_abs(y-x) - (z*2))). ring_simplify.
  apply CReal_abs_le. split.
  - unfold CReal_minus. repeat rewrite CReal_opp_plus_distr.
    rewrite CReal_opp_mult_distr_l, CReal_opp_involutive.
    rewrite (CReal_plus_comm (z*2)), (CReal_plus_comm y), CReal_plus_assoc.
    apply CReal_plus_le_compat_l, (CReal_plus_le_reg_r y).
    rewrite CReal_plus_assoc, CReal_plus_opp_l, CReal_plus_0_r.
    rewrite CReal_mult_comm, CReal_double.
    apply CReal_plus_le_compat; assumption.
  - unfold CReal_minus.
    rewrite (CReal_plus_comm y). apply CReal_plus_le_compat.
    2: apply CRealLe_refl.
    apply (CReal_plus_le_reg_r (-x)).
    rewrite CReal_plus_assoc, CReal_plus_opp_r, CReal_plus_0_r.
    rewrite CReal_mult_comm, CReal_double.
    apply CReal_plus_le_compat; apply CReal_opp_ge_le_contravar; assumption.
Qed.

Lemma CReal_max_l : forall x y : CReal, x <= CReal_max x y.
Proof.
  intros. unfold CReal_max.
  apply (CReal_mult_le_reg_r 2). apply inject_Q_lt; reflexivity.
  rewrite CReal_mult_assoc, <- inject_Q_mult.
  setoid_replace ((1 # 2) * 2)%Q with 1%Q. 2: reflexivity.
  rewrite CReal_mult_1_r.
  rewrite CReal_mult_comm, CReal_double.
  rewrite CReal_plus_assoc. apply CReal_plus_le_compat_l.
  apply (CReal_plus_le_reg_l (-y)).
  rewrite <- CReal_plus_assoc, CReal_plus_opp_l, CReal_plus_0_l.
  rewrite CReal_abs_minus_sym, CReal_plus_comm.
  apply CReal_le_abs.
Qed.

Lemma CReal_max_r : forall x y : CReal, y <= CReal_max x y.
Proof.
  intros. unfold CReal_max.
  apply (CReal_mult_le_reg_r 2). apply inject_Q_lt; reflexivity.
  rewrite CReal_mult_assoc, <- inject_Q_mult.
  setoid_replace ((1 # 2) * 2)%Q with 1%Q. 2: reflexivity.
  rewrite CReal_mult_1_r.
  rewrite CReal_mult_comm, CReal_double.
  rewrite (CReal_plus_comm x).
  rewrite CReal_plus_assoc. apply CReal_plus_le_compat_l.
  apply (CReal_plus_le_reg_l (-x)).
  rewrite <- CReal_plus_assoc, CReal_plus_opp_l, CReal_plus_0_l.
  rewrite CReal_plus_comm. apply CReal_le_abs.
Qed.

Lemma CReal_min_l : forall x y : CReal, CReal_min x y <= x.
Proof.
  intros. unfold CReal_min.
  apply (CReal_mult_le_reg_r 2). apply inject_Q_lt; reflexivity.
  rewrite CReal_mult_assoc, <- inject_Q_mult.
  setoid_replace ((1 # 2) * 2)%Q with 1%Q. 2: reflexivity.
  rewrite CReal_mult_1_r.
  rewrite CReal_mult_comm, CReal_double.
  unfold CReal_minus.
  rewrite CReal_plus_assoc. apply CReal_plus_le_compat_l.
  apply (CReal_plus_le_reg_l (CReal_abs (y + - x)+ -x)). ring_simplify.
  rewrite CReal_plus_comm. apply CReal_le_abs.
Qed.

Lemma CReal_min_r : forall x y : CReal, CReal_min x y <= y.
Proof.
  intros. unfold CReal_min.
  apply (CReal_mult_le_reg_r 2). apply inject_Q_lt; reflexivity.
  rewrite CReal_mult_assoc, <- inject_Q_mult.
  setoid_replace ((1 # 2) * 2)%Q with 1%Q. 2: reflexivity.
  rewrite CReal_mult_1_r.
  rewrite CReal_mult_comm, CReal_double.
  unfold CReal_minus. rewrite (CReal_plus_comm x).
  rewrite CReal_plus_assoc. apply CReal_plus_le_compat_l.
  apply (CReal_plus_le_reg_l (CReal_abs (y + - x)+ -y)). ring_simplify.
  fold (y-x). rewrite CReal_abs_minus_sym.
  rewrite CReal_plus_comm. apply CReal_le_abs.
Qed.

