1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
|
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * INRIA, CNRS and contributors - Copyright 1999-2019 *)
(* <O___,, * (see CREDITS file for the list of authors) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
(************************************************************************)
(** An interface for constructive and computable real numbers.
All of its instances are isomorphic (see file ConstructiveRealsMorphisms).
For example it is implemented by the Cauchy reals in file
ConstructivecauchyReals and also implemented by the sumbool-based
Dedekind reals defined by
Structure R := {
(* The cuts are represented as propositional functions, rather than subsets,
as there are no subsets in type theory. *)
lower : Q -> Prop;
upper : Q -> Prop;
(* The cuts respect equality on Q. *)
lower_proper : Proper (Qeq ==> iff) lower;
upper_proper : Proper (Qeq ==> iff) upper;
(* The cuts are inhabited. *)
lower_bound : { q : Q | lower q };
upper_bound : { r : Q | upper r };
(* The lower cut is a lower set. *)
lower_lower : forall q r, q < r -> lower r -> lower q;
(* The lower cut is open. *)
lower_open : forall q, lower q -> exists r, q < r /\ lower r;
(* The upper cut is an upper set. *)
upper_upper : forall q r, q < r -> upper q -> upper r;
(* The upper cut is open. *)
upper_open : forall r, upper r -> exists q, q < r /\ upper q;
(* The cuts are disjoint. *)
disjoint : forall q, ~ (lower q /\ upper q);
(* There is no gap between the cuts. *)
located : forall q r, q < r -> { lower q } + { upper r }
}.
see github.com/andrejbauer/dedekind-reals for the Prop-based
version of those Dedekind reals (although Prop fails to make
them an instance of ConstructiveReals).
Any computation about constructive reals can be worked
in the fastest instance for it; we then transport the results
to all other instances by the isomorphisms. This way of working
is different from the usual interfaces, where we would rather
prove things abstractly, by quantifying universally on the instance.
The functions of ConstructiveReals do not have a direct impact
on performance, because algorithms will be extracted from instances,
and because fast ConstructiveReals morphisms should be coded
manually. However, since instances are forced to implement
those functions, it is probable that they will also use them
in their algorithms. So those functions hint at what we think
will yield fast and small extracted programs.
Constructive reals are setoids, which custom equality is defined as
x == y iff (x <= y /\ y <= x).
It is hard to quotient constructively to get the Leibniz equality
on the real numbers. In "Sheaves in Geometry and Logic",
MacLane and Moerdijk show a topos in which all functions R -> Z
are constant. Consequently all functions R -> Q are constant and
it is not possible to approximate real numbers by rational numbers.
WARNING: this file is experimental and likely to change in future releases.
*)
Require Import QArith Qabs Qround.
Definition isLinearOrder {X : Set} (Xlt : X -> X -> Set) : Set
:= (forall x y:X, Xlt x y -> Xlt y x -> False)
* (forall x y z : X, Xlt x y -> Xlt y z -> Xlt x z)
* (forall x y z : X, Xlt x z -> Xlt x y + Xlt y z).
Structure ConstructiveReals : Type :=
{
CRcarrier : Set;
(* Put this order relation in sort Set rather than Prop,
to allow the definition of fast ConstructiveReals morphisms.
For example, the Cauchy reals do store information in
the proofs of CRlt, which is used in algorithms in sort Set. *)
CRlt : CRcarrier -> CRcarrier -> Set;
CRltLinear : isLinearOrder CRlt;
CRle (x y : CRcarrier) := CRlt y x -> False;
CReq (x y : CRcarrier) := CRle y x /\ CRle x y;
CRapart (x y : CRcarrier) := sum (CRlt x y) (CRlt y x);
(* The propositional truncation of CRlt. It facilitates proofs
when computations are not considered important, for example in
classical reals with extra logical axioms. *)
CRltProp : CRcarrier -> CRcarrier -> Prop;
(* This choice algorithm can be slow, keep it for the classical
quotient of the reals, where computations are blocked by
axioms like LPO. *)
CRltEpsilon : forall x y : CRcarrier, CRltProp x y -> CRlt x y;
CRltForget : forall x y : CRcarrier, CRlt x y -> CRltProp x y;
CRltDisjunctEpsilon : forall a b c d : CRcarrier,
(CRltProp a b \/ CRltProp c d) -> CRlt a b + CRlt c d;
(* The initial field morphism (in characteristic zero).
The abstract definition by iteration of addition is
probably the slowest. Let each instance implement
a faster (and often simpler) version. *)
CR_of_Q : Q -> CRcarrier;
CR_of_Q_lt : forall q r : Q,
Qlt q r -> CRlt (CR_of_Q q) (CR_of_Q r);
lt_CR_of_Q : forall q r : Q,
CRlt (CR_of_Q q) (CR_of_Q r) -> Qlt q r;
(* Addition and multiplication *)
CRplus : CRcarrier -> CRcarrier -> CRcarrier;
CRopp : CRcarrier -> CRcarrier; (* Computable opposite,
stronger than Prop-existence of opposite *)
CRmult : CRcarrier -> CRcarrier -> CRcarrier;
CR_of_Q_plus : forall q r : Q, CReq (CR_of_Q (q+r))
(CRplus (CR_of_Q q) (CR_of_Q r));
CR_of_Q_mult : forall q r : Q, CReq (CR_of_Q (q*r))
(CRmult (CR_of_Q q) (CR_of_Q r));
CRisRing : ring_theory (CR_of_Q 0) (CR_of_Q 1) CRplus CRmult
(fun x y => CRplus x (CRopp y)) CRopp CReq;
CRisRingExt : ring_eq_ext CRplus CRmult CRopp CReq;
(* Compatibility with order *)
CRzero_lt_one : CRlt (CR_of_Q 0) (CR_of_Q 1);
CRplus_lt_compat_l : forall r r1 r2 : CRcarrier,
CRlt r1 r2 -> CRlt (CRplus r r1) (CRplus r r2);
CRplus_lt_reg_l : forall r r1 r2 : CRcarrier,
CRlt (CRplus r r1) (CRplus r r2) -> CRlt r1 r2;
CRmult_lt_0_compat : forall x y : CRcarrier,
CRlt (CR_of_Q 0) x -> CRlt (CR_of_Q 0) y -> CRlt (CR_of_Q 0) (CRmult x y);
(* A constructive total inverse function on F would need to be continuous,
which is impossible because we cannot connect plus and minus infinities.
Therefore it has to be a partial function, defined on non zero elements.
For this reason we cannot use Coq's field_theory and field tactic.
