blob: e6662203e905a3eeb11df3b427e15ddac93d3c90 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
|
Require Import ssreflect.
Axiom app : forall T, list T -> list T -> list T.
Arguments app {_}.
Infix "++" := app.
Lemma test (aT rT : Type)
(pmap : (aT -> option rT) -> list aT -> list rT)
(perm_eq : list rT -> list rT -> Prop)
(f : aT -> option rT)
(g : rT -> aT)
(s t : list aT)
(E : forall T : list aT -> Type,
(forall s1 s2 s3 : list aT,
T (s1 ++ s2 ++ s3) -> T (s2 ++ s1 ++ s3)) ->
T s -> T t) :
perm_eq (pmap f s) (pmap f t).
Proof.
elim/E: (t).
Admitted.
Lemma test2 (a b : nat) : a = b -> b = 1.
Proof.
elim.
match goal with |- a = 1 => idtac end.
Admitted.
|