aboutsummaryrefslogtreecommitdiff
path: root/theories/Bool/Bvector.v
blob: 17c06053cfb653b53eddc6be63e4530e39700afe (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
(************************************************************************)
(*         *   The Coq Proof Assistant / The Coq Development Team       *)
(*  v      *         Copyright INRIA, CNRS and contributors             *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)

(** Bit vectors. Contribution by Jean Duprat (ENS Lyon). *)

Require Export Bool Sumbool.
Require Vector.
Export Vector.VectorNotations.
Require Import Minus.

Local Open Scope nat_scope.

(**
We build bit vectors in the spirit of List.v.
The size of the vector is a parameter which is too important
to be accessible only via function "length".
The first idea is to build a record with both the list and the length.
Unfortunately, this a posteriori verification leads to
numerous lemmas for handling lengths.
The second idea is to use a dependent type in which the length
is a building parameter. This leads to structural induction that
are slightly more complex and in some cases we will use a proof-term
as definition, since the type inference mechanism for pattern-matching
is sometimes weaker that the one implemented for elimination tactiques.
*)

Section BOOLEAN_VECTORS.

(**
A bit vector is a vector over booleans.
Notice that the LEAST significant bit comes first (little-endian representation).
We extract the least significant bit (head) and the rest of the vector (tail).
We compute bitwise operation on vector: negation, and, or, xor.
We compute size-preserving shifts: to the left (towards most significant bits,
we hence use Vshiftout) and to the right (towards least significant bits,
we use Vshiftin) by inserting a 'carry' bit (logical shift) or by repeating
the most significant bit (arithmetical shift).
NOTA BENE: all shift operations expect predecessor of size as parameter
(they only work on non-empty vectors).
*)

Definition Bvector := Vector.t bool.

Definition Bnil := @Vector.nil bool.

Definition Bcons := @Vector.cons bool.

Definition Bvect_true := Vector.const true.

Definition Bvect_false := Vector.const false.

Definition Blow := @Vector.hd bool.

Definition Bhigh := @Vector.tl bool.

Definition Bsign := @Vector.last bool.

Definition Bneg := @Vector.map _ _ negb.

Definition BVand := @Vector.map2 _ _ _ andb.

Definition BVor := @Vector.map2 _ _ _ orb.

Definition BVxor := @Vector.map2 _ _ _ xorb.

Definition BVeq m n := @Vector.eqb bool eqb m n.

Definition BshiftL (n:nat) (bv:Bvector (S n)) (carry:bool) :=
  Bcons carry n (Vector.shiftout bv).

Definition BshiftRl (n:nat) (bv:Bvector (S n)) (carry:bool) :=
  Bhigh (S n) (Vector.shiftin carry bv).

Definition BshiftRa (n:nat) (bv:Bvector (S n)) :=
  Bhigh (S n) (Vector.shiftrepeat bv).

Fixpoint BshiftL_iter (n:nat) (bv:Bvector (S n)) (p:nat) : Bvector (S n) :=
  match p with
    | O => bv
    | S p' => BshiftL n (BshiftL_iter n bv p') false
  end.

Fixpoint BshiftRl_iter (n:nat) (bv:Bvector (S n)) (p:nat) : Bvector (S n) :=
  match p with
    | O => bv
    | S p' => BshiftRl n (BshiftRl_iter n bv p') false
  end.

Fixpoint BshiftRa_iter (n:nat) (bv:Bvector (S n)) (p:nat) : Bvector (S n) :=
  match p with
    | O => bv
    | S p' => BshiftRa n (BshiftRa_iter n bv p')
  end.

End BOOLEAN_VECTORS.

Module BvectorNotations.
Declare Scope Bvector_scope.
Delimit Scope Bvector_scope with Bvector.
Notation "^~ x" := (Bneg _ x) (at level 35, right associativity) : Bvector_scope.
Infix    "^&"   := (BVand  _) (at level 40, left  associativity) : Bvector_scope.
Infix    "^⊕"   := (BVxor  _) (at level 45, left  associativity) : Bvector_scope.
Infix    "^|"   := (BVor   _) (at level 50, left  associativity) : Bvector_scope.
Infix    "=?"   := (BVeq _ _) (at level 70, no    associativity) : Bvector_scope.
Open Scope Bvector_scope.
End BvectorNotations.