aboutsummaryrefslogtreecommitdiff
path: root/src/tac2stdlib.ml
blob: e093b5c97fab0dba780922d7d213dcb759ddeffd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, *   INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2016     *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

open Names
open Locus
open Misctypes
open Genredexpr
open Tac2expr
open Tac2core
open Proofview.Notations

module Value = Tac2ffi

let to_pair f g = function
| ValBlk (0, [| x; y |]) -> (f x, g y)
| _ -> assert false

let to_name c = match Value.to_option Value.to_ident c with
| None -> Anonymous
| Some id -> Name id

let to_qhyp = function
| ValBlk (0, [| i |]) -> AnonHyp (Value.to_int i)
| ValBlk (1, [| id |]) -> NamedHyp (Value.to_ident id)
| _ -> assert false

let to_bindings = function
| ValInt 0 -> NoBindings
| ValBlk (0, [| vl |]) ->
  ImplicitBindings (Value.to_list Value.to_constr vl)
| ValBlk (1, [| vl |]) ->
  ExplicitBindings ((Value.to_list (fun p -> None, to_pair to_qhyp Value.to_constr p) vl))
| _ -> assert false

let to_constr_with_bindings = function
| ValBlk (0, [| c; bnd |]) -> (Value.to_constr c, to_bindings bnd)
| _ -> assert false

let to_int_or_var i = ArgArg (Value.to_int i)

let to_occurrences f = function
| ValInt 0 -> AllOccurrences
| ValBlk (0, [| vl |]) -> AllOccurrencesBut (Value.to_list f vl)
| ValInt 1 -> NoOccurrences
| ValBlk (1, [| vl |]) -> OnlyOccurrences (Value.to_list f vl)
| _ -> assert false

let to_hyp_location_flag = function
| ValInt 0 -> InHyp
| ValInt 1 -> InHypTypeOnly
| ValInt 2 -> InHypValueOnly
| _ -> assert false

let to_clause = function
| ValBlk (0, [| hyps; concl |]) ->
  let cast = function
  | ValBlk (0, [| hyp; occ; flag |]) ->
    ((to_occurrences to_int_or_var occ, Value.to_ident hyp), to_hyp_location_flag flag)
  | _ -> assert false
  in
  let hyps = Value.to_option (fun h -> Value.to_list cast h) hyps in
  { onhyps = hyps; concl_occs = to_occurrences to_int_or_var concl; }
| _ -> assert false

let to_evaluable_ref = function
| ValBlk (0, [| id |]) -> EvalVarRef (Value.to_ident id)
| ValBlk (1, [| cst |]) -> EvalConstRef (Value.to_constant cst)
| _ -> assert false

let to_red_flag = function
| ValBlk (0, [| beta; iota; fix; cofix; zeta; delta; const |]) ->
  {
    rBeta = Value.to_bool beta;
    rMatch = Value.to_bool iota;
    rFix = Value.to_bool fix;
    rCofix = Value.to_bool cofix;
    rZeta = Value.to_bool zeta;
    rDelta = Value.to_bool delta;
    rConst = Value.to_list to_evaluable_ref const;
  }
| _ -> assert false

(** Standard tactics sharing their implementation with Ltac1 *)

let pname s = { mltac_plugin = "ltac2"; mltac_tactic = s }

let return x = Proofview.tclUNIT x
let v_unit = Value.of_unit ()

let lift tac = tac <*> return v_unit

let wrap f =
  return () >>= fun () -> return (f ())

let wrap_unit f =
  return () >>= fun () -> f (); return v_unit

let thaw f = Tac2interp.interp_app f [v_unit]

let define_prim0 name tac =
  let tac = function
  | [_] -> lift tac
  | _ -> assert false
  in
  Tac2env.define_primitive (pname name) tac

let define_prim1 name tac =
  let tac = function
  | [x] -> lift (tac x)
  | _ -> assert false
  in
  Tac2env.define_primitive (pname name) tac

let define_prim2 name tac =
  let tac = function
  | [x; y] -> lift (tac x y)
  | _ -> assert false
  in
  Tac2env.define_primitive (pname name) tac

let define_prim3 name tac =
  let tac = function
  | [x; y; z] -> lift (tac x y z)
  | _ -> assert false
  in
  Tac2env.define_primitive (pname name) tac

(** Tactics from Tacexpr *)

let () = define_prim2 "tac_eelim" begin fun c copt ->
  let c = to_constr_with_bindings c in
  let copt = Value.to_option to_constr_with_bindings copt in
  Tactics.elim true None c copt
end

let () = define_prim1 "tac_ecase" begin fun c ->
  let c = to_constr_with_bindings c in
  Tactics.general_case_analysis true None c
end

let () = define_prim1 "tac_egeneralize" begin fun cl ->
  let cast = function
  | ValBlk (0, [| c; occs; na |]) ->
    ((to_occurrences Value.to_int c, Value.to_constr c), to_name na)
  | _ -> assert false
  in
  let cl = Value.to_list cast cl in
  Tactics.new_generalize_gen cl
end

let () = define_prim2 "tac_pose" begin fun idopt c ->
  let na = to_name idopt in
  let c = Value.to_constr c in
  Tactics.letin_tac None na c None Locusops.nowhere
end

let () = define_prim3 "tac_set" begin fun idopt c cl ->
  let na = to_name idopt in
  let cl = to_clause cl in
  Proofview.tclEVARMAP >>= fun sigma ->
  thaw c >>= fun c ->
  let c = Value.to_constr c in
  Tactics.letin_pat_tac false None na (sigma, c) cl
end

