blob: 9ca85d1bb913301d67f5a8afadf5861aeb441850 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
|
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * Copyright INRIA, CNRS and contributors *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
Require Import ZArith Int63 SpecFloat PrimFloat.
(** * Derived operations and mapping between primitive [float]s and [spec_float]s *)
Definition prec := 53%Z.
Definition emax := 1024%Z.
Notation emin := (emin prec emax).
Definition shift := 2101%Z. (** [= 2*emax + prec] *)
Definition frexp f :=
let (m, se) := frshiftexp f in
(m, (φ se - shift)%Z%int63).
Definition ldexp f e :=
let e' := Z.max (Z.min e (emax - emin)) (emin - emax - 1) in
ldshiftexp f (of_Z (e' + shift)).
Definition ulp f := ldexp one (fexp prec emax (snd (frexp f))).
(** [Prim2SF] is an injective function that will be useful to express
the properties of the implemented Binary64 format (see [FloatAxioms]).
*)
Definition Prim2SF f :=
if is_nan f then S754_nan
else if is_zero f then S754_zero (get_sign f)
else if is_infinity f then S754_infinity (get_sign f)
else
let (r, exp) := frexp f in
let e := (exp - prec)%Z in
let (shr, e') := shr_fexp prec emax (φ (normfr_mantissa r))%int63 e loc_Exact in
match shr_m shr with
| Zpos p => S754_finite (get_sign f) p e'
| Zneg _ | Z0 => S754_zero false (* must never occur *)
end.
Definition SF2Prim ef :=
match ef with
| S754_nan => nan
| S754_zero false => zero
| S754_zero true => neg_zero
| S754_infinity false => infinity
| S754_infinity true => neg_infinity
| S754_finite s m e =>
let pm := of_int63 (of_Z (Zpos m)) in
let f := ldexp pm e in
if s then (-f)%float else f
end.
|