blob: 418fc88489b4a9a6b454a821ba90926e0ef1b82b (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
|
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * Copyright INRIA, CNRS and contributors *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
Require Import Arith.
Require Import Bool.
Local Open Scope nat_scope.
Definition zerob (n:nat) : bool :=
match n with
| O => true
| S _ => false
end.
Lemma zerob_true_intro (n : nat) : n = 0 -> zerob n = true.
Proof.
destruct n; [ trivial with bool | inversion 1 ].
Qed.
#[global]
Hint Resolve zerob_true_intro: bool.
Lemma zerob_true_elim (n : nat) : zerob n = true -> n = 0.
Proof.
destruct n; [ trivial with bool | inversion 1 ].
Qed.
Lemma zerob_false_intro (n : nat) : n <> 0 -> zerob n = false.
Proof.
destruct n; [ destruct 1; auto with bool | trivial with bool ].
Qed.
#[global]
Hint Resolve zerob_false_intro: bool.
Lemma zerob_false_elim (n : nat) : zerob n = false -> n <> 0.
Proof.
destruct n; [ inversion 1 | auto with bool ].
Qed.
|