To implement Finv by Cauchy sequences we need orderAppart,
~orderEq is not enough. *)
CRinv : forall x : CRcarrier, CRapart x (CR_of_Q 0) -> CRcarrier;
CRinv_l : forall (r:CRcarrier) (rnz : CRapart r (CR_of_Q 0)),
CReq (CRmult (CRinv r rnz) r) (CR_of_Q 1);
CRinv_0_lt_compat : forall (r : CRcarrier) (rnz : CRapart r (CR_of_Q 0)),
CRlt (CR_of_Q 0) r -> CRlt (CR_of_Q 0) (CRinv r rnz);
(* This function is very fast in both the Cauchy and Dedekind
instances, because this rational number q is almost what
the proof of CRlt x y contains.
This function is also the heart of the computation of
constructive real numbers : it approximates x to any
requested precision y. *)
CR_Q_dense : forall x y : CRcarrier, CRlt x y ->
{ q : Q & prod (CRlt x (CR_of_Q q))
(CRlt (CR_of_Q q) y) };
CR_archimedean : forall x : CRcarrier,
{ n : positive & CRlt x (CR_of_Q (Z.pos n # 1)) };
CRminus (x y : CRcarrier) : CRcarrier
:= CRplus x (CRopp y);
(* Absolute value, CRabs x is the least upper bound
of the pair x, -x. *)
CRabs : CRcarrier -> CRcarrier;
CRabs_def : forall x y : CRcarrier,
(CRle x y /\ CRle (CRopp x) y)
<-> CRle (CRabs x) y;
(* Definitions of convergence and Cauchy-ness. The formulas
with orderLe or CRlt are logically equivalent, the choice of
orderLe in sort Prop is a question of performance.
It is very rare to turn back to the strict order to
define functions in sort Set, so we prefer to discard
those proofs during extraction. And even in those rare cases,
it is easy to divide epsilon by 2 for example. *)
CR_cv (un : nat -> CRcarrier) (l : CRcarrier) : Set
:= forall p:positive,
{ n : nat | forall i:nat, le n i
-> CRle (CRabs (CRminus (un i) l))
(CR_of_Q (1#p)) };
CR_cauchy (un : nat -> CRcarrier) : Set
:= forall p : positive,
{ n : nat | forall i j:nat, le n i -> le n j
-> CRle (CRabs (CRminus (un i) (un j)))
(CR_of_Q (1#p)) };
(* For the Cauchy reals, this algorithm consists in building
a Cauchy sequence of rationals un : nat -> Q that has
the same limit as xn. For each n:nat, un n is a 1/n
rational approximation of a point of xn that has converged
within 1/n. *)
CR_complete :
forall xn : (nat -> CRcarrier),
CR_cauchy xn -> { l : CRcarrier & CR_cv xn l };
}.
Declare Scope ConstructiveReals.
Delimit Scope ConstructiveReals with ConstructiveReals.
Notation "x < y" := (CRlt _ x y) : ConstructiveReals.
Notation "x <= y" := (CRle _ x y) : ConstructiveReals.
Notation "x <= y <= z" := (CRle _ x y /\ CRle _ y z) : ConstructiveReals.
Notation "x < y < z" := (prod (CRlt _ x y) (CRlt _ y z)) : ConstructiveReals.
Notation "x == y" := (CReq _ x y) : ConstructiveReals.
Notation "x ≶ y" := (CRapart _ x y) (at level 70, no associativity) : ConstructiveReals.
Notation "0" := (CR_of_Q _ 0) : ConstructiveReals.
Notation "1" := (CR_of_Q _ 1) : ConstructiveReals.
Notation "2" := (CR_of_Q _ 2) : ConstructiveReals.
Notation "3" := (CR_of_Q _ 3) : ConstructiveReals.
Notation "4" := (CR_of_Q _ 4) : ConstructiveReals.
Notation "5" := (CR_of_Q _ 5) : ConstructiveReals.
Notation "6" := (CR_of_Q _ 6) : ConstructiveReals.
Notation "7" := (CR_of_Q _ 7) : ConstructiveReals.
Notation "8" := (CR_of_Q _ 8) : ConstructiveReals.
Notation "9" := (CR_of_Q _ 9) : ConstructiveReals.
Notation "10" := (CR_of_Q _ 10) : ConstructiveReals.
Notation "x + y" := (CRplus _ x y) : ConstructiveReals.
Notation "- x" := (CRopp _ x) : ConstructiveReals.
Notation "x - y" := (CRminus _ x y) : ConstructiveReals.
Notation "x * y" := (CRmult _ x y) : ConstructiveReals.
Notation "/ x" := (CRinv _ x) : ConstructiveReals.
Local Open Scope ConstructiveReals.
Lemma CRlt_asym : forall {R : ConstructiveReals} (x y : CRcarrier R),
x < y -> x <= y.
Proof.
intros. intro H0. destruct (CRltLinear R), p.
apply (f x y); assumption.
Qed.
Lemma CRlt_proper
: forall R : ConstructiveReals,
CMorphisms.Proper
(CMorphisms.respectful (CReq R)
(CMorphisms.respectful (CReq R) CRelationClasses.iffT)) (CRlt R).
Proof.
intros R x y H x0 y0 H0. destruct H, H0.
destruct (CRltLinear R). split.
- intro. destruct (s x y x0). assumption.
contradiction. destruct (s y y0 x0).
assumption. assumption. contradiction.
- intro. destruct (s y x y0). assumption.
contradiction. destruct (s x x0 y0).
assumption. assumption. contradiction.
Qed.
Lemma CRle_refl : forall {R : ConstructiveReals} (x : CRcarrier R),
x <= x.
Proof.
intros. intro H. destruct (CRltLinear R), p.
exact (f x x H H).
Qed.
Lemma CRle_lt_trans : forall {R : ConstructiveReals} (r1 r2 r3 : CRcarrier R),
r1 <= r2 -> r2 < r3 -> r1 < r3.
Proof.
intros. destruct (CRltLinear R).
destruct (s r2 r1 r3 H0). contradiction. apply c.
Qed.
Lemma CRlt_le_trans : forall {R : ConstructiveReals} (r1 r2 r3 : CRcarrier R),
r1 < r2 -> r2 <= r3 -> r1 < r3.
Proof.
intros. destruct (CRltLinear R).
destruct (s r1 r3 r2 H). apply c. contradiction.
Qed.
Lemma CRle_trans : forall {R : ConstructiveReals} (x y z : CRcarrier R),
x <= y -> y <= z -> x <= z.
Proof.
intros. intro abs. apply H0.
apply (CRlt_le_trans _ x); assumption.
Qed.
Lemma CRlt_trans : forall {R : ConstructiveReals} (x y z : CRcarrier R),
x < y -> y < z -> x < z.