Lemma CReal_min_left : forall x y : CReal,
    x <= y -> CReal_min x y == x.
Proof.
  intros. unfold CReal_min.
  apply (CReal_mult_eq_reg_r 2). 2: right; apply inject_Q_lt; reflexivity.
  rewrite CReal_mult_assoc, <- inject_Q_mult.
  setoid_replace ((1 # 2) * 2)%Q with 1%Q. 2: reflexivity.
  rewrite CReal_mult_1_r.
  rewrite CReal_mult_comm, CReal_double.
  rewrite CReal_abs_right. ring.
  rewrite <- (CReal_plus_opp_r x). apply CReal_plus_le_compat.
  exact H. apply CRealLe_refl.
Qed.

Lemma CReal_min_right : forall x y : CReal,
    y <= x -> CReal_min x y == y.
Proof.
  intros. unfold CReal_min.
  apply (CReal_mult_eq_reg_r 2). 2: right; apply inject_Q_lt; reflexivity.
  rewrite CReal_mult_assoc, <- inject_Q_mult.
  setoid_replace ((1 # 2) * 2)%Q with 1%Q. 2: reflexivity.
  rewrite CReal_mult_1_r.
  rewrite CReal_mult_comm, CReal_double.
  rewrite CReal_abs_left. ring.
  rewrite <- (CReal_plus_opp_r x). apply CReal_plus_le_compat.
  exact H. apply CRealLe_refl.
Qed.

Lemma CReal_max_left : forall x y : CReal,
    y <= x -> CReal_max x y == x.
Proof.
  intros. unfold CReal_max.
  apply (CReal_mult_eq_reg_r 2). 2: right; apply inject_Q_lt; reflexivity.
  rewrite CReal_mult_assoc, <- inject_Q_mult.
  setoid_replace ((1 # 2) * 2)%Q with 1%Q. 2: reflexivity.
  rewrite CReal_mult_1_r.
  rewrite CReal_mult_comm, CReal_double.
  rewrite CReal_abs_left. ring.
  rewrite <- (CReal_plus_opp_r x). apply CReal_plus_le_compat.
  exact H. apply CRealLe_refl.
Qed.

Lemma CReal_max_right : forall x y : CReal,
    x <= y -> CReal_max x y == y.
Proof.
  intros. unfold CReal_max.
  apply (CReal_mult_eq_reg_r 2). 2: right; apply inject_Q_lt; reflexivity.
  rewrite CReal_mult_assoc, <- inject_Q_mult.
  setoid_replace ((1 # 2) * 2)%Q with 1%Q. 2: reflexivity.
  rewrite CReal_mult_1_r.
  rewrite CReal_mult_comm, CReal_double.
  rewrite CReal_abs_right. ring.
  rewrite <- (CReal_plus_opp_r x). apply CReal_plus_le_compat.
  exact H. apply CRealLe_refl.
Qed.

Lemma CReal_min_lt_r : forall x y : CReal,
    CReal_min x y < y -> CReal_min x y == x.
Proof.
  intros. unfold CReal_min. unfold CReal_min in H.
  apply (CReal_mult_eq_reg_r 2). 2: right; apply inject_Q_lt; reflexivity.
  rewrite CReal_mult_assoc, <- inject_Q_mult.
  setoid_replace ((1 # 2) * 2)%Q with 1%Q. 2: reflexivity.
  rewrite CReal_mult_1_r.
  rewrite CReal_mult_comm, CReal_double.
  rewrite CReal_abs_right. ring.
  apply (CReal_mult_lt_compat_r 2) in H. 2: apply inject_Q_lt; reflexivity.
  rewrite CReal_mult_assoc, <- inject_Q_mult in H.
  setoid_replace ((1 # 2) * 2)%Q with 1%Q in H. 2: reflexivity.
  rewrite CReal_mult_1_r in H.
  rewrite CReal_mult_comm, CReal_double in H.
  intro abs. rewrite CReal_abs_left in H.
  unfold CReal_minus in H.
  rewrite CReal_opp_involutive, CReal_plus_comm in H.
  rewrite CReal_plus_assoc, <- (CReal_plus_assoc (-x)), CReal_plus_opp_l in H.
  rewrite CReal_plus_0_l in H. exact (CRealLt_asym _ _ H H).
  apply CRealLt_asym, abs.
Qed.

