blob: 712cb6a1354a5119b78103c414bd376688e6bd82 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
|
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * Copyright INRIA, CNRS and contributors *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
(* Test le Hint Unfold sur des var locales *)
Section toto.
Let EQ := @eq.
Goal EQ nat 0 0.
Hint Unfold EQ.
auto.
Qed.
End toto.
(* Check regular failure when statically existing ref does not exist
any longer at run time *)
Goal let x := 0 in True.
intro x.
Fail (clear x; unfold x).
Abort.
(* Static analysis of unfold *)
Module A.
Opaque id.
Ltac f := unfold id.
Goal id 0 = 0.
Fail f.
Transparent id.
f.
Abort.
End A.
Module B.
Module Type T. Axiom n : nat. End T.
Module F(X:T).
Ltac f := unfold X.n.
End F.
Module M. Definition n := 0. End M.
Module N := F M.
Goal match M.n with 0 => 0 | S _ => 1 end = 0.
N.f.
match goal with |- 0=0 => idtac end.
Abort.
End B.
Module C.
(* We reject inductive types and constructors *)
Fail Ltac g := unfold nat.
Fail Ltac g := unfold S.
End C.
Module D.
(* In interactive mode, we delay the interpretation of short names *)
Notation x := Nat.add.
Goal let x := 0 in x = 0+0.
unfold x.
match goal with |- 0 = 0 => idtac end.
Abort.
Goal let x := 0 in x = 0+0.
intro; unfold x. (* dynamic binding (but is it really the most natural?) *)
match goal with |- 0 = 0+0 => idtac end.
Abort.
Goal let fst := 0 in fst = Datatypes.fst (0,0).
unfold fst.
match goal with |- 0 = 0 => idtac end.
Abort.
Goal let fst := 0 in fst = Datatypes.fst (0,0).
intro; unfold fst. (* dynamic binding *)
match goal with |- 0 = Datatypes.fst (0,0) => idtac end.
Abort.
End D.
|