aboutsummaryrefslogtreecommitdiff
path: root/theories/Reals/Abstract/ConstructiveLimits.v
blob: 6fe4d4ca3f8b1e83f09660bd040c3e83745d7f8a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
(************************************************************************)
(*         *   The Coq Proof Assistant / The Coq Development Team       *)
(*  v      *   INRIA, CNRS and contributors - Copyright 1999-2019       *)
(* <O___,, *       (see CREDITS file for the list of authors)           *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)

Require Import QArith Qabs.
Require Import ConstructiveReals.
Require Import ConstructiveAbs.

Local Open Scope ConstructiveReals.


(** Definitions and basic properties of limits of real sequences
    and series.

    WARNING: this file is experimental and likely to change in future releases.
*)


Lemma CR_cv_extens
  : forall {R : ConstructiveReals} (xn yn : nat -> CRcarrier R) (l : CRcarrier R),
    (forall n:nat, xn n == yn n)
    -> CR_cv R xn l
    -> CR_cv R yn l.
Proof.
  intros. intro p. specialize (H0 p) as [n nmaj]. exists n.
  intros. specialize (nmaj i H0).
  apply (CRle_trans _ (CRabs R (CRminus R (xn i) l))).
  2: exact nmaj. rewrite <- CRabs_def. split.
  - apply (CRle_trans _ (CRminus R (xn i) l)).
    apply CRplus_le_compat_r. specialize (H i) as [H _]. exact H.
    pose proof (CRabs_def R (CRminus R (xn i) l) (CRabs R (CRminus R (xn i) l)))
      as [_ H1].
    apply H1. apply CRle_refl.
  - apply (CRle_trans _ (CRopp R (CRminus R (xn i) l))).
    intro abs. apply CRopp_lt_cancel, CRplus_lt_reg_r in abs.
    specialize (H i) as [_ H]. contradiction.
    pose proof (CRabs_def R (CRminus R (xn i) l) (CRabs R (CRminus R (xn i) l)))
      as [_ H1].
    apply H1. apply CRle_refl.
Qed.

Lemma CR_cv_opp : forall {R : ConstructiveReals} (xn : nat -> CRcarrier R) (l : CRcarrier R),
    CR_cv R xn l
    -> CR_cv R (fun n => - xn n) (- l).
Proof.
  intros. intro p. specialize (H p) as [n nmaj].
  exists n. intros. specialize (nmaj i H).
  apply (CRle_trans _ (CRabs R (CRminus R (xn i) l))).
  2: exact nmaj. clear nmaj H.
  unfold CRminus. rewrite <- CRopp_plus_distr, CRabs_opp.
  apply CRle_refl.
Qed.

Lemma CR_cv_plus : forall {R : ConstructiveReals} (xn yn : nat -> CRcarrier R) (a b : CRcarrier R),
    CR_cv R xn a
    -> CR_cv R yn b
    -> CR_cv R (fun n => xn n + yn n) (a + b).
Proof.
  intros. intro p.
  specialize (H (2*p)%positive) as [i imaj].
  specialize (H0 (2*p)%positive) as [j jmaj].
  exists (max i j). intros.
  apply (CRle_trans
           _ (CRabs R (CRplus R (CRminus R (xn i0) a) (CRminus R (yn i0) b)))).
  apply CRabs_morph.
  - unfold CRminus.
    do 2 rewrite <- (Radd_assoc (CRisRing R)).
    apply CRplus_morph. reflexivity. rewrite CRopp_plus_distr.
    destruct (CRisRing R). rewrite Radd_comm, <- Radd_assoc.
    apply CRplus_morph. reflexivity.
    rewrite Radd_comm. reflexivity.
  - apply (CRle_trans _ _ _ (CRabs_triang _ _)).
    apply (CRle_trans _ (CRplus R (CR_of_Q R (1 # 2*p)) (CR_of_Q R (1 # 2*p)))).
    apply CRplus_le_compat. apply imaj, (le_trans _ _ _ (Nat.le_max_l _ _) H).
    apply jmaj, (le_trans _ _ _ (Nat.le_max_r _ _) H).
    apply (CRle_trans _ (CR_of_Q R ((1 # 2 * p) + (1 # 2 * p)))).
    apply CR_of_Q_plus. apply CR_of_Q_le.
    rewrite Qinv_plus_distr. setoid_replace (1 + 1 # 2 * p) with (1 # p).
    apply Qle_refl. reflexivity.
Qed.

