1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
|
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * INRIA, CNRS and contributors - Copyright 1999-2019 *)
(* <O___,, * (see CREDITS file for the list of authors) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
Require Import QArith Qabs.
Require Import ConstructiveReals.
Require Import ConstructiveRealsMorphisms.
Require Import ConstructiveAbs.
Require Import ConstructiveLimits.
Require Import ConstructiveSum.
Local Open Scope ConstructiveReals.
(**
Definition and properties of powers.
WARNING: this file is experimental and likely to change in future releases.
*)
Fixpoint CRpow {R : ConstructiveReals} (r:CRcarrier R) (n:nat) : CRcarrier R :=
match n with
| O => 1
| S n => r * (CRpow r n)
end.
Lemma CRpow_ge_one : forall {R : ConstructiveReals} (x : CRcarrier R) (n : nat),
1 <= x
-> 1 <= CRpow x n.
Proof.
induction n.
- intros. apply CRle_refl.
- intros. simpl. apply (CRle_trans _ (x * 1)).
rewrite CRmult_1_r. exact H.
apply CRmult_le_compat_l_half. apply (CRlt_le_trans _ 1).
apply CRzero_lt_one. exact H.
apply IHn. exact H.
Qed.
Lemma CRpow_ge_zero : forall {R : ConstructiveReals} (x : CRcarrier R) (n : nat),
0 <= x
-> 0 <= CRpow x n.
Proof.
induction n.
- intros. apply CRlt_asym, CRzero_lt_one.
- intros. simpl. apply CRmult_le_0_compat.
exact H. apply IHn. exact H.
Qed.
Lemma CRpow_gt_zero : forall {R : ConstructiveReals} (x : CRcarrier R) (n : nat),
0 < x
-> 0 < CRpow x n.
Proof.
induction n.
- intros. apply CRzero_lt_one.
- intros. simpl. apply CRmult_lt_0_compat. exact H.
apply IHn. exact H.
Qed.
Lemma CRpow_mult : forall {R : ConstructiveReals} (x y : CRcarrier R) (n:nat),
CRpow x n * CRpow y n == CRpow (x*y) n.
Proof.
induction n.
- simpl. rewrite CRmult_1_r. reflexivity.
- simpl. rewrite <- IHn. do 2 rewrite <- (Rmul_assoc (CRisRing R)).
apply CRmult_morph. reflexivity.
rewrite <- (Rmul_comm (CRisRing R)). rewrite <- (Rmul_assoc (CRisRing R)).
apply CRmult_morph. reflexivity.
rewrite <- (Rmul_comm (CRisRing R)). reflexivity.
Qed.
Lemma CRpow_one : forall {R : ConstructiveReals} (n:nat),
@CRpow R 1 n == 1.
Proof.
induction n. reflexivity.
transitivity (CRmult R 1 (CRpow 1 n)). reflexivity.
rewrite IHn. rewrite CRmult_1_r. reflexivity.
Qed.
Lemma CRpow_proper : forall {R : ConstructiveReals} (x y : CRcarrier R) (n : nat),
x == y -> CRpow x n == CRpow y n.
Proof.
induction n.
- intros. reflexivity.
- intros. simpl. rewrite IHn, H. reflexivity. exact H.
Qed.
Lemma CRpow_inv : forall {R : ConstructiveReals} (x : CRcarrier R) (xPos : 0 < x) (n : nat),
CRpow (CRinv R x (inr xPos)) n
== CRinv R (CRpow x n) (inr (CRpow_gt_zero x n xPos)).
Proof.
induction n.
- rewrite CRinv_1. reflexivity.
- transitivity (CRinv R x (inr xPos) * CRpow (CRinv R x (inr xPos)) n).
reflexivity. rewrite IHn.
assert (0 < x * CRpow x n).
{ apply CRmult_lt_0_compat. exact xPos. apply CRpow_gt_zero, xPos. }
rewrite <- (CRinv_mult_distr _ _ _ _ (inr H)).
apply CRinv_morph. reflexivity.
Qed.
Lemma CRpow_plus_distr : forall {R : ConstructiveReals} (x : CRcarrier R) (n p:nat),
CRpow x n * CRpow x p == CRpow x (n+p).
Proof.
induction n.
- intros. simpl. rewrite CRmult_1_l. reflexivity.
- intros. simpl. rewrite CRmult_assoc. apply CRmult_morph.
reflexivity. apply IHn.
Qed.
