1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
|
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *)
(* <O___,, * (see CREDITS file for the list of authors) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
(***********************************************************************)
(* *)
(* This module defines proof facilities relevant to the *)
(* toplevel. In particular it defines the global proof *)
(* environment. *)
(* *)
(***********************************************************************)
open Util
open Names
open Context
module NamedDecl = Context.Named.Declaration
(*** Proof Global Environment ***)
(* Extra info on proofs. *)
type lemma_possible_guards = int list list
type proof_object = {
id : Names.Id.t;
entries : Safe_typing.private_constants Entries.definition_entry list;
persistence : Decl_kinds.goal_kind;
universes: UState.t;
}
type opacity_flag = Opaque | Transparent
type proof_ending =
| Admitted of Names.Id.t * Decl_kinds.goal_kind * Entries.parameter_entry * UState.t
| Proved of opacity_flag *
lident option *
proof_object
type proof_terminator = proof_ending -> unit
type closed_proof = proof_object * proof_terminator
type pstate = {
terminator : proof_terminator CEphemeron.key;
endline_tactic : Genarg.glob_generic_argument option;
section_vars : Constr.named_context option;
proof : Proof.t;
universe_decl: UState.universe_decl;
strength : Decl_kinds.goal_kind;
}
(* The head of [t] is the actual current proof, the other ones are
to be resumed when the current proof is closed or aborted. *)
type t = pstate * pstate list
let pstate_map f (pf, pfl) = (f pf, List.map f pfl)
let make_terminator f = f
let apply_terminator f = f
let get_current_pstate (ps,_) = ps
(* combinators for the current_proof lists *)
let push ~ontop a =
match ontop with
| None -> a , []
| Some (l,ls) -> a, (l :: ls)
let maybe_push ~ontop = function
| Some pstate -> Some (push ~ontop pstate)
| None -> ontop
(*** Proof Global manipulation ***)
let get_all_proof_names (pf : t) =
let (pn, pns) = pstate_map Proof.(function pf -> (data pf.proof).name) pf in
pn :: pns
let give_me_the_proof ps = ps.proof
let get_current_proof_name ps = (Proof.data ps.proof).Proof.name
let get_current_persistence ps = ps.strength
let with_current_pstate f (ps,psl) =
let ps, ret = f ps in
(ps, psl), ret
let modify_current_pstate f (ps,psl) =
f ps, psl
let modify_proof f ps =
let proof = f ps.proof in
{ps with proof}
let with_proof f ps =
let et =
match ps.endline_tactic with
| None -> Proofview.tclUNIT ()
| Some tac ->
let open Geninterp in
let ist = { lfun = Id.Map.empty; poly = pi2 ps.strength; extra = TacStore.empty } in
let Genarg.GenArg (Genarg.Glbwit tag, tac) = tac in
let tac = Geninterp.interp tag ist tac in
Ftactic.run tac (fun _ -> Proofview.tclUNIT ())
in
let (newpr,ret) = f et ps.proof in
let ps = { ps with proof = newpr } in
ps, ret
let with_current_proof f (ps,rest) =
let ps, ret = with_proof f ps in
(ps, rest), ret
let simple_with_current_proof f pf =
let p, () = with_current_proof (fun t p -> f t p , ()) pf in p
let simple_with_proof f ps =
let ps, () = with_proof (fun t ps -> f t ps, ()) ps in ps
let compact_the_proof pf = simple_with_proof (fun _ -> Proof.compact) pf
(* Sets the tactic to be used when a tactic line is closed with [...] *)
let set_endline_tactic tac ps =
{ ps with endline_tactic = Some tac }
let pf_name_eq id ps =
let Proof.{ name } = Proof.data ps.proof in
Id.equal name id
let discard {CAst.loc;v=id} (ps, psl) =
match List.filter (fun pf -> not (pf_name_eq id pf)) (ps :: psl) with
| [] -> None
| ps :: psl -> Some (ps, psl)
let discard_current (_, psl) =
match psl with
| [] -> None
| ps :: psl -> Some (ps, psl)
(** [start_proof sigma id pl str goals terminator] starts a proof of name
[id] with goals [goals] (a list of pairs of environment and
conclusion); [str] describes what kind of theorem/definition this
is (spiwack: for potential printing, I believe is used only by
closing commands and the xml plugin); [terminator] is used at the
end of the proof to close the proof. The proof is started in the
evar map [sigma] (which can typically contain universe
constraints), and with universe bindings pl. *)
let start_proof sigma name ?(pl=UState.default_univ_decl) kind goals terminator =
{ terminator = CEphemeron.create terminator;
proof = Proof.start ~name ~poly:(pi2 kind) sigma goals;
endline_tactic = None;
section_vars = None;