Proof.
intros. apply (CRlt_le_trans _ y _ H).
apply CRlt_asym. exact H0.
Qed.
Lemma CRlt_trans_flip : forall {R : ConstructiveReals} (x y z : CRcarrier R),
y < z -> x < y -> x < z.
Proof.
intros. apply (CRlt_le_trans _ y). exact H0.
apply CRlt_asym. exact H.
Qed.
Lemma CReq_refl : forall {R : ConstructiveReals} (x : CRcarrier R),
x == x.
Proof.
split; apply CRle_refl.
Qed.
Lemma CReq_sym : forall {R : ConstructiveReals} (x y : CRcarrier R),
x == y -> y == x.
Proof.
intros. destruct H. split; intro abs; contradiction.
Qed.
Lemma CReq_trans : forall {R : ConstructiveReals} (x y z : CRcarrier R),
x == y -> y == z -> x == z.
Proof.
intros. destruct H,H0. destruct (CRltLinear R), p. split.
- intro abs. destruct (s _ y _ abs); contradiction.
- intro abs. destruct (s _ y _ abs); contradiction.
Qed.
Add Parametric Relation {R : ConstructiveReals} : (CRcarrier R) (CReq R)
reflexivity proved by (CReq_refl)
symmetry proved by (CReq_sym)
transitivity proved by (CReq_trans)
as CReq_rel.
Instance CReq_relT : forall {R : ConstructiveReals},
CRelationClasses.Equivalence (CReq R).
Proof.
split. exact CReq_refl. exact CReq_sym. exact CReq_trans.
Qed.
Instance CRlt_morph
: forall {R : ConstructiveReals}, CMorphisms.Proper
(CMorphisms.respectful (CReq R) (CMorphisms.respectful (CReq R) CRelationClasses.iffT)) (CRlt R).
Proof.
intros R x y H x0 y0 H0. destruct H, H0. split.
- intro. destruct (CRltLinear R). destruct (s x y x0). assumption.
contradiction. destruct (s y y0 x0).
assumption. assumption. contradiction.
- intro. destruct (CRltLinear R). destruct (s y x y0). assumption.
contradiction. destruct (s x x0 y0).
assumption. assumption. contradiction.
Qed.
Add Parametric Morphism {R : ConstructiveReals} : (CRle R)
with signature CReq R ==> CReq R ==> iff
as CRle_morph.
Proof.
intros. split.
- intros H1 H2. unfold CRle in H1.
rewrite <- H0 in H2. rewrite <- H in H2. contradiction.
- intros H1 H2. unfold CRle in H1.
rewrite H0 in H2. rewrite H in H2. contradiction.
Qed.
Lemma CRplus_0_l : forall {R : ConstructiveReals} (x : CRcarrier R),
0 + x == x.
Proof.
intros. destruct (CRisRing R). apply Radd_0_l.
Qed.
Lemma CRplus_0_r : forall {R : ConstructiveReals} (x : CRcarrier R),
x + 0 == x.
Proof.
intros. destruct (CRisRing R).
transitivity (0 + x).
apply Radd_comm. apply Radd_0_l.
Qed.
Lemma CRplus_opp_l : forall {R : ConstructiveReals} (x : CRcarrier R),
- x + x == 0.
Proof.
intros. destruct (CRisRing R).
transitivity (x + - x).
apply Radd_comm. apply Ropp_def.
Qed.
Lemma CRplus_opp_r : forall {R : ConstructiveReals} (x : CRcarrier R),
x + - x == 0.
Proof.
intros. destruct (CRisRing R). apply Ropp_def.
Qed.
Lemma CRopp_0 : forall {R : ConstructiveReals},
CRopp R 0 == 0.
Proof.
intros. rewrite <- CRplus_0_r, CRplus_opp_l.
reflexivity.
Qed.
Lemma CRplus_lt_compat_r : forall {R : ConstructiveReals} (r r1 r2 : CRcarrier R),
r1 < r2 -> r1 + r < r2 + r.
Proof.
intros. destruct (CRisRing R).
apply (CRlt_proper R (CRplus R r r1) (CRplus R r1 r) (Radd_comm _ _)
(CRplus R r2 r) (CRplus R r2 r)).
apply CReq_refl.
apply (CRlt_proper R _ _ (CReq_refl _) _ (CRplus R r r2)).
apply Radd_comm. apply CRplus_lt_compat_l. exact H.
Qed.
Lemma CRplus_lt_reg_r : forall {R : ConstructiveReals} (r r1 r2 : CRcarrier R),
r1 + r < r2 + r -> r1 < r2.
Proof.
intros. destruct (CRisRing R).
apply (CRlt_proper R (CRplus R r r1) (CRplus R r1 r) (Radd_comm _ _)
(CRplus R r2 r) (CRplus R r2 r)) in H.
2: apply CReq_refl.
apply (CRlt_proper R _ _ (CReq_refl _) _ (CRplus R r r2)) in H.
apply CRplus_lt_reg_l in H. exact H.
apply Radd_comm.
Qed.
Lemma CRplus_le_compat_l : forall {R : ConstructiveReals} (r r1 r2 : CRcarrier R),
r1 <= r2 -> r + r1 <= r + r2.
Proof.
intros. intros abs. apply CRplus_lt_reg_l in abs. apply H. exact abs.
Qed.
Lemma CRplus_le_compat_r : forall {R : ConstructiveReals} (r r1 r2 : CRcarrier R),
r1 <= r2 -> r1 + r <= r2 + r.
Proof.
intros. intros abs. apply CRplus_lt_reg_r in abs. apply H. exact abs.
Qed.
Lemma CRplus_le_compat : forall {R : ConstructiveReals} (r1 r2 r3 r4 : CRcarrier R),
r1 <= r2 -> r3 <= r4 -> r1 + r3 <= r2 + r4.
Proof.
intros. apply (CRle_trans _ (CRplus R r2 r3)).
apply CRplus_le_compat_r, H. apply CRplus_le_compat_l, H0.
Qed.
Lemma CRle_minus : forall {R : ConstructiveReals} (x y : CRcarrier R),
x <= y -> 0 <= y - x.
Proof.
intros. rewrite <- (CRplus_opp_r x).
apply CRplus_le_compat_r. exact H.
Qed.
Lemma CRplus_le_reg_l : forall {R : ConstructiveReals} (r r1 r2 : CRcarrier R),
r + r1 <= r + r2 -> r1 <= r2.
Proof.
intros. intro abs. apply H. clear H.
apply CRplus_lt_compat_l. exact abs.
Qed.
Lemma CRplus_le_reg_r : forall {R : ConstructiveReals} (r r1 r2 : CRcarrier R),
r1 + r <= r2 + r -> r1 <= r2.
