blob: a0afe991811a11c0f7c25eb330c940e0b7d84b6a (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
|
Require Import ZArith.
Require Import Lra.
Require Import Reals.
Goal (1 / (1 - 1) = 0)%R.
Fail lra. (* division by zero *)
Abort.
Goal (0 / (1 - 1) = 0)%R.
lra. (* 0 * x = 0 *)
Qed.
Goal (10 ^ 2 = 100)%R.
lra. (* pow is reified as a constant *)
Qed.
Goal (2 / (1/2) ^ 2 = 8)%R.
lra. (* pow is reified as a constant *)
Qed.
Goal ( IZR (Z.sqrt 4) = 2)%R.
Proof.
Fail lra.
Abort.
Require Import DeclConstant.
Instance Dsqrt : DeclaredConstant Z.sqrt := {}.
Goal ( IZR (Z.sqrt 4) = 2)%R.
Proof.
lra.
Qed.
Require Import QArith.
Require Import Qreals.
Goal (Q2R (1 # 2) = 1/2)%R.
Proof.
lra.
Qed.
Goal ( 1 ^ (2 + 2) = 1)%R.
Proof.
Fail lra.
Abort.
Instance Dplus : DeclaredConstant Init.Nat.add := {}.
Goal ( 1 ^ (2 + 2) = 1)%R.
Proof.
lra.
Qed.
Require Import Lia.
Goal ( 1 ^ (2 + 2) = 1)%Z.
Proof.
lia. (* exponent is a constant expr *)
Qed.
Goal (1 / IZR (Z.pow_pos 10 25) = 1 / 10 ^ 25)%R.
Proof.
lra.
Qed.
|