blob: 0ac62fcdc9eecaa5b64790a0eccea77203e9d209 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
|
Variable Ack : nat -> nat -> nat.
Axiom Ack0 : forall m : nat, Ack 0 m = S m.
Axiom Ack1 : forall n : nat, Ack (S n) 0 = Ack n 1.
Axiom Ack2 : forall n m : nat, Ack (S n) (S m) = Ack n (Ack (S n) m).
Module M.
#[export] Hint Rewrite Ack0 Ack1 Ack2 : base0.
Lemma ResAck0 : (Ack 2 2 = 7 -> False) -> False.
Proof.
intros.
autorewrite with base0 in H using try (apply H; reflexivity).
Qed.
End M.
Lemma ResAck1 : forall H:(Ack 2 2 = 7 -> False), True -> False.
Proof.
intros.
Fail autorewrite with base0 in *.
Abort.
Import M.
Lemma ResAck1 : forall H:(Ack 2 2 = 7 -> False), True -> False.
Proof.
intros.
autorewrite with base0 in *.
apply H;reflexivity.
Qed.
(* Check autorewrite does not solve existing evars *)
(* See discussion started by A. Chargueraud in Oct 2010 on coqdev *)
Global Hint Rewrite <- plus_n_O : base1.
Goal forall y, exists x, y+x = y.
eexists. autorewrite with base1.
Fail reflexivity.
Abort.
|