Lemma posPartAbsMax : forall x : CReal,
    CReal_max 0 x == (x + CReal_abs x) * (inject_Q (1#2)).
Proof.
  split.
  - intro abs. apply (CReal_mult_lt_compat_r 2) in abs.
    2: apply (inject_Q_lt 0 2); reflexivity.
    rewrite CReal_mult_assoc, <- (inject_Q_mult) in abs.
    setoid_replace ((1 # 2) * 2)%Q with 1%Q in abs. 2: reflexivity.
    rewrite CReal_mult_1_r in abs.
    apply (CReal_plus_lt_compat_l (-x)) in abs.
    rewrite <- CReal_plus_assoc, CReal_plus_opp_l, CReal_plus_0_l in abs.
    apply CReal_abs_le in abs. exact abs. split.
    + rewrite CReal_opp_plus_distr, CReal_opp_involutive.
      apply (CReal_le_trans _ (x + 0)). 2: rewrite CReal_plus_0_r; apply CRealLe_refl.
      apply CReal_plus_le_compat_l. apply (CReal_le_trans _ (2 * 0)).
      rewrite CReal_opp_mult_distr_l, <- (CReal_mult_comm 2). apply CReal_mult_le_compat_l_half.
      apply inject_Q_lt. reflexivity.
      apply (CReal_plus_le_reg_l (CReal_max 0 x)). rewrite CReal_plus_opp_r, CReal_plus_0_r.
      apply CReal_max_l. rewrite CReal_mult_0_r. apply CRealLe_refl.
    + apply (CReal_plus_le_reg_l x).
      rewrite <- CReal_plus_assoc, CReal_plus_opp_r, CReal_plus_0_l.
      rewrite (inject_Q_plus 1 1), CReal_mult_plus_distr_l, CReal_mult_1_r.
      apply CReal_plus_le_compat; apply CReal_max_r.
  - apply CReal_max_lub. rewrite <- (CReal_mult_0_l (inject_Q (1#2))).
    do 2 rewrite <- (CReal_mult_comm (inject_Q (1#2))).
    apply CReal_mult_le_compat_l_half.
    apply inject_Q_lt; reflexivity.
    rewrite <- (CReal_plus_opp_r x). apply CReal_plus_le_compat_l.
    rewrite <- CReal_abs_opp. apply CReal_le_abs.
    intros abs.
    apply (CReal_mult_lt_compat_r 2) in abs. 2: apply inject_Q_lt; reflexivity.
    rewrite CReal_mult_assoc, <- inject_Q_mult in abs.
    setoid_replace ((1 # 2) * 2)%Q with 1%Q in abs. 2: reflexivity.
    rewrite CReal_mult_1_r, (inject_Q_plus 1 1), CReal_mult_plus_distr_l, CReal_mult_1_r in abs.
    apply CReal_plus_lt_reg_l in abs.
    exact (CReal_le_abs x abs).
Qed.

Lemma negPartAbsMin : forall x : CReal,
    CReal_min 0 x == (x - CReal_abs x) * (inject_Q (1#2)).
Proof.
  split.
  - intro abs. apply (CReal_mult_lt_compat_r 2) in abs.
    2: apply (inject_Q_lt 0 2); reflexivity.
    rewrite CReal_mult_assoc, <- (inject_Q_mult) in abs.
    setoid_replace ((1 # 2) * 2)%Q with 1%Q in abs. 2: reflexivity.
    rewrite CReal_mult_1_r in abs.
    apply (CReal_plus_lt_compat_r (CReal_abs x)) in abs.
    unfold CReal_minus in abs.
    rewrite CReal_plus_assoc, CReal_plus_opp_l, CReal_plus_0_r in abs.
    apply (CReal_plus_lt_compat_l (-(CReal_min 0 x * 2))) in abs.
    rewrite <- CReal_plus_assoc, CReal_plus_opp_l, CReal_plus_0_l in abs.
    apply CReal_abs_lt in abs. destruct abs.
    apply (CReal_plus_lt_compat_l (CReal_min 0 x * 2)) in c0.
    rewrite <- CReal_plus_assoc, CReal_plus_opp_r, CReal_plus_0_l in c0.
    apply (CReal_plus_lt_compat_r x) in c0.
    rewrite CReal_plus_assoc, CReal_plus_opp_l, CReal_plus_0_r in c0.
    rewrite <- CReal_double, CReal_mult_comm in c0. apply CReal_mult_lt_reg_l in c0.
    apply CReal_min_lt_r in c0.
    rewrite c0, CReal_mult_0_l, CReal_opp_0, CReal_plus_0_l in c.
    exact (CRealLt_asym _ _ c c). apply inject_Q_lt; reflexivity.
  - intro abs.
    assert ((x - CReal_abs x) * inject_Q (1 # 2) < 0 * inject_Q (1 # 2)).
    { rewrite CReal_mult_0_l.
      apply (CReal_lt_le_trans _ _ _ abs). apply CReal_min_l. }
    apply CReal_mult_lt_reg_r in H.
    2: apply inject_Q_lt; reflexivity.
    rewrite <- (CReal_plus_opp_r (CReal_abs x)) in H.
    apply CReal_plus_lt_reg_r, CReal_abs_gt in H.
    rewrite CReal_min_right, <- CReal_abs_opp, CReal_abs_right in abs.
    unfold CReal_minus in abs.
    rewrite CReal_opp_involutive, <- CReal_double, CReal_mult_comm in abs.
    rewrite <- CReal_mult_assoc, <- inject_Q_mult in abs.
    setoid_replace ((1 # 2) * 2)%Q with 1%Q in abs.
    rewrite CReal_mult_1_l in abs. exact (CRealLt_asym _ _ abs abs).
    reflexivity. rewrite <- CReal_opp_0.
    apply CReal_opp_ge_le_contravar, CRealLt_asym, H.
    apply CRealLt_asym, H.
Qed.