Lemma CR_double : forall {R : ConstructiveReals} (x:CRcarrier R),
CR_of_Q R 2 * x == x + x.
Proof.
intros R x. rewrite (CR_of_Q_morph R 2 (1+1)).
2: reflexivity. rewrite CR_of_Q_plus.
rewrite CRmult_plus_distr_r, CRmult_1_l. reflexivity.
Qed.
Lemma GeoCvZero : forall {R : ConstructiveReals},
CR_cv R (fun n:nat => CRpow (CR_of_Q R (1#2)) n) 0.
Proof.
intro R. assert (forall n:nat, INR n < CRpow (CR_of_Q R 2) n).
{ induction n. unfold INR; simpl.
apply CRzero_lt_one. unfold INR. fold (1+n)%nat.
rewrite Nat2Z.inj_add.
rewrite (CR_of_Q_morph R _ ((Z.of_nat 1 # 1) + (Z.of_nat n #1))).
2: symmetry; apply Qinv_plus_distr.
rewrite CR_of_Q_plus.
replace (CRpow (CR_of_Q R 2) (1 + n))
with (CR_of_Q R 2 * CRpow (CR_of_Q R 2) n).
2: reflexivity. rewrite CR_double.
apply CRplus_le_lt_compat.
2: exact IHn. simpl.
apply CRpow_ge_one. apply CR_of_Q_le. discriminate. }
intros p. exists (Pos.to_nat p). intros.
unfold CRminus. rewrite CRopp_0. rewrite CRplus_0_r.
rewrite CRabs_right.
2: apply CRpow_ge_zero; apply CR_of_Q_le; discriminate.
apply CRlt_asym.
apply (CRmult_lt_reg_l (CR_of_Q R (Z.pos p # 1))).
apply CR_of_Q_lt. reflexivity. rewrite <- CR_of_Q_mult.
rewrite (CR_of_Q_morph R ((Z.pos p # 1) * (1 # p)) 1).
2: unfold Qmult, Qeq, Qnum, Qden; ring_simplify; reflexivity.
apply (CRmult_lt_reg_r (CRpow (CR_of_Q R 2) i)).
apply CRpow_gt_zero.
apply CR_of_Q_lt. reflexivity.
rewrite CRmult_assoc. rewrite CRpow_mult.
rewrite (CRpow_proper (CR_of_Q R (1 # 2) * CR_of_Q R 2) 1), CRpow_one.
rewrite CRmult_1_r, CRmult_1_l.
apply (CRle_lt_trans _ (INR i)). 2: exact (H i). clear H.
apply CR_of_Q_le. unfold Qle,Qnum,Qden.
do 2 rewrite Z.mul_1_r.
rewrite <- positive_nat_Z. apply Nat2Z.inj_le, H0.
rewrite <- CR_of_Q_mult. setoid_replace ((1#2)*2)%Q with 1%Q.
reflexivity. reflexivity.
Qed.
Lemma GeoFiniteSum : forall {R : ConstructiveReals} (n:nat),
CRsum (CRpow (CR_of_Q R (1#2))) n == CR_of_Q R 2 - CRpow (CR_of_Q R (1#2)) n.
Proof.
induction n.
- unfold CRsum, CRpow. simpl (1%ConstructiveReals).
unfold CRminus. rewrite (CR_of_Q_plus R 1 1).
rewrite CRplus_assoc.
rewrite CRplus_opp_r, CRplus_0_r. reflexivity.
- setoid_replace (CRsum (CRpow (CR_of_Q R (1 # 2))) (S n))
with (CRsum (CRpow (CR_of_Q R (1 # 2))) n + CRpow (CR_of_Q R (1 # 2)) (S n)).
2: reflexivity.
rewrite IHn. clear IHn. unfold CRminus.
rewrite CRplus_assoc. apply CRplus_morph. reflexivity.
apply (CRplus_eq_reg_l
(CRpow (CR_of_Q R (1 # 2)) n + CRpow (CR_of_Q R (1 # 2)) (S n))).
rewrite (CRplus_assoc _ _ (-CRpow (CR_of_Q R (1 # 2)) (S n))),
CRplus_opp_r, CRplus_0_r.
rewrite (CRplus_comm (CRpow (CR_of_Q R (1 # 2)) n)), CRplus_assoc.
rewrite <- (CRplus_assoc (CRpow (CR_of_Q R (1 # 2)) n)), CRplus_opp_r,
CRplus_0_l, <- CR_double.
setoid_replace (CRpow (CR_of_Q R (1 # 2)) (S n))
with (CR_of_Q R (1 # 2) * CRpow (CR_of_Q R (1 # 2)) n).
