aboutsummaryrefslogtreecommitdiff
path: root/theories/Bool/Zerob.v
blob: 418fc88489b4a9a6b454a821ba90926e0ef1b82b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
(************************************************************************)
(*         *   The Coq Proof Assistant / The Coq Development Team       *)
(*  v      *         Copyright INRIA, CNRS and contributors             *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)

Require Import Arith.
Require Import Bool.

Local Open Scope nat_scope.

Definition zerob (n:nat) : bool :=
  match n with
    | O => true
    | S _ => false
  end.

Lemma zerob_true_intro (n : nat) : n = 0 -> zerob n = true.
Proof.
  destruct n; [ trivial with bool | inversion 1 ].
Qed.
#[global]
Hint Resolve zerob_true_intro: bool.

Lemma zerob_true_elim (n : nat) : zerob n = true -> n = 0.
Proof.
  destruct n; [ trivial with bool | inversion 1 ].
Qed.

Lemma zerob_false_intro (n : nat) : n <> 0 -> zerob n = false.
Proof.
  destruct n; [ destruct 1; auto with bool | trivial with bool ].
Qed.
#[global]
Hint Resolve zerob_false_intro: bool.

Lemma zerob_false_elim (n : nat) : zerob n = false -> n <> 0.
Proof.
  destruct n; [ inversion 1 | auto with bool ].
Qed.