universe_decl = pl;
strength = kind }
let start_dependent_proof name ?(pl=UState.default_univ_decl) kind goals terminator =
{ terminator = CEphemeron.create terminator;
proof = Proof.dependent_start ~name ~poly:(pi2 kind) goals;
endline_tactic = None;
section_vars = None;
universe_decl = pl;
strength = kind }
let get_used_variables pf = pf.section_vars
let get_universe_decl pf = pf.universe_decl
let set_used_variables ps l =
let open Context.Named.Declaration in
let env = Global.env () in
let ids = List.fold_right Id.Set.add l Id.Set.empty in
let ctx = Environ.keep_hyps env ids in
let ctx_set =
List.fold_right Id.Set.add (List.map NamedDecl.get_id ctx) Id.Set.empty in
let vars_of = Environ.global_vars_set in
let aux env entry (ctx, all_safe as orig) =
match entry with
| LocalAssum ({binder_name=x},_) ->
if Id.Set.mem x all_safe then orig
else (ctx, all_safe)
| LocalDef ({binder_name=x},bo, ty) as decl ->
if Id.Set.mem x all_safe then orig else
let vars = Id.Set.union (vars_of env bo) (vars_of env ty) in
if Id.Set.subset vars all_safe
then (decl :: ctx, Id.Set.add x all_safe)
else (ctx, all_safe) in
let ctx, _ =
Environ.fold_named_context aux env ~init:(ctx,ctx_set) in
if not (Option.is_empty ps.section_vars) then
CErrors.user_err Pp.(str "Used section variables can be declared only once");
(* EJGA: This is always empty thus we should modify the type *)
(ctx, []), { ps with section_vars = Some ctx}
let get_open_goals ps =
let Proof.{ goals; stack; shelf } = Proof.data ps.proof in
List.length goals +
List.fold_left (+) 0
(List.map (fun (l1,l2) -> List.length l1 + List.length l2) stack) +
List.length shelf
type closed_proof_output = (Constr.t * Safe_typing.private_constants) list * UState.t
let private_poly_univs =
let b = ref true in
let _ = Goptions.(declare_bool_option {
optdepr = false;
optname = "use private polymorphic universes for Qed constants";
optkey = ["Private";"Polymorphic";"Universes"];
optread = (fun () -> !b);
optwrite = ((:=) b);
})
in
fun () -> !b
let close_proof ~opaque ~keep_body_ucst_separate ?feedback_id ~now
(fpl : closed_proof_output Future.computation) ps =
let { section_vars; proof; terminator; universe_decl; strength } = ps in
let Proof.{ name; poly; entry; initial_euctx } = Proof.data proof in
let opaque = match opaque with Opaque -> true | Transparent -> false in
let constrain_variables ctx =
UState.constrain_variables (fst (UState.context_set initial_euctx)) ctx
in
let fpl, univs = Future.split2 fpl in
let universes = if poly || now then Future.force univs else initial_euctx in
(* Because of dependent subgoals at the beginning of proofs, we could
have existential variables in the initial types of goals, we need to
normalise them for the kernel. *)
let subst_evar k =
Proof.in_proof proof (fun m -> Evd.existential_opt_value0 m k) in
let nf = UnivSubst.nf_evars_and_universes_opt_subst subst_evar
(UState.subst universes) in
let make_body =
if poly || now then
let make_body t (c, eff) =
let body = c in
let allow_deferred =
not poly && (keep_body_ucst_separate ||
not (Safe_typing.empty_private_constants = eff))
in
let typ = if allow_deferred then t else nf t in
let used_univs_body = Vars.universes_of_constr body in
let used_univs_typ = Vars.universes_of_constr typ in
if allow_deferred then
let initunivs = UState.univ_entry ~poly initial_euctx in
let ctx = constrain_variables universes in
(* For vi2vo compilation proofs are computed now but we need to
complement the univ constraints of the typ with the ones of
the body. So we keep the two sets distinct. *)
let used_univs = Univ.LSet.union used_univs_body used_univs_typ in
let ctx_body = UState.restrict ctx used_univs in
let univs = UState.check_mono_univ_decl ctx_body universe_decl in
(initunivs, typ), ((body, univs), eff)
else if poly && opaque && private_poly_univs () then
let used_univs = Univ.LSet.union used_univs_body used_univs_typ in
let universes = UState.restrict universes used_univs in
let typus = UState.restrict universes used_univs_typ in
let udecl = UState.check_univ_decl ~poly typus universe_decl in
let ubody = Univ.ContextSet.diff
(UState.context_set universes)
(UState.context_set typus)
in
(udecl, typ), ((body, ubody), eff)
else
(* Since the proof is computed now, we can simply have 1 set of
constraints in which we merge the ones for the body and the ones
for the typ. We recheck the declaration after restricting with
the actually used universes.