Proof.
intros. intro abs. apply H. clear H.
apply CRplus_lt_compat_r. exact abs.
Qed.
Lemma CRplus_lt_le_compat :
forall {R : ConstructiveReals} (r1 r2 r3 r4 : CRcarrier R),
r1 < r2
-> r3 <= r4
-> r1 + r3 < r2 + r4.
Proof.
intros. apply (CRlt_le_trans _ (CRplus R r2 r3)).
apply CRplus_lt_compat_r. exact H. intro abs.
apply CRplus_lt_reg_l in abs. contradiction.
Qed.
Lemma CRplus_le_lt_compat :
forall {R : ConstructiveReals} (r1 r2 r3 r4 : CRcarrier R),
r1 <= r2
-> r3 < r4
-> r1 + r3 < r2 + r4.
Proof.
intros. apply (CRle_lt_trans _ (CRplus R r2 r3)).
apply CRplus_le_compat_r. exact H.
apply CRplus_lt_compat_l. exact H0.
Qed.
Lemma CRplus_eq_reg_l : forall {R : ConstructiveReals} (r r1 r2 : CRcarrier R),
r + r1 == r + r2 -> r1 == r2.
Proof.
intros.
destruct (CRisRingExt R). clear Rmul_ext Ropp_ext.
pose proof (Radd_ext
(CRopp R r) (CRopp R r) (CReq_refl _)
_ _ H).
destruct (CRisRing R).
apply (CReq_trans r1) in H0.
apply (CReq_trans _ _ _ H0).
transitivity ((- r + r) + r2).
apply Radd_assoc. transitivity (0 + r2).
apply Radd_ext. apply CRplus_opp_l. apply CReq_refl.
apply Radd_0_l. apply CReq_sym.
transitivity (- r + r + r1).
apply Radd_assoc.
transitivity (0 + r1).
apply Radd_ext. apply CRplus_opp_l. apply CReq_refl.
apply Radd_0_l.
Qed.
Lemma CRplus_eq_reg_r : forall {R : ConstructiveReals} (r r1 r2 : CRcarrier R),
r1 + r == r2 + r -> r1 == r2.
Proof.
intros. apply (CRplus_eq_reg_l r).
transitivity (r1 + r). apply (Radd_comm (CRisRing R)).
transitivity (r2 + r).
exact H. apply (Radd_comm (CRisRing R)).
Qed.
Lemma CRplus_assoc : forall {R : ConstructiveReals} (r r1 r2 : CRcarrier R),
r + r1 + r2 == r + (r1 + r2).
Proof.
intros. symmetry. apply (Radd_assoc (CRisRing R)).
Qed.
Lemma CRplus_comm : forall {R : ConstructiveReals} (r1 r2 : CRcarrier R),
r1 + r2 == r2 + r1.
Proof.
intros. apply (Radd_comm (CRisRing R)).
Qed.
Add Parametric Morphism {R : ConstructiveReals} : (CRplus R)
with signature CReq R ==> CReq R ==> CReq R
as CRplus_morph.
Proof.
apply (CRisRingExt R).
Qed.
Add Parametric Morphism {R : ConstructiveReals} : (CRopp R)
with signature CReq R ==> CReq R
as CRopp_morph.
Proof.
apply (CRisRingExt R).
Qed.
Add Parametric Morphism {R : ConstructiveReals} : (CRmult R)
with signature CReq R ==> CReq R ==> CReq R
as CRmult_morph.
Proof.
apply (CRisRingExt R).
Qed.
Instance CRplus_morph_T
: forall {R : ConstructiveReals}, CMorphisms.Proper
(CMorphisms.respectful (CReq R) (CMorphisms.respectful (CReq R) (CReq R))) (CRplus R).
Proof.
intros R x y H z t H1. apply CRplus_morph; assumption.
Qed.
Instance CRmult_morph_T
: forall {R : ConstructiveReals}, CMorphisms.Proper
(CMorphisms.respectful (CReq R) (CMorphisms.respectful (CReq R) (CReq R))) (CRmult R).
Proof.
intros R x y H z t H1. apply CRmult_morph; assumption.
Qed.
Instance CRopp_morph_T
: forall {R : ConstructiveReals}, CMorphisms.Proper
(CMorphisms.respectful (CReq R) (CReq R)) (CRopp R).
Proof.
apply CRisRingExt.
Qed.
Add Parametric Morphism {R : ConstructiveReals} : (CRminus R)
with signature (CReq R) ==> (CReq R) ==> (CReq R)
as CRminus_morph.
Proof.
intros. unfold CRminus. rewrite H,H0. reflexivity.
Qed.
Instance CRminus_morph_T
: forall {R : ConstructiveReals}, CMorphisms.Proper
(CMorphisms.respectful (CReq R) (CMorphisms.respectful (CReq R) (CReq R))) (CRminus R).
Proof.
intros R x y exy z t ezt. unfold CRminus. rewrite exy,ezt. reflexivity.
Qed.
Lemma CRopp_involutive : forall {R : ConstructiveReals} (r : CRcarrier R),
- - r == r.
Proof.
intros. apply (CRplus_eq_reg_l (CRopp R r)).
transitivity (CR_of_Q R 0). apply CRisRing.
apply CReq_sym. transitivity (r + - r).
apply CRisRing. apply CRisRing.
Qed.
Lemma CRopp_gt_lt_contravar
: forall {R : ConstructiveReals} (r1 r2 : CRcarrier R),
r2 < r1 -> - r1 < - r2.
Proof.
intros. apply (CRplus_lt_reg_l R r1).
destruct (CRisRing R).
apply (CRle_lt_trans _ 0). apply Ropp_def.
apply (CRplus_lt_compat_l R (CRopp R r2)) in H.
apply (CRle_lt_trans _ (CRplus R (CRopp R r2) r2)).
apply (CRle_trans _ (CRplus R r2 (CRopp R r2))).
destruct (Ropp_def r2). exact H0.
destruct (Radd_comm r2 (CRopp R r2)). exact H1.
apply (CRlt_le_trans _ _ _ H).
destruct (Radd_comm r1 (CRopp R r2)). exact H0.
Qed.
Lemma CRopp_lt_cancel : forall {R : ConstructiveReals} (r1 r2 : CRcarrier R),
- r2 < - r1 -> r1 < r2.
Proof.
intros. apply (CRplus_lt_compat_r r1) in H.
rewrite (CRplus_opp_l r1) in H.
apply (CRplus_lt_compat_l R r2) in H.
rewrite CRplus_0_r, (Radd_assoc (CRisRing R)) in H.
rewrite CRplus_opp_r, (Radd_0_l (CRisRing R)) in H.
exact H.