Lemma CR_cv_unique : forall {R : ConstructiveReals} (xn : nat -> CRcarrier R)
                       (a b : CRcarrier R),
    CR_cv R xn a
    -> CR_cv R xn b
    -> a == b.
Proof.
  intros. assert (CR_cv R (fun _ => 0) (CRminus R b a)).
  { apply (CR_cv_extens (fun n => CRminus R (xn n) (xn n))).
    intro n. unfold CRminus. apply CRplus_opp_r.
    apply CR_cv_plus. exact H0. apply CR_cv_opp, H. }
  assert (forall q r : Q, 0 < q -> / q < r -> 1 < q * r)%Q.
  { intros. apply (Qmult_lt_l _ _ q) in H3.
    rewrite Qmult_inv_r in H3. exact H3. intro abs.
    rewrite abs in H2. exact (Qlt_irrefl 0 H2). exact H2. }
  clear H H0 xn. remember (CRminus R b a) as z.
  assert (z == 0). split.
  - intro abs. destruct (CR_Q_dense R _ _ abs) as [q [H0 H]].
    destruct (Qarchimedean (/(-q))) as [p pmaj].
    specialize (H1 p) as [n nmaj].
    specialize (nmaj n (le_refl n)). apply nmaj.
    apply (CRlt_trans _ (CR_of_Q R (-q))). apply CR_of_Q_lt.
    apply H2 in pmaj.
    apply (Qmult_lt_r _ _ (1#p)) in pmaj. 2: reflexivity.
    rewrite Qmult_1_l, <- Qmult_assoc in pmaj.
    setoid_replace ((Z.pos p # 1) * (1 # p))%Q with 1%Q in pmaj.
    rewrite Qmult_1_r in pmaj. exact pmaj. unfold Qeq, Qnum, Qden; simpl.
    do 2 rewrite Pos.mul_1_r. reflexivity.
    apply (Qplus_lt_l _ _ q). ring_simplify.
    apply (lt_CR_of_Q R q 0). exact H.
    apply (CRlt_le_trans _ (CRopp R z)).
    apply (CRle_lt_trans _ (CRopp R (CR_of_Q R q))). apply CR_of_Q_opp.
    apply CRopp_gt_lt_contravar, H0.
    apply (CRle_trans _ (CRabs R (CRopp R z))).
    pose proof (CRabs_def R (CRopp R z) (CRabs R (CRopp R z))) as [_ H1].
    apply H1, CRle_refl.
    apply CRabs_morph. unfold CRminus. symmetry. apply CRplus_0_l.
  - intro abs. destruct (CR_Q_dense R _ _ abs) as [q [H0 H]].
    destruct (Qarchimedean (/q)) as [p pmaj].
    specialize (H1 p) as [n nmaj].
    specialize (nmaj n (le_refl n)). apply nmaj.
    apply (CRlt_trans _ (CR_of_Q R q)). apply CR_of_Q_lt.
    apply H2 in pmaj.
    apply (Qmult_lt_r _ _ (1#p)) in pmaj. 2: reflexivity.
    rewrite Qmult_1_l, <- Qmult_assoc in pmaj.
    setoid_replace ((Z.pos p # 1) * (1 # p))%Q with 1%Q in pmaj.
    rewrite Qmult_1_r in pmaj. exact pmaj. unfold Qeq, Qnum, Qden; simpl.
    do 2 rewrite Pos.mul_1_r. reflexivity.
    apply (lt_CR_of_Q R 0 q). exact H0.
    apply (CRlt_le_trans _ _ _ H).
    apply (CRle_trans _ (CRabs R (CRopp R z))).
    apply (CRle_trans _ (CRabs R z)).
    pose proof (CRabs_def R z (CRabs R z)) as [_ H1].
    apply H1. apply CRle_refl. apply CRabs_opp.
    apply CRabs_morph. unfold CRminus. symmetry. apply CRplus_0_l.
  - subst z. apply (CRplus_eq_reg_l (CRopp R a)).
    rewrite CRplus_opp_l, CRplus_comm. symmetry. exact H.
Qed.

