aboutsummaryrefslogtreecommitdiff
path: root/test-suite/success/ROmegaPre.v
blob: 6ca32f450f95d436e93301b8a17b94366ba28184 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
Require Import ZArith Nnat Lia.
Open Scope Z_scope.

(** Test of the zify preprocessor for (R)Omega *)
(* Starting from Coq 8.9 (late 2018), `romega` tactics are deprecated.
   The tests in this file remain but now call the `lia` tactic. *)

(* More details in file PreOmega.v
*)

(* zify_op *)

Goal forall a:Z, Z.max a a = a.
intros.
lia.
Qed.

Goal forall a b:Z, Z.max a b = Z.max b a.
intros.
lia.
Qed.

Goal forall a b c:Z, Z.max a (Z.max b c) = Z.max (Z.max a b) c.
intros.
lia.
Qed.

Goal forall a b:Z, Z.max a b + Z.min a b = a + b.
intros.
lia.
Qed.

Goal forall a:Z, (Z.abs a)*(Z.sgn a) = a.
intros.
zify.
intuition; subst; lia. (* pure multiplication: omega alone can't do it *)
Qed.

Goal forall a:Z, Z.abs a = a -> a >= 0.
intros.
lia.
Qed.

Goal forall a:Z, Z.sgn a = a -> a = 1 \/ a = 0 \/ a = -1.
intros.
lia.
Qed.

(* zify_nat *)

Goal forall m: nat, (m<2)%nat -> (0<= m+m <=2)%nat.
intros.
lia.
Qed.

Goal forall m:nat, (m<1)%nat -> (m=0)%nat.
intros.
lia.
Qed.

Goal forall m: nat, (m<=100)%nat -> (0<= m+m <=200)%nat.
intros.
lia.
Qed.
(* 2000 instead of 200: works, but quite slow *)

Goal forall m: nat, (m*m>=0)%nat.
intros.
lia.
Qed.

(* zify_positive *)

Goal forall m: positive, (m<2)%positive -> (2 <= m+m /\ m+m <= 2)%positive.
intros.
lia.
Qed.

Goal forall m:positive, (m<2)%positive -> (m=1)%positive.
intros.
lia.
Qed.

Goal forall m: positive, (m<=1000)%positive -> (2<=m+m/\m+m <=2000)%positive.
intros.
lia.
Qed.

Goal forall m: positive, (m*m>=1)%positive.
intros.
lia.
Qed.

(* zify_N *)

Goal forall m:N, (m<2)%N -> (0 <= m+m /\ m+m <= 2)%N.
intros.
lia.
Qed.

Goal forall m:N, (m<1)%N -> (m=0)%N.
intros.
lia.
Qed.

Goal forall m:N, (m<=1000)%N -> (0<=m+m/\m+m <=2000)%N.
intros.
lia.
Qed.

Goal forall m:N, (m*m>=0)%N.
intros.
lia.
Qed.

(* mix of datatypes *)

Goal forall p, Z.of_N (N.of_nat (N.to_nat (Npos p))) = Zpos p.
intros.
lia.
Qed.