Qed.
Lemma CRopp_ge_le_contravar
: forall {R : ConstructiveReals} (r1 r2 : CRcarrier R),
r2 <= r1 -> - r1 <= - r2.
Proof.
intros. intros abs. apply CRopp_lt_cancel in abs. contradiction.
Qed.
Lemma CRopp_plus_distr : forall {R : ConstructiveReals} (r1 r2 : CRcarrier R),
- (r1 + r2) == - r1 + - r2.
Proof.
intros. destruct (CRisRing R), (CRisRingExt R).
apply (CRplus_eq_reg_l (CRplus R r1 r2)).
transitivity (CR_of_Q R 0). apply Ropp_def.
transitivity (r2 + r1 + (-r1 + -r2)).
transitivity (r2 + (r1 + (-r1 + -r2))).
transitivity (r2 + - r2).
apply CReq_sym. apply Ropp_def. apply Radd_ext.
apply CReq_refl.
transitivity (0 + - r2).
apply CReq_sym, Radd_0_l.
transitivity (r1 + - r1 + - r2).
apply Radd_ext. 2: apply CReq_refl. apply CReq_sym, Ropp_def.
apply CReq_sym, Radd_assoc. apply Radd_assoc.
apply Radd_ext. 2: apply CReq_refl. apply Radd_comm.
Qed.
Lemma CRmult_1_l : forall {R : ConstructiveReals} (r : CRcarrier R),
1 * r == r.
Proof.
intros. destruct (CRisRing R). apply Rmul_1_l.
Qed.
Lemma CRmult_1_r : forall {R : ConstructiveReals} (x : CRcarrier R),
x * 1 == x.
Proof.
intros. destruct (CRisRing R). transitivity (CRmult R 1 x).
apply Rmul_comm. apply Rmul_1_l.
Qed.
Lemma CRmult_assoc : forall {R : ConstructiveReals} (r r1 r2 : CRcarrier R),
r * r1 * r2 == r * (r1 * r2).
Proof.
intros. symmetry. apply (Rmul_assoc (CRisRing R)).
Qed.
Lemma CRmult_comm : forall {R : ConstructiveReals} (r s : CRcarrier R),
r * s == s * r.
Proof.
intros. rewrite (Rmul_comm (CRisRing R) r). reflexivity.
Qed.
Lemma CRmult_plus_distr_l : forall {R : ConstructiveReals} (r1 r2 r3 : CRcarrier R),
r1 * (r2 + r3) == (r1 * r2) + (r1 * r3).
Proof.
intros. destruct (CRisRing R).
transitivity ((r2 + r3) * r1).
apply Rmul_comm.
transitivity ((r2 * r1) + (r3 * r1)).
apply Rdistr_l.
transitivity ((r1 * r2) + (r3 * r1)).
destruct (CRisRingExt R). apply Radd_ext.
apply Rmul_comm. apply CReq_refl.
destruct (CRisRingExt R). apply Radd_ext.
apply CReq_refl. apply Rmul_comm.
Qed.
Lemma CRmult_plus_distr_r : forall {R : ConstructiveReals} (r1 r2 r3 : CRcarrier R),
(r2 + r3) * r1 == (r2 * r1) + (r3 * r1).
Proof.
intros. do 3 rewrite <- (CRmult_comm r1).
apply CRmult_plus_distr_l.
Qed.
(* x == x+x -> x == 0 *)
Lemma CRzero_double : forall {R : ConstructiveReals} (x : CRcarrier R),
x == x + x -> x == 0.
Proof.
intros.
apply (CRplus_eq_reg_l x), CReq_sym. transitivity x.
apply CRplus_0_r. exact H.
Qed.
Lemma CRmult_0_r : forall {R : ConstructiveReals} (x : CRcarrier R),
x * 0 == 0.
Proof.
intros. apply CRzero_double.
transitivity (x * (0 + 0)).
destruct (CRisRingExt R). apply Rmul_ext. apply CReq_refl.
apply CReq_sym, CRplus_0_r.
destruct (CRisRing R). apply CRmult_plus_distr_l.
Qed.
Lemma CRmult_0_l : forall {R : ConstructiveReals} (r : CRcarrier R),
0 * r == 0.
Proof.
intros. rewrite CRmult_comm. apply CRmult_0_r.
Qed.
Lemma CRopp_mult_distr_r : forall {R : ConstructiveReals} (r1 r2 : CRcarrier R),
- (r1 * r2) == r1 * (- r2).
Proof.
intros. apply (CRplus_eq_reg_l (CRmult R r1 r2)).
destruct (CRisRing R). transitivity (CR_of_Q R 0). apply Ropp_def.
transitivity (r1 * (r2 + - r2)).
2: apply CRmult_plus_distr_l.
transitivity (r1 * 0).
apply CReq_sym, CRmult_0_r.
destruct (CRisRingExt R). apply Rmul_ext. apply CReq_refl.
apply CReq_sym, Ropp_def.
Qed.
Lemma CRopp_mult_distr_l : forall {R : ConstructiveReals} (r1 r2 : CRcarrier R),
- (r1 * r2) == (- r1) * r2.
Proof.
intros. transitivity (r2 * - r1).
transitivity (- (r2 * r1)).
apply (Ropp_ext (CRisRingExt R)).
apply CReq_sym, (Rmul_comm (CRisRing R)).
apply CRopp_mult_distr_r.
apply CReq_sym, (Rmul_comm (CRisRing R)).
Qed.
Lemma CRmult_lt_compat_r : forall {R : ConstructiveReals} (r r1 r2 : CRcarrier R),
0 < r -> r1 < r2 -> r1 * r < r2 * r.
Proof.
intros. apply (CRplus_lt_reg_r (CRopp R (CRmult R r1 r))).
apply (CRle_lt_trans _ 0).
apply (Ropp_def (CRisRing R)).
apply (CRlt_le_trans _ (CRplus R (CRmult R r2 r) (CRmult R (CRopp R r1) r))).
apply (CRlt_le_trans _ (CRmult R (CRplus R r2 (CRopp R r1)) r)).
apply CRmult_lt_0_compat. 2: exact H.
apply (CRplus_lt_reg_r r1).
apply (CRle_lt_trans _ r1). apply (Radd_0_l (CRisRing R)).
apply (CRlt_le_trans _ r2 _ H0).
apply (CRle_trans _ (CRplus R r2 (CRplus R (CRopp R r1) r1))).
apply (CRle_trans _ (CRplus R r2 0)).
destruct (CRplus_0_r r2). exact H1.
apply CRplus_le_compat_l. destruct (CRplus_opp_l r1). exact H1.
destruct (Radd_assoc (CRisRing R) r2 (CRopp R r1) r1). exact H2.
destruct (CRisRing R).
destruct (Rdistr_l r2 (CRopp R r1) r). exact H2.
apply CRplus_le_compat_l. destruct (CRopp_mult_distr_l r1 r).
exact H1.