Lemma CReal_min_sym : forall (x y : CReal),
    CReal_min x y == CReal_min y x.
Proof.
  intros. unfold CReal_min.
  rewrite CReal_abs_minus_sym. ring.
Qed.

Lemma CReal_max_sym : forall (x y : CReal),
    CReal_max x y == CReal_max y x.
Proof.
  intros. unfold CReal_max.
  rewrite CReal_abs_minus_sym. ring.
Qed.

Lemma CReal_min_mult :
  forall (p q r:CReal), 0 <= r -> CReal_min (r * p) (r * q) == r * CReal_min p q.
Proof.
  intros p q r H. unfold CReal_min.
  setoid_replace (r * q - r * p) with (r * (q - p)).
  2: ring. rewrite CReal_abs_mult.
  rewrite (CReal_abs_right r). ring. exact H.
Qed.

Lemma CReal_min_plus : forall (x y z : CReal),
    x + CReal_min y z == CReal_min (x + y) (x + z).
Proof.
  intros. unfold CReal_min.
  setoid_replace (x + z - (x + y)) with (z-y).
  2: ring.
  apply (CReal_mult_eq_reg_r 2). 2: right; apply inject_Q_lt; reflexivity.
  rewrite CReal_mult_plus_distr_r.
  rewrite CReal_mult_assoc, <- inject_Q_mult.
  setoid_replace ((1 # 2) * 2)%Q with 1%Q. 2: reflexivity.
  rewrite CReal_mult_1_r.
  rewrite CReal_mult_assoc, <- inject_Q_mult.
  setoid_replace ((1 # 2) * 2)%Q with 1%Q. 2: reflexivity.
  rewrite CReal_mult_1_r.
  rewrite CReal_mult_comm, CReal_double. ring.
Qed.

Lemma CReal_max_plus : forall (x y z : CReal),
    x + CReal_max y z == CReal_max (x + y) (x + z).
Proof.
  intros. unfold CReal_max.
  setoid_replace (x + z - (x + y)) with (z-y).
  2: ring.
  apply (CReal_mult_eq_reg_r 2). 2: right; apply inject_Q_lt; reflexivity.
  rewrite CReal_mult_plus_distr_r.
  rewrite CReal_mult_assoc, <- inject_Q_mult.
  setoid_replace ((1 # 2) * 2)%Q with 1%Q. 2: reflexivity.
  rewrite CReal_mult_1_r.
  rewrite CReal_mult_assoc, <- inject_Q_mult.
  setoid_replace ((1 # 2) * 2)%Q with 1%Q. 2: reflexivity.
  rewrite CReal_mult_1_r.
  rewrite CReal_mult_comm, CReal_double. ring.
Qed.

