blob: 61666959c48b5e3219740bb76d23edb06fcd081e (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
|
Require Import ssreflect.
Section Dup.
Section withP.
Variable P : nat -> Prop.
Lemma test_dup1 : forall n : nat, P n.
Proof. move=> /[dup] m n; suff: P n by []. Abort.
Lemma test_dup2 : let n := 1 in False.
Proof. move=> /[dup] m n; have : m = n := eq_refl. Abort.
End withP.
Lemma test_dup_plus P Q : P -> Q -> False.
Proof.
move=> + /[dup] q.
suff: P -> Q -> False by [].
Abort.
Lemma test_dup_plus2 P : P -> let x := 0 in False.
Proof.
move=> + /[dup] y.
suff: P -> let x := 0 in False by [].
Abort.
End Dup.
|