let () = define_prim3 "tac_eset" begin fun idopt c cl ->
  let na = to_name idopt in
  let cl = to_clause cl in
  Proofview.tclEVARMAP >>= fun sigma ->
  thaw c >>= fun c ->
  let c = Value.to_constr c in
  Tactics.letin_pat_tac true None na (sigma, c) cl
end

let () = define_prim1 "tac_red" begin fun cl ->
  let cl = to_clause cl in
  Tactics.reduce (Red false) cl
end

let () = define_prim1 "tac_hnf" begin fun cl ->
  let cl = to_clause cl in
  Tactics.reduce Hnf cl
end

let () = define_prim2 "tac_cbv" begin fun flags cl ->
  let flags = to_red_flag flags in
  let cl = to_clause cl in
  Tactics.reduce (Cbv flags) cl
end

let () = define_prim2 "tac_cbn" begin fun flags cl ->
  let flags = to_red_flag flags in
  let cl = to_clause cl in
  Tactics.reduce (Cbn flags) cl
end

let () = define_prim2 "tac_lazy" begin fun flags cl ->
  let flags = to_red_flag flags in
  let cl = to_clause cl in
  Tactics.reduce (Lazy flags) cl
end

(** Tactics from coretactics *)

let () = define_prim0 "tac_reflexivity" Tactics.intros_reflexivity

(*

TACTIC EXTEND exact
  [ "exact" casted_constr(c) ] -> [ Tactics.exact_no_check c ]
END

*)

let () = define_prim0 "tac_assumption" Tactics.assumption

let () = define_prim1 "tac_transitivity" begin fun c ->
  let c = Value.to_constr c in
  Tactics.intros_transitivity (Some c)
end

let () = define_prim0 "tac_etransitivity" (Tactics.intros_transitivity None)

let () = define_prim1 "tac_cut" begin fun c ->
  let c = Value.to_constr c in
  Tactics.cut c
end

let () = define_prim1 "tac_left" begin fun bnd ->
  let bnd = to_bindings bnd in
  Tactics.left_with_bindings false bnd
end
let () = define_prim1 "tac_eleft" begin fun bnd ->
  let bnd = to_bindings bnd in
  Tactics.left_with_bindings true bnd
end
let () = define_prim1 "tac_right" begin fun bnd ->
  let bnd = to_bindings bnd in
  Tactics.right_with_bindings false bnd
end
let () = define_prim1 "tac_eright" begin fun bnd ->
  let bnd = to_bindings bnd in
  Tactics.right_with_bindings true bnd
end

let () = define_prim1 "tac_introsuntil" begin fun h ->
  Tactics.intros_until (to_qhyp h)
end

let () = define_prim1 "tac_exactnocheck" begin fun c ->
  Tactics.exact_no_check (Value.to_constr c)
end

let () = define_prim1 "tac_vmcastnocheck" begin fun c ->
  Tactics.vm_cast_no_check (Value.to_constr c)
end

let () = define_prim1 "tac_nativecastnocheck" begin fun c ->
  Tactics.native_cast_no_check (Value.to_constr c)
end

let () = define_prim0 "tac_constructor" (Tactics.any_constructor false None)
let () = define_prim0 "tac_econstructor" (Tactics.any_constructor true None)

let () = define_prim2 "tac_constructorn" begin fun n bnd ->
  let n = Value.to_int n in
  let bnd = to_bindings bnd in
  Tactics.constructor_tac false None n bnd
end

let () = define_prim2 "tac_econstructorn" begin fun n bnd ->
  let n = Value.to_int n in
  let bnd = to_bindings bnd in
  Tactics.constructor_tac true None n bnd
end

let () = define_prim1 "tac_symmetry" begin fun cl ->
  let cl = to_clause cl in
  Tactics.intros_symmetry cl
end

let () = define_prim1 "tac_split" begin fun bnd ->
  let bnd = to_bindings bnd in
  Tactics.split_with_bindings false [bnd]
end

let () = define_prim1 "tac_esplit" begin fun bnd ->
  let bnd = to_bindings bnd in
  Tactics.split_with_bindings true [bnd]
end

let () = define_prim1 "tac_rename" begin fun ids ->
  let map c = match Value.to_tuple c with
  | [|x; y|] -> (Value.to_ident x, Value.to_ident y)
  | _ -> assert false
  in
  let ids = Value.to_list map ids in
  Tactics.rename_hyp ids
end

let () = define_prim1 "tac_revert" begin fun ids ->
  let ids = Value.to_list Value.to_ident ids in
  Tactics.revert ids
end

let () = define_prim0 "tac_admit" Proofview.give_up

let () = define_prim2 "tac_fix" begin fun idopt n ->
  let idopt = Value.to_option Value.to_ident idopt in
  let n = Value.to_int n in
  Tactics.fix idopt n
end

let () = define_prim1 "tac_cofix" begin fun idopt ->
  let idopt = Value.to_option Value.to_ident idopt in
  Tactics.cofix idopt
end

let () = define_prim1 "tac_clear" begin fun ids ->
  let ids = Value.to_list Value.to_ident ids in
  Tactics.clear ids
end

let () = define_prim1 "tac_keep" begin fun ids ->
  let ids = Value.to_list Value.to_ident ids in
  Tactics.keep ids
end

let () = define_prim1 "tac_clearbody" begin fun ids ->
  let ids = Value.to_list Value.to_ident ids in
  Tactics.clear_body ids
end

(** Tactics from extratactics *)

let () = define_prim1 "tac_absurd" begin fun c ->
  Contradiction.absurd (Value.to_constr c)
end

let () = define_prim1 "tac_subst" begin fun ids ->
  let ids = Value.to_list Value.to_ident ids in
  Equality.subst ids
end

let () = define_prim0 "tac_substall" (return () >>= fun () -> Equality.subst_all ())