Lemma CReal_min_lt : forall x y z : CReal,
    z < x -> z < y -> z < CReal_min x y.
Proof.
  intros. unfold CReal_min.
  apply (CReal_mult_lt_reg_r 2). apply inject_Q_lt; reflexivity.
  rewrite CReal_mult_assoc, <- inject_Q_mult.
  setoid_replace ((1 # 2) * 2)%Q with 1%Q. 2: reflexivity.
  rewrite CReal_mult_1_r.
  apply (CReal_plus_lt_reg_l (CReal_abs (y - x) - (z*2))).
  ring_simplify. apply Rabs_def1.
  - unfold CReal_minus. rewrite <- (CReal_plus_comm y).
    apply CReal_plus_lt_compat_l.
    apply (CReal_plus_lt_reg_r (-x)).
    rewrite CReal_plus_assoc, CReal_plus_opp_r, CReal_plus_0_r.
    rewrite <- CReal_double, CReal_mult_comm. apply CReal_mult_lt_compat_r.
    apply inject_Q_lt; reflexivity.
    apply CReal_opp_gt_lt_contravar, H.
  - unfold CReal_minus. rewrite CReal_opp_plus_distr, CReal_opp_involutive.
    rewrite CReal_plus_comm, (CReal_plus_comm (-z*2)), CReal_plus_assoc.
    apply CReal_plus_lt_compat_l.
    apply (CReal_plus_lt_reg_r (-y)).
    rewrite CReal_plus_assoc, CReal_plus_opp_r, CReal_plus_0_r.
    rewrite <- CReal_double, CReal_mult_comm. apply CReal_mult_lt_compat_r.
    apply inject_Q_lt; reflexivity.
    apply CReal_opp_gt_lt_contravar, H0.
Qed.

Lemma CReal_max_assoc : forall a b c : CReal,
    CReal_max a (CReal_max b c) == CReal_max (CReal_max a b) c.
Proof.
  split.
  - apply CReal_max_lub.
    + apply CReal_max_lub. apply CReal_max_l.
      apply (CReal_le_trans _ (CReal_max b c)).
      apply CReal_max_l. apply CReal_max_r.
    + apply (CReal_le_trans _ (CReal_max b c)).
      apply CReal_max_r. apply CReal_max_r.
  - apply CReal_max_lub.
    + apply (CReal_le_trans _ (CReal_max a b)).
      apply CReal_max_l. apply CReal_max_l.
    + apply CReal_max_lub.
      apply (CReal_le_trans _ (CReal_max a b)).
      apply CReal_max_r. apply CReal_max_l. apply CReal_max_r.
Qed.

Lemma CReal_min_max_mult_neg :
  forall (p q r:CReal), r <= 0 -> CReal_min (r * p) (r * q) == r * CReal_max p q.
Proof.
  intros p q r H. unfold CReal_min, CReal_max.
  setoid_replace (r * q - r * p) with (r * (q - p)).
  2: ring. rewrite CReal_abs_mult.
  rewrite (CReal_abs_left r). ring. exact H.
Qed.

Lemma CReal_min_assoc : forall a b c : CReal,
    CReal_min a (CReal_min b c) == CReal_min (CReal_min a b) c.
Proof.
  split.
  - apply CReal_min_glb.
    + apply (CReal_le_trans _ (CReal_min a b)).
      apply CReal_min_l. apply CReal_min_l.
    + apply CReal_min_glb.
      apply (CReal_le_trans _ (CReal_min a b)).
      apply CReal_min_l. apply CReal_min_r. apply CReal_min_r.
  - apply CReal_min_glb.
    + apply CReal_min_glb. apply CReal_min_l.
      apply (CReal_le_trans _ (CReal_min b c)).
      apply CReal_min_r. apply CReal_min_l.
    + apply (CReal_le_trans _ (CReal_min b c)).
      apply CReal_min_r. apply CReal_min_r.
Qed.

Lemma CReal_max_lub_lt : forall x y z : CReal,
    x < z -> y < z -> CReal_max x y < z.
Proof.
  intros. unfold CReal_max.
  apply (CReal_mult_lt_reg_r 2). apply inject_Q_lt; reflexivity.
  rewrite CReal_mult_assoc, <- inject_Q_mult.
  setoid_replace ((1 # 2) * 2)%Q with 1%Q. 2: reflexivity.
  rewrite CReal_mult_1_r.
  apply (CReal_plus_lt_reg_l (-x -y)). ring_simplify.
  apply Rabs_def1.
  - unfold CReal_minus. rewrite (CReal_plus_comm y), CReal_plus_assoc.
    apply CReal_plus_lt_compat_l.
    apply (CReal_plus_lt_reg_l y).
    rewrite <- CReal_plus_assoc, CReal_plus_opp_r, CReal_plus_0_l.
    rewrite <- CReal_double, CReal_mult_comm. apply CReal_mult_lt_compat_r.
    apply inject_Q_lt; reflexivity. exact H0.
  - unfold CReal_minus. rewrite CReal_opp_plus_distr, CReal_opp_involutive.
    rewrite (CReal_plus_comm (-x)), CReal_plus_assoc.
    apply CReal_plus_lt_compat_l.
    apply (CReal_plus_lt_reg_l x).
    rewrite <- CReal_plus_assoc, CReal_plus_opp_r, CReal_plus_0_l.
    rewrite <- CReal_double, CReal_mult_comm. apply CReal_mult_lt_compat_r.
    apply inject_Q_lt; reflexivity.
    apply H.
Qed.

