blob: 1effc771b047b4ebd00746052964a50587e38b5e (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
|
Require Import Program.
Axiom I : Type.
Inductive S : Type := NT : I -> S.
Axiom F : S -> Type.
Axiom G : forall (s : S), F s -> Type.
Section S.
Variable init : I.
Variable my_s : F (NT init).
Inductive foo : forall (s: S) (hole_sem: F s), Type :=
| Foo : foo (NT init) my_s.
Goal forall
(n : I) (s : F (NT n)) (ptz : foo (NT n) s) (pt : G (NT n) s) (x : unit),
match
match x with tt => tt end
with
| tt =>
match
match ptz in foo x s return (forall _ : G x s, unit) with
| Foo => fun _ : G (NT init) my_s => tt
end pt
with
| tt => False
end
end.
Proof.
dependent destruction ptz.
(* Check well-typedness of goal *)
match goal with [ |- ?P ] => let t := type of P in idtac end.
Abort.
End S.
|