Lemma CR_cv_eq : forall {R : ConstructiveReals}
                   (v u : nat -> CRcarrier R) (s : CRcarrier R),
    (forall n:nat, u n == v n)
    -> CR_cv R u s
    -> CR_cv R v s.
Proof.
  intros R v u s seq H1 p. specialize (H1 p) as [N H0].
  exists N. intros. unfold CRminus. rewrite <- seq. apply H0, H.
Qed.

Lemma CR_cauchy_eq : forall {R : ConstructiveReals}
                       (un vn : nat -> CRcarrier R),
    (forall n:nat, un n == vn n)
    -> CR_cauchy R un
    -> CR_cauchy R vn.
Proof.
  intros. intro p. specialize (H0 p) as [n H0].
  exists n. intros. specialize (H0 i j H1 H2).
  unfold CRminus in H0. rewrite <- CRabs_def.
  rewrite <- CRabs_def in H0.
  do 2 rewrite H in H0. exact H0.
Qed.

Lemma CR_cv_proper : forall {R : ConstructiveReals}
                       (un : nat -> CRcarrier R) (a b : CRcarrier R),
    CR_cv R un a
    -> a == b
    -> CR_cv R un b.
Proof.
  intros. intro p. specialize (H p) as [n H].
  exists n. intros. unfold CRminus. rewrite <- H0. apply H, H1.
Qed.

Instance CR_cv_morph
  : forall {R : ConstructiveReals} (un : nat -> CRcarrier R), CMorphisms.Proper
      (CMorphisms.respectful (CReq R) CRelationClasses.iffT) (CR_cv R un).
Proof.
  split. intros. apply (CR_cv_proper un x). exact H0. exact H.
  intros. apply (CR_cv_proper un y). exact H0. symmetry. exact H.
Qed.

Lemma Un_cv_nat_real : forall {R : ConstructiveReals}
                         (un : nat -> CRcarrier R) (l : CRcarrier R),
    CR_cv R un l
    -> forall eps : CRcarrier R,
      0 < eps
      -> { p : nat & forall i:nat, le p i -> CRabs R (un i - l) < eps }.
Proof.
  intros. destruct (CR_archimedean R (CRinv R eps (inr H0))) as [k kmaj].
  assert (0 < CR_of_Q R (Z.pos k # 1)).
  { apply CR_of_Q_lt. reflexivity. }
  specialize (H k) as [p pmaj].
  exists p. intros.
  apply (CRle_lt_trans _ (CR_of_Q R (1 # k))).
  apply pmaj, H.
  apply (CRmult_lt_reg_l (CR_of_Q R (Z.pos k # 1))). exact H1.
  rewrite <- CR_of_Q_mult.
  apply (CRle_lt_trans _ 1).
  apply CR_of_Q_le.
  unfold Qle; simpl. do 2 rewrite Pos.mul_1_r. apply Z.le_refl.
  apply (CRmult_lt_reg_r (CRinv R eps (inr H0))).
  apply CRinv_0_lt_compat, H0. rewrite CRmult_1_l, CRmult_assoc.
  rewrite CRinv_r, CRmult_1_r. exact kmaj.
Qed.

Lemma Un_cv_real_nat : forall {R : ConstructiveReals}
                         (un : nat -> CRcarrier R) (l : CRcarrier R),
    (forall eps : CRcarrier R,
      0 < eps
      -> { p : nat & forall i:nat, le p i -> CRabs R (un i - l) < eps })
    -> CR_cv R un l.
Proof.
  intros. intros n.
  specialize (H (CR_of_Q R (1#n))) as [p pmaj].
  apply CR_of_Q_lt. reflexivity.
  exists p. intros. apply CRlt_asym. apply pmaj. apply H.
Qed.

Lemma CR_cv_minus :
  forall {R : ConstructiveReals}
    (An Bn:nat -> CRcarrier R) (l1 l2:CRcarrier R),
    CR_cv R An l1 -> CR_cv R Bn l2
    -> CR_cv R (fun i:nat => An i - Bn i) (l1 - l2).
Proof.
  intros. apply CR_cv_plus. apply H.
  intros p. specialize (H0 p) as [n H0]. exists n.
  intros. setoid_replace (- Bn i - - l2) with (- (Bn i - l2)).
  rewrite CRabs_opp. apply H0, H1. unfold CRminus.
  rewrite CRopp_plus_distr, CRopp_involutive. reflexivity.
Qed.

