aboutsummaryrefslogtreecommitdiff
path: root/test-suite/output/Search.out
blob: ffba1d35cc9b222229dfe8e9c908ee058f58fddb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
le_n: forall n : nat, n <= n
le_0_n: forall n : nat, 0 <= n
le_S: forall n m : nat, n <= m -> n <= S m
le_S_n: forall n m : nat, S n <= S m -> n <= m
le_pred: forall n m : nat, n <= m -> Nat.pred n <= Nat.pred m
le_n_S: forall n m : nat, n <= m -> S n <= S m
max_l: forall n m : nat, m <= n -> Nat.max n m = n
max_r: forall n m : nat, n <= m -> Nat.max n m = m
min_r: forall n m : nat, m <= n -> Nat.min n m = m
min_l: forall n m : nat, n <= m -> Nat.min n m = n
le_ind:
  forall (n : nat) (P : nat -> Prop),
  P n ->
  (forall m : nat, n <= m -> P m -> P (S m)) ->
  forall n0 : nat, n <= n0 -> P n0
le_sind:
  forall (n : nat) (P : nat -> SProp),
  P n ->
  (forall m : nat, n <= m -> P m -> P (S m)) ->
  forall n0 : nat, n <= n0 -> P n0
false: bool
true: bool
eq_true: bool -> Prop
is_true: bool -> Prop
negb: bool -> bool
andb: bool -> bool -> bool
orb: bool -> bool -> bool
implb: bool -> bool -> bool
xorb: bool -> bool -> bool
Nat.even: nat -> bool
Nat.odd: nat -> bool
BoolSpec: Prop -> Prop -> bool -> Prop
Nat.ltb: nat -> nat -> bool
Nat.testbit: nat -> nat -> bool
Nat.eqb: nat -> nat -> bool
Nat.leb: nat -> nat -> bool
Nat.bitwise: (bool -> bool -> bool) -> nat -> nat -> nat -> nat
bool_rec: forall P : bool -> Set, P true -> P false -> forall b : bool, P b
eq_true_ind_r:
  forall (P : bool -> Prop) (b : bool), P b -> eq_true b -> P true
eq_true_rec:
  forall P : bool -> Set, P true -> forall b : bool, eq_true b -> P b
bool_ind: forall P : bool -> Prop, P true -> P false -> forall b : bool, P b
eq_true_rect:
  forall P : bool -> Type, P true -> forall b : bool, eq_true b -> P b
eq_true_sind:
  forall P : bool -> SProp, P true -> forall b : bool, eq_true b -> P b
bool_rect: forall P : bool -> Type, P true -> P false -> forall b : bool, P b
eq_true_ind:
  forall P : bool -> Prop, P true -> forall b : bool, eq_true b -> P b
eq_true_rec_r:
  forall (P : bool -> Set) (b : bool), P b -> eq_true b -> P true
eq_true_rect_r:
  forall (P : bool -> Type) (b : bool), P b -> eq_true b -> P true
bool_sind:
  forall P : bool -> SProp, P true -> P false -> forall b : bool, P b
Byte.to_bits:
  Byte.byte ->
  bool * (bool * (bool * (bool * (bool * (bool * (bool * bool))))))
Byte.of_bits:
  bool * (bool * (bool * (bool * (bool * (bool * (bool * bool)))))) ->
  Byte.byte
andb_prop: forall a b : bool, (a && b)%bool = true -> a = true /\ b = true
andb_true_intro:
  forall b1 b2 : bool, b1 = true /\ b2 = true -> (b1 && b2)%bool = true
BoolSpec_sind:
  forall (P Q : Prop) (P0 : bool -> SProp),
  (P -> P0 true) ->
  (Q -> P0 false) -> forall b : bool, BoolSpec P Q b -> P0 b
BoolSpec_ind:
  forall (P Q : Prop) (P0 : bool -> Prop),
  (P -> P0 true) ->
  (Q -> P0 false) -> forall b : bool, BoolSpec P Q b -> P0 b
Byte.to_bits_of_bits:
  forall
    b : bool * (bool * (bool * (bool * (bool * (bool * (bool * bool)))))),
  Byte.to_bits (Byte.of_bits b) = b
bool_choice:
  forall (S : Set) (R1 R2 : S -> Prop),
  (forall x : S, {R1 x} + {R2 x}) ->
  {f : S -> bool | forall x : S, f x = true /\ R1 x \/ f x = false /\ R2 x}
mult_n_O: forall n : nat, 0 = n * 0
plus_O_n: forall n : nat, 0 + n = n
plus_n_O: forall n : nat, n = n + 0
n_Sn: forall n : nat, n <> S n
pred_Sn: forall n : nat, n = Nat.pred (S n)
O_S: forall n : nat, 0 <> S n
f_equal_pred: forall x y : nat, x = y -> Nat.pred x = Nat.pred y
eq_S: forall x y : nat, x = y -> S x = S y
eq_add_S: forall n m : nat, S n = S m -> n = m
min_r: forall n m : nat, m <= n -> Nat.min n m = m
min_l: forall n m : nat, n <= m -> Nat.min n m = n
max_r: forall n m : nat, n <= m -> Nat.max n m = m
max_l: forall n m : nat, m <= n -> Nat.max n m = n
plus_Sn_m: forall n m : nat, S n + m = S (n + m)
plus_n_Sm: forall n m : nat, S (n + m) = n + S m
f_equal_nat: forall (B : Type) (f : nat -> B) (x y : nat), x = y -> f x = f y
not_eq_S: forall n m : nat, n <> m -> S n <> S m
mult_n_Sm: forall n m : nat, n * m + n = n * S m
f_equal2_plus:
  forall x1 y1 x2 y2 : nat, x1 = y1 -> x2 = y2 -> x1 + x2 = y1 + y2
f_equal2_mult:
  forall x1 y1 x2 y2 : nat, x1 = y1 -> x2 = y2 -> x1 * x2 = y1 * y2
f_equal2_nat:
  forall (B : Type) (f : nat -> nat -> B) (x1 y1 x2 y2 : nat),
  x1 = y1 -> x2 = y2 -> f x1 x2 = f y1 y2
andb_true_intro:
  forall b1 b2 : bool, b1 = true /\ b2 = true -> (b1 && b2)%bool = true
andb_prop: forall a b : bool, (a && b)%bool = true -> a = true /\ b = true
bool_choice:
  forall (S : Set) (R1 R2 : S -> Prop),
  (forall x : S, {R1 x} + {R2 x}) ->
  {f : S -> bool | forall x : S, f x = true /\ R1 x \/ f x = false /\ R2 x}
andb_true_intro:
  forall b1 b2 : bool, b1 = true /\ b2 = true -> (b1 && b2)%bool = true
andb_prop: forall a b : bool, (a && b)%bool = true -> a = true /\ b = true
andb_prop: forall a b : bool, (a && b)%bool = true -> a = true /\ b = true
h: n <> newdef n
h': newdef n <> n
h: n <> newdef n
h': newdef n <> n
h: n <> newdef n
h: n <> newdef n
h: n <> newdef n
h': newdef n <> n
The command has indeed failed with message:
No such goal.
The command has indeed failed with message:
Query commands only support the single numbered goal selector.
The command has indeed failed with message:
Query commands only support the single numbered goal selector.
h: P n
h': ~ P n
h: P n
h': ~ P n
h: P n
h': ~ P n
h: P n
h: P n