TODO: check if restrict is really necessary now. *)
let used_univs = Univ.LSet.union used_univs_body used_univs_typ in
let ctx = UState.restrict universes used_univs in
let univs = UState.check_univ_decl ~poly ctx universe_decl in
(univs, typ), ((body, Univ.ContextSet.empty), eff)
in
fun t p -> Future.split2 (Future.chain p (make_body t))
else
fun t p ->
(* Already checked the univ_decl for the type universes when starting the proof. *)
let univctx = UState.univ_entry ~poly:false universes in
let t = nf t in
Future.from_val (univctx, t),
Future.chain p (fun (pt,eff) ->
(* Deferred proof, we already checked the universe declaration with
the initial universes, ensure that the final universes respect
the declaration as well. If the declaration is non-extensible,
this will prevent the body from adding universes and constraints. *)
let univs = Future.force univs in
let univs = constrain_variables univs in
let used_univs = Univ.LSet.union
(Vars.universes_of_constr t)
(Vars.universes_of_constr pt)
in
let univs = UState.restrict univs used_univs in
let univs = UState.check_mono_univ_decl univs universe_decl in
(pt,univs),eff)
in
let entry_fn p (_, t) =
let t = EConstr.Unsafe.to_constr t in
let univstyp, body = make_body t p in
let univs, typ = Future.force univstyp in
{Entries.
const_entry_body = body;
const_entry_secctx = section_vars;
const_entry_feedback = feedback_id;
const_entry_type = Some typ;
const_entry_inline_code = false;
const_entry_opaque = opaque;
const_entry_universes = univs; }
in
let entries = Future.map2 entry_fn fpl Proofview.(initial_goals entry) in
{ id = name; entries = entries; persistence = strength;
universes },
fun pr_ending -> CEphemeron.get terminator pr_ending
let return_proof ?(allow_partial=false) ps =
let { proof } = ps in
if allow_partial then begin
let proofs = Proof.partial_proof proof in
let Proof.{sigma=evd} = Proof.data proof in
let eff = Evd.eval_side_effects evd in
(* ppedrot: FIXME, this is surely wrong. There is no reason to duplicate
side-effects... This may explain why one need to uniquize side-effects
thereafter... *)
let proofs = List.map (fun c -> EConstr.Unsafe.to_constr c, eff) proofs in
proofs, Evd.evar_universe_context evd
end else
let Proof.{name=pid;entry} = Proof.data proof in
let initial_goals = Proofview.initial_goals entry in
let evd = Proof.return ~pid proof in
let eff = Evd.eval_side_effects evd in
let evd = Evd.minimize_universes evd in
(* ppedrot: FIXME, this is surely wrong. There is no reason to duplicate
side-effects... This may explain why one need to uniquize side-effects
thereafter... *)
let proof_opt c =
match EConstr.to_constr_opt evd c with
| Some p -> p
| None -> CErrors.user_err Pp.(str "Some unresolved existential variables remain")
in
let proofs =
List.map (fun (c, _) -> (proof_opt c, eff)) initial_goals in
proofs, Evd.evar_universe_context evd
let close_future_proof ~opaque ~feedback_id ps proof =
close_proof ~opaque ~keep_body_ucst_separate:true ~feedback_id ~now:false proof ps
let close_proof ~opaque ~keep_body_ucst_separate fix_exn ps =
close_proof ~opaque ~keep_body_ucst_separate ~now:true
(Future.from_val ~fix_exn (return_proof ps)) ps
(** Gets the current terminator without checking that the proof has
been completed. Useful for the likes of [Admitted]. *)
let get_terminator ps = CEphemeron.get ps.terminator
let set_terminator hook ps =
{ ps with terminator = CEphemeron.create hook }
let copy_terminators ~src ~tgt =
let (ps, psl), (ts,tsl) = src, tgt in
assert(List.length psl = List.length tsl);
{ts with terminator = ps.terminator}, List.map2 (fun op p -> { p with terminator = op.terminator }) psl tsl
let update_global_env pf =
let res, () =
with_proof (fun _ p ->
Proof.in_proof p (fun sigma ->
let tac = Proofview.Unsafe.tclEVARS (Evd.update_sigma_env sigma (Global.env ())) in
let (p,(status,info),()) = Proof.run_tactic (Global.env ()) tac p in
(p, ()))) pf
in res
|