Lemma CR_cv_nonneg :
  forall {R : ConstructiveReals} (An:nat -> CRcarrier R) (l:CRcarrier R),
    CR_cv R An l
    -> (forall n:nat, 0 <= An n)
    -> 0 <= l.
Proof.
  intros. intro abs.
  destruct (Un_cv_nat_real _ l H (-l)) as [N H1].
  rewrite <- CRopp_0. apply CRopp_gt_lt_contravar. apply abs.
  specialize (H1 N (le_refl N)).
  pose proof (CRabs_def R (An N - l) (CRabs R (An N - l))) as [_ H2].
  apply (CRle_lt_trans _ _ _ (CRle_abs _)) in H1.
  apply (H0 N). apply (CRplus_lt_reg_r (-l)).
  rewrite CRplus_0_l. exact H1.
Qed.

Lemma CR_cv_scale : forall {R : ConstructiveReals} (u : nat -> CRcarrier R)
                      (a : CRcarrier R) (s : CRcarrier R),
    CR_cv R u s -> CR_cv R (fun n => u n * a) (s * a).
Proof.
  intros. intros n.
  destruct (CR_archimedean R (1 + CRabs R a)).
  destruct (H (n * x)%positive).
  exists x0. intros.
  unfold CRminus. rewrite CRopp_mult_distr_l.
  rewrite <- CRmult_plus_distr_r.
  apply (CRle_trans _ ((CR_of_Q R (1 # n * x)) * CRabs R a)).
  rewrite CRabs_mult. apply CRmult_le_compat_r. apply CRabs_pos.
  apply c0, H0.
  setoid_replace (1 # n * x)%Q with ((1 # n) *(1# x))%Q. 2: reflexivity.
  rewrite <- (CRmult_1_r (CR_of_Q R (1#n))).
  rewrite CR_of_Q_mult, CRmult_assoc.
  apply CRmult_le_compat_l.
  apply CR_of_Q_le. discriminate. intro abs.
  apply (CRmult_lt_compat_l (CR_of_Q R (Z.pos x #1))) in abs.
  rewrite CRmult_1_r, <- CRmult_assoc, <- CR_of_Q_mult in abs.
  rewrite (CR_of_Q_morph R ((Z.pos x # 1) * (1 # x))%Q 1%Q) in abs.
  rewrite CRmult_1_l in abs.
  apply (CRlt_asym _ _ abs), (CRlt_trans _ (1 + CRabs R a)).
  2: exact c. rewrite <- CRplus_0_l, <- CRplus_assoc.
  apply CRplus_lt_compat_r. rewrite CRplus_0_r. apply CRzero_lt_one.
  unfold Qmult, Qeq, Qnum, Qden. ring_simplify. rewrite Pos.mul_1_l.
  reflexivity.
  apply (CRlt_trans _ (1+CRabs R a)). 2: exact c.
  rewrite CRplus_comm.
  rewrite <- (CRplus_0_r 0). apply CRplus_le_lt_compat.
  apply CRabs_pos. apply CRzero_lt_one.
Qed.

Lemma CR_cv_const : forall {R : ConstructiveReals} (a : CRcarrier R),
    CR_cv R (fun n => a) a.
Proof.
  intros a p. exists O. intros.
  unfold CRminus. rewrite CRplus_opp_r.
  rewrite CRabs_right.
  apply CR_of_Q_le. discriminate. apply CRle_refl.
Qed.

Lemma Rcv_cauchy_mod : forall {R : ConstructiveReals}
                         (un : nat -> CRcarrier R) (l : CRcarrier R),
    CR_cv R un l -> CR_cauchy R un.
Proof.
  intros. intros p. specialize (H (2*p)%positive) as [k H].
  exists k. intros n q H0 H1.
  setoid_replace (1#p)%Q with ((1#2*p) + (1#2*p))%Q.
  rewrite CR_of_Q_plus.
  setoid_replace (un n - un q) with ((un n - l) - (un q - l)).
  apply (CRle_trans _ _ _ (CRabs_triang _ _)).
  apply CRplus_le_compat.
  - apply H, H0.
  - rewrite CRabs_opp. apply H. apply H1.
  - unfold CRminus. rewrite CRplus_assoc. apply CRplus_morph.
    reflexivity. rewrite CRplus_comm, CRopp_plus_distr, CRopp_involutive.
    rewrite CRplus_assoc, CRplus_opp_r, CRplus_0_r. reflexivity.
  - rewrite Qinv_plus_distr. reflexivity.
Qed.