Qed.
Lemma CRmult_lt_compat_l : forall {R : ConstructiveReals} (r r1 r2 : CRcarrier R),
0 < r -> r1 < r2 -> r * r1 < r * r2.
Proof.
intros. do 2 rewrite (CRmult_comm r).
apply CRmult_lt_compat_r; assumption.
Qed.
Lemma CRinv_r : forall {R : ConstructiveReals} (r:CRcarrier R)
(rnz : r ≶ 0),
r * (/ r) rnz == 1.
Proof.
intros. transitivity ((/ r) rnz * r).
apply (CRisRing R). apply CRinv_l.
Qed.
Lemma CRmult_lt_reg_r : forall {R : ConstructiveReals} (r r1 r2 : CRcarrier R),
0 < r -> r1 * r < r2 * r -> r1 < r2.
Proof.
intros. apply (CRmult_lt_compat_r ((/ r) (inr H))) in H0.
2: apply CRinv_0_lt_compat, H.
apply (CRle_lt_trans _ ((r1 * r) * ((/ r) (inr H)))).
- clear H0. apply (CRle_trans _ (CRmult R r1 1)).
destruct (CRmult_1_r r1). exact H0.
apply (CRle_trans _ (CRmult R r1 (CRmult R r ((/ r) (inr H))))).
destruct (Rmul_ext (CRisRingExt R) r1 r1 (CReq_refl r1)
(r * ((/ r) (inr H))) 1).
apply CRinv_r. exact H0.
destruct (Rmul_assoc (CRisRing R) r1 r ((/ r) (inr H))). exact H1.
- apply (CRlt_le_trans _ ((r2 * r) * ((/ r) (inr H)))).
exact H0. clear H0.
apply (CRle_trans _ (r2 * 1)).
2: destruct (CRmult_1_r r2); exact H1.
apply (CRle_trans _ (r2 * (r * ((/ r) (inr H))))).
destruct (Rmul_assoc (CRisRing R) r2 r ((/ r) (inr H))). exact H0.
destruct (Rmul_ext (CRisRingExt R) r2 r2 (CReq_refl r2)
(r * ((/ r) (inr H))) 1).
apply CRinv_r. exact H1.
Qed.
Lemma CRmult_lt_reg_l : forall {R : ConstructiveReals} (r r1 r2 : CRcarrier R),
0 < r -> r * r1 < r * r2 -> r1 < r2.
Proof.
intros.
rewrite (Rmul_comm (CRisRing R) r r1) in H0.
rewrite (Rmul_comm (CRisRing R) r r2) in H0.
apply CRmult_lt_reg_r in H0.
exact H0. exact H.
Qed.
Lemma CRmult_le_compat_l_half : forall {R : ConstructiveReals} (r r1 r2 : CRcarrier R),
0 < r -> r1 <= r2 -> r * r1 <= r * r2.
Proof.
intros. intro abs. apply CRmult_lt_reg_l in abs.
contradiction. exact H.
Qed.
Lemma CRmult_le_compat_r_half : forall {R : ConstructiveReals} (r r1 r2 : CRcarrier R),
0 < r
-> r1 <= r2
-> r1 * r <= r2 * r.
Proof.
intros. intro abs. apply CRmult_lt_reg_r in abs.
contradiction. exact H.
Qed.
Lemma CRmult_eq_reg_r : forall {R : ConstructiveReals} (r r1 r2 : CRcarrier R),
0 ≶ r
-> r1 * r == r2 * r
-> r1 == r2.
Proof.
intros. destruct H0,H.
- split.
+ intro abs. apply H0. apply CRmult_lt_compat_r.
exact c. exact abs.
+ intro abs. apply H1. apply CRmult_lt_compat_r.
exact c. exact abs.
- split.
+ intro abs. apply H1. apply CRopp_lt_cancel.
apply (CRle_lt_trans _ (CRmult R r1 (CRopp R r))).
apply CRopp_mult_distr_r.
apply (CRlt_le_trans _ (CRmult R r2 (CRopp R r))).
2: apply CRopp_mult_distr_r.
apply CRmult_lt_compat_r. 2: exact abs.
apply (CRplus_lt_reg_r r). apply (CRle_lt_trans _ r).
apply (Radd_0_l (CRisRing R)).
apply (CRlt_le_trans _ 0 _ c).
apply CRplus_opp_l.
+ intro abs. apply H0. apply CRopp_lt_cancel.
apply (CRle_lt_trans _ (CRmult R r2 (CRopp R r))).
apply CRopp_mult_distr_r.
apply (CRlt_le_trans _ (CRmult R r1 (CRopp R r))).
2: apply CRopp_mult_distr_r.
apply CRmult_lt_compat_r. 2: exact abs.
apply (CRplus_lt_reg_r r). apply (CRle_lt_trans _ r).
apply (Radd_0_l (CRisRing R)).
apply (CRlt_le_trans _ 0 _ c).
apply CRplus_opp_l.
Qed.
Lemma CRinv_1 : forall {R : ConstructiveReals} (onz : CRapart R 1 0),
(/ 1) onz == 1.
Proof.
intros. rewrite <- (CRmult_1_r ((/ 1) onz)).
rewrite CRinv_l. reflexivity.
Qed.
Lemma CRmult_eq_reg_l : forall {R : ConstructiveReals} (r r1 r2 : CRcarrier R),
r ≶ 0
-> r * r1 == r * r2
-> r1 == r2.
Proof.
intros. rewrite (Rmul_comm (CRisRing R)) in H0.
rewrite (Rmul_comm (CRisRing R) r) in H0.
apply CRmult_eq_reg_r in H0. exact H0. destruct H.
right. exact c. left. exact c.
Qed.
Lemma CRinv_mult_distr :
forall {R : ConstructiveReals} (r1 r2 : CRcarrier R)
(r1nz : r1 ≶ 0) (r2nz : r2 ≶ 0)
(rmnz : (r1*r2) ≶ 0),
(/ (r1 * r2)) rmnz == (/ r1) r1nz * (/ r2) r2nz.
Proof.
intros. apply (CRmult_eq_reg_l r1). exact r1nz.
rewrite (Rmul_assoc (CRisRing R)). rewrite CRinv_r. rewrite CRmult_1_l.
apply (CRmult_eq_reg_l r2). exact r2nz.
rewrite CRinv_r. rewrite (Rmul_assoc (CRisRing R)).
rewrite (CRmult_comm r2 r1). rewrite CRinv_r. reflexivity.