Lemma CReal_max_contract : forall x y a : CReal,
    CReal_abs (CReal_max x a - CReal_max y a)
    <= CReal_abs (x - y).
Proof.
  intros. unfold CReal_max.
  rewrite (CReal_abs_morph
             _ ((x - y + (CReal_abs (a - x) - CReal_abs (a - y))) * inject_Q (1 # 2))).
  2: ring.
  rewrite CReal_abs_mult, (CReal_abs_right (inject_Q (1 # 2))).
  2: apply inject_Q_le; discriminate.
  apply (CReal_le_trans
           _ ((CReal_abs (x - y) * 1 + CReal_abs (x-y) * 1)
              * inject_Q (1 # 2))).
  apply CReal_mult_le_compat_r. apply inject_Q_le. discriminate.
  apply (CReal_le_trans _ (CReal_abs (x - y) + CReal_abs (CReal_abs (a - x) - CReal_abs (a - y)))).
  apply CReal_abs_triang. rewrite CReal_mult_1_r. apply CReal_plus_le_compat_l.
  rewrite (CReal_abs_minus_sym x y).
  rewrite (CReal_abs_morph (y-x) ((a-x)-(a-y))).
  apply CReal_abs_triang_inv2.
  unfold CReal_minus. rewrite (CReal_plus_comm (a + - x)).
  rewrite <- CReal_plus_assoc. apply CReal_plus_morph. 2: reflexivity.
  rewrite CReal_plus_comm, CReal_opp_plus_distr, <- CReal_plus_assoc.
  rewrite CReal_plus_opp_r, CReal_opp_involutive, CReal_plus_0_l.
  reflexivity.
  rewrite <- CReal_mult_plus_distr_l, <- inject_Q_plus.
  rewrite CReal_mult_assoc, <- inject_Q_mult.
  setoid_replace ((1 + 1) * (1 # 2))%Q with 1%Q. 2: reflexivity.
  rewrite CReal_mult_1_r. apply CRealLe_refl.
Qed.

Lemma CReal_min_contract : forall x y a : CReal,
    CReal_abs (CReal_min x a - CReal_min y a)
    <= CReal_abs (x - y).
Proof.
  intros. unfold CReal_min.
  rewrite (CReal_abs_morph
             _ ((x - y + (CReal_abs (a - y) - CReal_abs (a - x))) * inject_Q (1 # 2))).
  2: ring.
  rewrite CReal_abs_mult, (CReal_abs_right (inject_Q (1 # 2))).
  2: apply inject_Q_le; discriminate.
  apply (CReal_le_trans
           _ ((CReal_abs (x - y) * 1 + CReal_abs (x-y) * 1)
              * inject_Q (1 # 2))).
  apply CReal_mult_le_compat_r. apply inject_Q_le. discriminate.
  apply (CReal_le_trans _ (CReal_abs (x - y) + CReal_abs (CReal_abs (a - y) - CReal_abs (a - x)))).
  apply CReal_abs_triang. rewrite CReal_mult_1_r. apply CReal_plus_le_compat_l.
  rewrite (CReal_abs_morph (x-y) ((a-y)-(a-x))).
  apply CReal_abs_triang_inv2.
  unfold CReal_minus. rewrite (CReal_plus_comm (a + - y)).
  rewrite <- CReal_plus_assoc. apply CReal_plus_morph. 2: reflexivity.
  rewrite CReal_plus_comm, CReal_opp_plus_distr, <- CReal_plus_assoc.
  rewrite CReal_plus_opp_r, CReal_opp_involutive, CReal_plus_0_l.
  reflexivity.
  rewrite <- CReal_mult_plus_distr_l, <- inject_Q_plus.
  rewrite CReal_mult_assoc, <- inject_Q_mult.
  setoid_replace ((1 + 1) * (1 # 2))%Q with 1%Q. 2: reflexivity.
  rewrite CReal_mult_1_r. apply CRealLe_refl.
Qed.