Lemma CR_growing_transit : forall {R : ConstructiveReals} (un : nat -> CRcarrier R),
    (forall n:nat, un n <= un (S n))
    -> forall n p : nat, le n p -> un n <= un p.
Proof.
  induction p.
  - intros. inversion H0. apply CRle_refl.
  - intros. apply Nat.le_succ_r in H0. destruct H0.
    apply (CRle_trans _ (un p)). apply IHp, H0. apply H.
    subst n. apply CRle_refl.
Qed.

Lemma growing_ineq :
  forall {R : ConstructiveReals} (Un:nat -> CRcarrier R) (l:CRcarrier R),
    (forall n:nat, Un n <= Un (S n))
    -> CR_cv R Un l -> forall n:nat, Un n <= l.
Proof.
  intros. intro abs.
  destruct (Un_cv_nat_real _ l H0 (Un n - l)) as [N H1].
  rewrite <- (CRplus_opp_r l). apply CRplus_lt_compat_r. exact abs.
  specialize (H1 (max n N) (Nat.le_max_r _ _)).
  apply (CRle_lt_trans _ _ _ (CRle_abs _)) in H1.
  apply CRplus_lt_reg_r in H1.
  apply (CR_growing_transit Un H n (max n N)). apply Nat.le_max_l.
  exact H1.
Qed.

Lemma CR_cv_open_below
  : forall {R : ConstructiveReals}
      (un : nat -> CRcarrier R) (m l : CRcarrier R),
    CR_cv R un l
    -> m < l
    -> { n : nat & forall i:nat, le n i -> m < un i }.
Proof.
  intros. apply CRlt_minus in H0.
  pose proof (Un_cv_nat_real _ l H (l-m) H0) as [n nmaj].
  exists n. intros. specialize (nmaj i H1).
  apply CRabs_lt in nmaj.
  destruct nmaj as [_ nmaj]. unfold CRminus in nmaj.
  rewrite CRopp_plus_distr, CRopp_involutive, CRplus_comm in nmaj.
  apply CRplus_lt_reg_l in nmaj.
  apply (CRplus_lt_reg_l R (-m)). rewrite CRplus_opp_l.
  apply (CRplus_lt_reg_r (-un i)). rewrite CRplus_0_l.
  rewrite CRplus_assoc, CRplus_opp_r, CRplus_0_r. exact nmaj.
Qed.

Lemma CR_cv_open_above
  : forall {R : ConstructiveReals}
      (un : nat -> CRcarrier R) (m l : CRcarrier R),
    CR_cv R un l
    -> l < m
    -> { n : nat & forall i:nat, le n i -> un i < m }.
Proof.
  intros. apply CRlt_minus in H0.
  pose proof (Un_cv_nat_real _ l H (m-l) H0) as [n nmaj].
  exists n. intros. specialize (nmaj i H1).
  apply CRabs_lt in nmaj.
  destruct nmaj as [nmaj _]. apply CRplus_lt_reg_r in nmaj.
  exact nmaj.
Qed.

Lemma CR_cv_bound_down : forall {R : ConstructiveReals}
                           (u : nat -> CRcarrier R) (A l : CRcarrier R) (N : nat),
    (forall n:nat, le N n -> A <= u n)
    -> CR_cv R u l
    -> A <= l.
Proof.
  intros. intro r.
  apply (CRplus_lt_compat_r (-l)) in r. rewrite CRplus_opp_r in r.
  destruct (Un_cv_nat_real _ l H0 (A - l) r) as [n H1].
  apply (H (n+N)%nat).
  rewrite <- (plus_0_l N). rewrite Nat.add_assoc.
  apply Nat.add_le_mono_r. apply le_0_n.
  specialize (H1 (n+N)%nat). apply (CRplus_lt_reg_r (-l)).
  assert (n + N >= n)%nat. rewrite <- (plus_0_r n). rewrite <- plus_assoc.
  apply Nat.add_le_mono_l. apply le_0_n. specialize (H1 H2).
  apply (CRle_lt_trans _ (CRabs R (u (n + N)%nat - l))).
  apply CRle_abs. assumption.
Qed.