Qed.
Lemma CRinv_morph : forall {R : ConstructiveReals} (x y : CRcarrier R)
(rxnz : x ≶ 0) (rynz : y ≶ 0),
x == y
-> (/ x) rxnz == (/ y) rynz.
Proof.
intros. apply (CRmult_eq_reg_l x). exact rxnz.
rewrite CRinv_r, H, CRinv_r. reflexivity.
Qed.
Lemma CRlt_minus : forall {R : ConstructiveReals} (x y : CRcarrier R),
x < y -> 0 < y - x.
Proof.
intros. rewrite <- (CRplus_opp_r x).
apply CRplus_lt_compat_r. exact H.
Qed.
Lemma CR_of_Q_le : forall {R : ConstructiveReals} (r q : Q),
Qle r q
-> CR_of_Q R r <= CR_of_Q R q.
Proof.
intros. intro abs. apply lt_CR_of_Q in abs.
exact (Qlt_not_le _ _ abs H).
Qed.
Add Parametric Morphism {R : ConstructiveReals} : (CR_of_Q R)
with signature Qeq ==> CReq R
as CR_of_Q_morph.
Proof.
split; apply CR_of_Q_le; rewrite H; apply Qle_refl.
Qed.
Lemma eq_inject_Q : forall {R : ConstructiveReals} (q r : Q),
CR_of_Q R q == CR_of_Q R r -> Qeq q r.
Proof.
intros. destruct H. destruct (Q_dec q r). destruct s.
exfalso. apply (CR_of_Q_lt R q r) in q0. contradiction.
exfalso. apply (CR_of_Q_lt R r q) in q0. contradiction. exact q0.
Qed.
Instance CR_of_Q_morph_T
: forall {R : ConstructiveReals}, CMorphisms.Proper
(CMorphisms.respectful Qeq (CReq R)) (CR_of_Q R).
Proof.
intros R x y H. apply CR_of_Q_morph; assumption.
Qed.
Lemma CR_of_Q_opp : forall {R : ConstructiveReals} (q : Q),
CR_of_Q R (-q) == - CR_of_Q R q.
Proof.
intros. apply (CRplus_eq_reg_l (CR_of_Q R q)).
transitivity (CR_of_Q R 0).
transitivity (CR_of_Q R (q-q)).
apply CReq_sym, CR_of_Q_plus.
apply CR_of_Q_morph. ring.
apply CReq_sym. apply (CRisRing R).
Qed.
Lemma CR_of_Q_pos : forall {R : ConstructiveReals} (q:Q),
Qlt 0 q -> 0 < CR_of_Q R q.
Proof.
intros. apply CR_of_Q_lt. exact H.
Qed.
Lemma CR_of_Q_inv : forall {R : ConstructiveReals} (q : Q) (qPos : Qlt 0 q),
CR_of_Q R (/q)
== (/ CR_of_Q R q) (inr (CR_of_Q_pos q qPos)).
Proof.
intros.
apply (CRmult_eq_reg_l (CR_of_Q R q)).
right. apply CR_of_Q_pos, qPos.
rewrite CRinv_r, <- CR_of_Q_mult.
apply CR_of_Q_morph. field. intro abs.
rewrite abs in qPos. exact (Qlt_irrefl 0 qPos).
Qed.
Lemma CRmult_le_0_compat : forall {R : ConstructiveReals} (a b : CRcarrier R),
0 <= a -> 0 <= b -> 0 <= a * b.
Proof.
(* Limit of (a + 1/n)*b when n -> infty. *)
intros. intro abs.
assert (0 < -(a*b)) as epsPos.
{ rewrite <- CRopp_0. apply CRopp_gt_lt_contravar. exact abs. }
destruct (CR_archimedean R (b * ((/ -(a*b)) (inr epsPos))))
as [n maj].
assert (0 < CR_of_Q R (Z.pos n #1)) as nPos.
{ apply CR_of_Q_lt. reflexivity. }
assert (b * (/ CR_of_Q R (Z.pos n #1)) (inr nPos) < -(a*b)).
{ apply (CRmult_lt_reg_r (CR_of_Q R (Z.pos n #1))). apply nPos.
rewrite <- (Rmul_assoc (CRisRing R)), CRinv_l, CRmult_1_r.
apply (CRmult_lt_compat_r (-(a*b))) in maj.
rewrite CRmult_assoc, CRinv_l, CRmult_1_r in maj.
rewrite CRmult_comm. apply maj. apply epsPos. }
pose proof (CRmult_le_compat_l_half
(a + (/ CR_of_Q R (Z.pos n #1)) (inr nPos)) 0 b).
assert (0 + 0 < a + (/ CR_of_Q R (Z.pos n #1)) (inr nPos)).
{ apply CRplus_le_lt_compat. apply H. apply CRinv_0_lt_compat. apply nPos. }
rewrite CRplus_0_l in H3. specialize (H2 H3 H0).
clear H3. rewrite CRmult_0_r in H2.
apply H2. clear H2. rewrite (Rdistr_l (CRisRing R)).
apply (CRplus_lt_compat_l R (a*b)) in H1.
rewrite CRplus_opp_r in H1.
rewrite (CRmult_comm ((/ CR_of_Q R (Z.pos n # 1)) (inr nPos))).
apply H1.
Qed.
Lemma CRmult_le_compat_l : forall {R : ConstructiveReals} (r r1 r2:CRcarrier R),
0 <= r -> r1 <= r2 -> r * r1 <= r * r2.
Proof.
intros. apply (CRplus_le_reg_r (-(r*r1))).
rewrite CRplus_opp_r, CRopp_mult_distr_r.
rewrite <- CRmult_plus_distr_l.
apply CRmult_le_0_compat. exact H.
apply (CRplus_le_reg_r r1).
rewrite CRplus_0_l, CRplus_assoc, CRplus_opp_l, CRplus_0_r.
exact H0.
Qed.
Lemma CRmult_le_compat_r : forall {R : ConstructiveReals} (r r1 r2:CRcarrier R),
0 <= r -> r1 <= r2 -> r1 * r <= r2 * r.
Proof.
intros. do 2 rewrite <- (CRmult_comm r).
apply CRmult_le_compat_l; assumption.
Qed.
Lemma CRmult_pos_pos
: forall {R : ConstructiveReals} (x y : CRcarrier R),
0 < x * y -> 0 <= x
-> 0 <= y -> 0 < x.
Proof.
intros. destruct (CRltLinear R). clear p.
specialize (s 0 x 1 (CRzero_lt_one R)) as [H2|H2].
exact H2. apply CRlt_asym in H2.
apply (CRmult_le_compat_r y) in H2.
