blob: 9aac8dedf64b5a24e09c6905a4f8edd633d55454 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
|
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * Copyright INRIA, CNRS and contributors *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *)
Require Import ssreflect.
Axiom daemon : False. Ltac myadmit := case: daemon.
Class foo (T : Type) := { n : nat }.
Instance five : foo nat := {| n := 5 |}.
Definition bar T {f : foo T} m : Prop :=
@n _ f = m.
Eval compute in (bar nat 7).
Lemma a : True.
set toto := bar _ 8.
have titi : bar _ 5.
reflexivity.
have titi2 : bar _ 5 := .
Fail reflexivity.
by myadmit.
have totoc (H : bar _ 5) : 3 = 3 := eq_refl.
move/totoc: nat => _.
exact I.
Qed.
Set SsrHave NoTCResolution.
Lemma a' : True.
set toto := bar _ 8.
have titi : bar _ 5.
Fail reflexivity.
by myadmit.
have titi2 : bar _ 5 := .
Fail reflexivity.
by myadmit.
have totoc (H : bar _ 5) : 3 = 3 := eq_refl.
move/totoc: nat => _.
exact I.
Qed.
|