Lemma CR_cv_bound_up : forall {R : ConstructiveReals}
                         (u : nat -> CRcarrier R) (A l : CRcarrier R) (N : nat),
    (forall n:nat, le N n -> u n <= A)
    -> CR_cv R u l
    -> l <= A.
Proof.
  intros. intro r.
  apply (CRplus_lt_compat_r (-A)) in r. rewrite CRplus_opp_r in r.
  destruct (Un_cv_nat_real _ l H0 (l-A) r) as [n H1].
  apply (H (n+N)%nat).
  - rewrite <- (plus_0_l N). apply Nat.add_le_mono_r. apply le_0_n.
  - specialize (H1 (n+N)%nat). apply (CRplus_lt_reg_l R (l - A - u (n+N)%nat)).
    unfold CRminus. repeat rewrite CRplus_assoc.
    rewrite CRplus_opp_l, CRplus_0_r, (CRplus_comm (-A)).
    rewrite CRplus_assoc, CRplus_opp_r, CRplus_0_r.
    apply (CRle_lt_trans _ _ _ (CRle_abs _)).
    fold (l - u (n+N)%nat). rewrite CRabs_minus_sym. apply H1.
    rewrite <- (plus_0_r n). rewrite <- plus_assoc.
    apply Nat.add_le_mono_l. apply le_0_n.
Qed.

Lemma CR_cv_le : forall {R : ConstructiveReals}
                   (u v : nat -> CRcarrier R) (a b : CRcarrier R),
    (forall n:nat, u n <= v n)
    -> CR_cv R u a
    -> CR_cv R v b
    -> a <= b.
Proof.
  intros. apply (CRplus_le_reg_r (-a)). rewrite CRplus_opp_r.
  apply (CR_cv_bound_down (fun i:nat => v i - u i) _ _ 0).
  intros. rewrite <- (CRplus_opp_l (u n)).
  unfold CRminus.
  rewrite (CRplus_comm (v n)). apply CRplus_le_compat_l.
  apply H. apply CR_cv_plus. exact H1. apply CR_cv_opp, H0.
Qed.

Lemma CR_cv_abs_cont : forall {R : ConstructiveReals}
                         (u : nat -> CRcarrier R) (s : CRcarrier R),
    CR_cv R u s
    -> CR_cv R (fun n => CRabs R (u n)) (CRabs R s).
Proof.
  intros. intros eps. specialize (H eps) as [N lim].
  exists N. intros n H.
  apply (CRle_trans _ (CRabs R (u n - s))). apply CRabs_triang_inv2.
  apply lim. assumption.
Qed.

Lemma CR_cv_dist_cont : forall {R : ConstructiveReals}
                          (u : nat -> CRcarrier R) (a s : CRcarrier R),
    CR_cv R u s
    -> CR_cv R (fun n => CRabs R (a - u n)) (CRabs R (a - s)).
Proof.
  intros. apply CR_cv_abs_cont.
  intros eps. specialize (H eps) as [N lim].
  exists N. intros n H.
  setoid_replace (a - u n - (a - s)) with (s - (u n)).
  specialize (lim n).
  rewrite CRabs_minus_sym.
  apply lim. assumption.
  unfold CRminus. rewrite CRopp_plus_distr, CRopp_involutive.
  rewrite (CRplus_comm a), (CRplus_comm s).
  rewrite CRplus_assoc. apply CRplus_morph. reflexivity.
  rewrite <- CRplus_assoc, CRplus_opp_r, CRplus_0_l. reflexivity.
Qed.

Lemma CR_cv_shift :
  forall {R : ConstructiveReals} f k l,
    CR_cv R (fun n => f (n + k)%nat) l -> CR_cv R f l.
Proof.
  intros. intros eps.
  specialize (H eps) as [N Nmaj].
  exists (N+k)%nat. intros n H.
  destruct (Nat.le_exists_sub k n).
  apply (le_trans _ (N + k)). 2: exact H.
  apply (le_trans _ (0 + k)). apply le_refl.
  rewrite <- Nat.add_le_mono_r. apply le_0_n.
  destruct H0.
  subst n. apply Nmaj. unfold ge in H.
  rewrite <- Nat.add_le_mono_r in H. exact H.
Qed.

Lemma CR_cv_shift' :
  forall {R : ConstructiveReals} f k l,
    CR_cv R f l -> CR_cv R (fun n => f (n + k)%nat) l.
Proof.
  intros R f' k l cvf eps; destruct (cvf eps) as [N Pn].
  exists N; intros n nN; apply Pn; auto with arith.
Qed.