2: exact H1. rewrite CRmult_1_l in H2.
apply (CRlt_le_trans _ _ _ H) in H2.
rewrite <- (CRmult_0_l y) in H.
apply CRmult_lt_reg_r in H. exact H. exact H2.
Qed.
(* In particular x * y == 1 implies that 0 # x, 0 # y and
that x and y are inverses of each other. *)
Lemma CRmult_pos_appart_zero
: forall {R : ConstructiveReals} (x y : CRcarrier R),
0 < x * y -> 0 ≶ x.
Proof.
intros.
(* Narrow cases to x < 1. *)
destruct (CRltLinear R). clear p.
pose proof (s 0 x 1 (CRzero_lt_one R)) as [H0|H0].
left. exact H0.
(* In this case, linear order 0 y (x*y) decides. *)
destruct (s 0 y (x*y) H).
- left. rewrite <- (CRmult_0_l y) in H. apply CRmult_lt_reg_r in H.
exact H. exact c.
- right. apply CRopp_lt_cancel. rewrite CRopp_0.
apply (CRmult_pos_pos (-x) (-y)).
+ rewrite <- CRopp_mult_distr_l, CRopp_mult_distr_r, CRopp_involutive. exact H.
+ rewrite <- CRopp_0. apply CRopp_ge_le_contravar.
intro abs. rewrite <- (CRmult_0_r x) in H.
apply CRmult_lt_reg_l in H. rewrite <- (CRmult_1_l y) in c.
rewrite <- CRmult_assoc in c. apply CRmult_lt_reg_r in c.
rewrite CRmult_1_r in c. exact (CRlt_asym _ _ H0 c).
exact H. exact abs.
+ intro abs. apply (CRmult_lt_compat_r y) in H0.
rewrite CRmult_1_l in H0. exact (CRlt_asym _ _ H0 c).
apply CRopp_lt_cancel. rewrite CRopp_0. exact abs.
Qed.
Lemma CRmult_le_reg_l :
forall {R : ConstructiveReals} (x y z : CRcarrier R),
0 < x -> x * y <= x * z -> y <= z.
Proof.
intros. intro abs.
apply (CRmult_lt_compat_l x) in abs. contradiction.
exact H.
Qed.
Lemma CRmult_le_reg_r :
forall {R : ConstructiveReals} (x y z : CRcarrier R),
0 < x -> y * x <= z * x -> y <= z.
Proof.
intros. intro abs.
apply (CRmult_lt_compat_r x) in abs. contradiction. exact H.
Qed.
Definition CRup_nat {R : ConstructiveReals} (x : CRcarrier R)
: { n : nat & x < CR_of_Q R (Z.of_nat n #1) }.
Proof.
destruct (CR_archimedean R x). exists (Pos.to_nat x0).
rewrite positive_nat_Z. exact c.
Qed.
Definition CRfloor {R : ConstructiveReals} (a : CRcarrier R)
: { p : Z & prod (CR_of_Q R (p#1) < a)
(a < CR_of_Q R (p#1) + CR_of_Q R 2) }.
Proof.
destruct (CR_Q_dense R (a - CR_of_Q R (1#2)) a) as [q qmaj].
- apply (CRlt_le_trans _ (a-0)). apply CRplus_lt_compat_l.
apply CRopp_gt_lt_contravar.
apply CR_of_Q_lt. reflexivity.
unfold CRminus. rewrite CRopp_0, CRplus_0_r. apply CRle_refl.
- exists (Qfloor q). destruct qmaj. split.
apply (CRle_lt_trans _ (CR_of_Q R q)). 2: exact c0.
apply CR_of_Q_le. apply Qfloor_le.
apply (CRlt_le_trans _ (CR_of_Q R q + CR_of_Q R (1#2))).
apply (CRplus_lt_compat_r (CR_of_Q R (1 # 2))) in c.
unfold CRminus in c. rewrite CRplus_assoc, CRplus_opp_l, CRplus_0_r in c. exact c.
rewrite (CR_of_Q_plus R 1 1), <- CRplus_assoc, <- (CR_of_Q_plus R _ 1).
apply CRplus_le_compat. apply CR_of_Q_le.
rewrite Qinv_plus_distr. apply Qlt_le_weak, Qlt_floor.
apply CR_of_Q_le. discriminate.
Qed.
Lemma CRplus_appart_reg_l : forall {R : ConstructiveReals} (r r1 r2 : CRcarrier R),
(r + r1) ≶ (r + r2) -> r1 ≶ r2.
Proof.
intros. destruct H.
left. apply (CRplus_lt_reg_l R r), c.
right. apply (CRplus_lt_reg_l R r), c.
Qed.
Lemma CRplus_appart_reg_r : forall {R : ConstructiveReals} (r r1 r2 : CRcarrier R),
(r1 + r) ≶ (r2 + r) -> r1 ≶ r2.
Proof.
intros. destruct H.
left. apply (CRplus_lt_reg_r r), c.
right. apply (CRplus_lt_reg_r r), c.
Qed.
Lemma CRmult_appart_reg_l
: forall {R : ConstructiveReals} (r r1 r2 : CRcarrier R),
0 < r -> (r * r1) ≶ (r * r2) -> r1 ≶ r2.
Proof.
intros. destruct H0.
left. exact (CRmult_lt_reg_l r _ _ H c).
right. exact (CRmult_lt_reg_l r _ _ H c).
Qed.
Lemma CRmult_appart_reg_r
: forall {R : ConstructiveReals} (r r1 r2 : CRcarrier R),
0 < r -> (r1 * r) ≶ (r2 * r) -> r1 ≶ r2.
Proof.
intros. destruct H0.
left. exact (CRmult_lt_reg_r r _ _ H c).
right. exact (CRmult_lt_reg_r r _ _ H c).
Qed.
Instance CRapart_morph
: forall {R : ConstructiveReals}, CMorphisms.Proper
(CMorphisms.respectful (CReq R) (CMorphisms.respectful (CReq R) CRelationClasses.iffT)) (CRapart R).
Proof.
intros R x y H x0 y0 H0. destruct H, H0. split.
- intro. destruct H3.
left. apply (CRle_lt_trans _ x _ H).
apply (CRlt_le_trans _ x0 _ c), H2.
right. apply (CRle_lt_trans _ x0 _ H0).
apply (CRlt_le_trans _ x _ c), H1.
- intro. destruct H3.
left. apply (CRle_lt_trans _ y _ H1).
apply (CRlt_le_trans _ y0 _ c), H0.
right. apply (CRle_lt_trans _ y0 _ H2).
apply (CRlt_le_trans _ y _ c), H.
Qed.
|