blob: f3ec1916dcb6e830ce2158a32650a57e4b475f81 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
|
(* Test that adding notations that overlap with the tactic grammar does not
* interfere with Ltac parsing. *)
Module test1.
Notation "x [ y ]" := (fst (id x, id y)) (at level 11).
Goal True \/ (exists x : nat, True /\ True) -> True.
Proof.
intros [|[a [y z]]]; [idtac|idtac]; try solve [eauto | trivial; [trivial]].
Qed.
End test1.
Module test2.
Notation "x [ y ]" := (fst (id x, id y)) (at level 100).
Goal True \/ (exists x : nat, True /\ True) -> True.
Proof.
intros [|[a [y z]]]; [idtac|idtac]; try solve [eauto | trivial; [trivial]].
Qed.
End test2.
Module test3.
Notation "x [ y ]" := (fst (id x, id y)) (at level 1).
Goal True \/ (exists x : nat, True /\ True) -> True.
Proof.
intros [|[a [y z]]]; [idtac|idtac]; try solve [eauto | trivial; [trivial]].
Qed.
End test3.
Module test1'.
Notation "x [ [ y ] ] " := (fst (id x, id y)) (at level 11).
Goal True \/ (exists x : nat, True /\ True) -> True.
Proof.
intros [|[a [y z]]]; [idtac|idtac]; try solve [eauto | trivial; [trivial]].
Qed.
End test1'.
Module test2'.
Notation "x [ [ y ] ]" := (fst (id x, id y)) (at level 100).
Goal True \/ (exists x : nat, True /\ True) -> True.
Proof.
intros [|[a [y z]]]; [idtac|idtac]; try solve [eauto | trivial; [trivial]].
Qed.
End test2'.
Module test3'.
Notation "x [ [ y ] ]" := (fst (id x, id y)) (at level 1).
Goal True \/ (exists x : nat, True /\ True) -> True.
Proof.
intros [|[a [y z]]]; [idtac|idtac]; try solve [eauto | trivial; [trivial]].
Qed.
End test3'.
|