2: reflexivity.
rewrite <- CRmult_assoc, <- CR_of_Q_mult.
setoid_replace (2 * (1 # 2))%Q with 1%Q.
apply CRmult_1_l. reflexivity.
Qed.
Lemma GeoHalfBelowTwo : forall {R : ConstructiveReals} (n:nat),
CRsum (CRpow (CR_of_Q R (1#2))) n < CR_of_Q R 2.
Proof.
intros. rewrite <- (CRplus_0_r (CR_of_Q R 2)), GeoFiniteSum.
apply CRplus_lt_compat_l. rewrite <- CRopp_0.
apply CRopp_gt_lt_contravar.
apply CRpow_gt_zero. apply CR_of_Q_lt. reflexivity.
Qed.
Lemma GeoHalfTwo : forall {R : ConstructiveReals},
series_cv (fun n => CRpow (CR_of_Q R (1#2)) n) (CR_of_Q R 2).
Proof.
intro R.
apply (CR_cv_eq _ (fun n => CR_of_Q R 2 - CRpow (CR_of_Q R (1 # 2)) n)).
- intro n. rewrite GeoFiniteSum. reflexivity.
- assert (forall n:nat, INR n < CRpow (CR_of_Q R 2) n).
{ induction n. unfold INR; simpl.
apply CRzero_lt_one. apply (CRlt_le_trans _ (CRpow (CR_of_Q R 2) n + 1)).
unfold INR.
rewrite Nat2Z.inj_succ, <- Z.add_1_l.
rewrite (CR_of_Q_morph R _ (1 + (Z.of_nat n #1))).
2: symmetry; apply Qinv_plus_distr. rewrite CR_of_Q_plus.
rewrite CRplus_comm.
apply CRplus_lt_compat_r, IHn.
setoid_replace (CRpow (CR_of_Q R 2) (S n))
with (CRpow (CR_of_Q R 2) n + CRpow (CR_of_Q R 2) n).
apply CRplus_le_compat. apply CRle_refl.
apply CRpow_ge_one. apply CR_of_Q_le. discriminate.
rewrite <- CR_double. reflexivity. }
intros n. exists (Pos.to_nat n). intros.
setoid_replace (CR_of_Q R 2 - CRpow (CR_of_Q R (1 # 2)) i - CR_of_Q R 2)
with (- CRpow (CR_of_Q R (1 # 2)) i).
rewrite CRabs_opp. rewrite CRabs_right.
assert (0 < CR_of_Q R 2).
{ apply CR_of_Q_lt. reflexivity. }
rewrite (CRpow_proper _ (CRinv R (CR_of_Q R 2) (inr H1))).
rewrite CRpow_inv. apply CRlt_asym.
apply (CRmult_lt_reg_l (CRpow (CR_of_Q R 2) i)). apply CRpow_gt_zero, H1.
rewrite CRinv_r.
apply (CRmult_lt_reg_r (CR_of_Q R (Z.pos n#1))).
apply CR_of_Q_lt. reflexivity.
rewrite CRmult_1_l, CRmult_assoc.
rewrite <- CR_of_Q_mult.
rewrite (CR_of_Q_morph R ((1 # n) * (Z.pos n # 1)) 1). 2: reflexivity.
rewrite CRmult_1_r. apply (CRle_lt_trans _ (INR i)).
2: apply H. apply CR_of_Q_le.
unfold Qle, Qnum, Qden. do 2 rewrite Z.mul_1_r. destruct i.
exfalso. inversion H0. pose proof (Pos2Nat.is_pos n).
rewrite H3 in H2. inversion H2.
apply Pos2Z.pos_le_pos. apply Pos2Nat.inj_le.
apply (le_trans _ _ _ H0). rewrite SuccNat2Pos.id_succ. apply le_refl.
apply (CRmult_eq_reg_l (CR_of_Q R 2)). right. exact H1.
rewrite CRinv_r. rewrite <- CR_of_Q_mult.
setoid_replace (2 * (1 # 2))%Q with 1%Q.
reflexivity. reflexivity.
apply CRlt_asym, CRpow_gt_zero.
apply CR_of_Q_lt. reflexivity.
unfold CRminus. rewrite CRplus_comm, <- CRplus_assoc.
rewrite CRplus_opp_l, CRplus_0_l. reflexivity.
Qed.
|