blob: 37692ed2542dde197440e29837dd3e1a12971c4c (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
|
(* Some boilerplate *)
Fixpoint fib n := match n with
| O => 1
| S m => match m with
| O => 1
| S o => fib o + fib m end end.
Ltac sleep n :=
try (cut (fib n = S (fib n)); reflexivity).
(* Tune that depending on your PC *)
Let time := 10.
(* Beginning of demo *)
Section Demo.
Variable i : True.
Lemma a (n : nat) : nat.
Proof using.
revert n.
fix f 1.
apply f.
Qed.
Lemma b : True.
Proof using i.
sleep time.
idtac.
sleep time.
(* Here we use "a" *)
exact I.
Qed.
Lemma work_here : True /\ True.
Proof using i.
(* Jump directly here, Coq reacts immediately *)
split.
exact b. (* We can use the lemmas above *)
exact I.
Qed.
End Demo.
From Coq Require Import Program.Tactics.
Obligation Tactic := idtac.
Program Definition foo : nat -> nat * nat :=
fix f (n : nat) := (0,_).
Next Obligation.
intros f n; apply (f n).
Qed.
|