blob: 267d981d05c55f3cde7181e34f97de38e16c9c45 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
|
Require Import ssreflect.
Axiom daemon : False. Ltac myadmit := case: daemon.
(** Testing over for the 1-var case *)
Lemma test_over_1_1 : False.
intros.
evar (I : Type); evar (R : Type); evar (x2 : I -> R).
assert (H : forall i : nat, i + 2 * i - i = x2 i).
intros i.
unfold x2 in *; clear x2;
unfold R in *; clear R;
unfold I in *; clear I.
apply Under_rel_from_rel.
Fail done.
over.
myadmit.
Qed.
Lemma test_over_1_2 : False.
intros.
evar (I : Type); evar (R : Type); evar (x2 : I -> R).
assert (H : forall i : nat, i + 2 * i - i = x2 i).
intros i.
unfold x2 in *; clear x2;
unfold R in *; clear R;
unfold I in *; clear I.
apply Under_rel_from_rel.
Fail done.
by rewrite over.
myadmit.
Qed.
(** Testing over for the 2-var case *)
Lemma test_over_2_1 : False.
intros.
evar (I : Type); evar (J : Type); evar (R : Type); evar (x2 : I -> J -> R).
assert (H : forall i j, i + 2 * j - i = x2 i j).
intros i j.
unfold x2 in *; clear x2;
unfold R in *; clear R;
unfold J in *; clear J;
unfold I in *; clear I.
apply Under_rel_from_rel.
Fail done.
over.
myadmit.
Qed.
Lemma test_over_2_2 : False.
intros.
evar (I : Type); evar (J : Type); evar (R : Type); evar (x2 : I -> J -> R).
assert (H : forall i j : nat, i + 2 * j - i = x2 i j).
intros i j.
unfold x2 in *; clear x2;
unfold R in *; clear R;
unfold J in *; clear J;
unfold I in *; clear I.
apply Under_rel_from_rel.
Fail done.
rewrite over.
done.
myadmit.
Qed.
|