aboutsummaryrefslogtreecommitdiff
path: root/pretyping/evarutil.ml
blob: 64a2dd9d1a492f2a70146c83cedfc21214aed0bb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
(****************************************************************************)
(*                 The Calculus of Inductive Constructions                  *)
(*                                                                          *)
(*                                Projet Coq                                *)
(*                                                                          *)
(*                     INRIA        LRI-CNRS        ENS-CNRS                *)
(*              Rocquencourt         Orsay          Lyon                    *)
(*                                                                          *)
(*                                 Coq V6.3                                 *)
(*                               July 1st 1999                              *)
(*                                                                          *)
(****************************************************************************)
(*                               tradevar.ml                                *)
(****************************************************************************)

open Std;;
open Pp;;
open Names;;
open Impuniv;;
open Vectops;;
open Generic;;
open Term;;
open Printer;;
open Termenv;;
open Evd;;
open Reduction;;
open Himsg;;


let rec filter_unique = function
    [] -> []
  | x::l ->
      if List.mem x l then filter_unique (filter (fun y -> x<>y) l)
      else x::filter_unique l
;;

let distinct_id_list = 
  let rec drec fresh = function
      [] -> List.rev fresh 
    | id::rest ->
 	let id' = next_ident_away_from id fresh in drec (id'::fresh) rest
  in drec []
;;

let filter_sign p sign x =
  sign_it
    (fun id ty (v,ids,sgn) ->
      let (disc,v') = p v (id,ty) in
      if disc then (v', id::ids, sgn) else (v', ids, add_sign (id,ty) sgn))
    sign
    (x,[],nil_sign)
;;


(*------------------------------------*
 * functional operations on evar sets *
 *------------------------------------*)

(* All ids of sign must be distincts! *)
let new_isevar_sign env sigma typ args k =
  let sign = context env in
  (if not (distinct (ids_of_sign sign))
  then error "new_isevar_sign: two vars have the same name");
  let newsp = new_isevar_path k in
  (Evd.add_noinfo sigma newsp sign typ, mkConst newsp args)
;;

(* We don't try to guess in which sort the type should be defined, since
   any type has type Type. May cause some trouble, but not so far... *)
let dummy_sort = mkType dummy_univ;;

(* Declaring any type to be in the sort Type shouldn't be harmful since
   cumulativity now includes Prop and Set in Type. *)
let new_type_var sigma sign k =
  let args = (Array.of_list (List.map mkVar (ids_of_sign sign))) in
  let (sigma',c) = new_isevar_sign sigma sign dummy_sort args k in
  (sigma', make_type c (Type dummy_univ))
;;

let split_evar_to_arrow sigma c =
  let (sp,args) = destConst c in
  let k = kind_of_path sp in
  let evd = Evd.map sigma sp in
  let hyps= evd.hyps in
  let (sigma1,dom) = new_type_var sigma hyps k in
  let nvar = next_ident_away (id_of_string "x") (ids_of_sign hyps) in
  let nhyps = add_sign (nvar,dom) hyps in
  let (sigma2,rng) = new_type_var sigma1 nhyps k in
  let prod = Environ.prod_create (incast_type dom, 
				  subst_var nvar (body_of_type rng)) in
  let sigma3 = Evd.define sigma2 sp prod in
  let dsp = path_of_const (body_of_type dom) in
  let rsp = path_of_const (body_of_type rng) in
  (sigma3,
   mkCast (mkConst dsp args) dummy_sort,
   mkCast (mkConst rsp (cons_vect (mkRel 1) args)) dummy_sort)
;;

(* Redefines an evar with a smaller context (i.e. it may depend on less
 * variables) such that c becomes closed.
 * Example: in [x:?1; y:(list ?2)] <?3>x=y /\ x=(nil bool)
 * ?3 <-- ?1          no pb: env of ?3 is larger than ?1's
 * ?1 <-- (list ?2)   pb: ?2 may depend on x, but not ?1.
 * What we do is that ?2 is defined by a new evar ?4 whose context will be
 * a prefix of ?2's env, included in ?1's env.
 *)
let do_restrict_hyps sigma c =
  let (sp,argsv) = destConst c in
  let k = kind_of_path sp in
  let args = Array.to_list argsv in
  let evd = Evd.map sigma sp in
  let hyps= evd.hyps in
  let (_,(rsign,ncargs)) =
    List.fold_left (fun (sign,(rs,na)) a ->
      (tl_sign sign,
       if not(closed0 a) then (rs,na)
       else (add_sign (hd_sign sign) rs, a::na)))
      (hyps,(nil_sign,[])) args in
(*  let (_,(rsign,ncargs)) =
    List.fold_left (fun (sign,(rs,na)) a ->
      (tl_sign sign,
       if not(closed0 a) then (nil_sign,[])
       else (add_sign (hd_sign sign) rs, a::na)))
      (hyps,(nil_sign,[])) args in *)
  let nsign = rev_sign rsign in
  let nargs = (Array.of_list (List.map mkVar (ids_of_sign nsign))) in
  let (sigma',nc) = new_isevar_sign sigma nsign evd.concl nargs k in
  let sigma'' = Evd.define sigma' sp nc in
  (sigma'', mkConst (path_of_const nc) (Array.of_list (List.rev ncargs)))
;;



(*------------------------------------*
 * operations on the evar constraints *
 *------------------------------------*)

type 'a evar_defs = 'a Evd.evar_map ref

(* ise_try [f1;...;fn] tries fi() for i=1..n, restoring the evar constraints
 * when fi returns false or an exception. Returns true if one of the fi
 * returns true, and false if every fi return false (in the latter case,
 * the evar constraints are restored).
 *)
let ise_try isevars l =
  let u = !isevars in
  let rec test = function
      [] -> isevars := u; false
    | f::l ->
 	  (try f() with reraise -> isevars := u; raise reraise)
       or (isevars := u; test l)
  in test l
;;


(* say if the section path sp corresponds to an existential *)
let ise_in_dom isevars sp = Evd.in_dom !isevars sp;;

(* map the given section path to the evar_declaration *)
let ise_map isevars sp = Evd.map !isevars sp;;

(* define the existential of section path sp as the constr body *)
let ise_define isevars sp body = isevars := Evd.define !isevars sp body;;

(* Does k corresponds to an (un)defined existential ? *)
let ise_undefined isevars k =
  match k with
    DOPN(Const _,_) ->
      ise_in_dom isevars (path_of_const k) &
      not (defined_const !isevars k)
  | _ -> false
;;

let ise_defined isevars k =
  match k with
    DOPN(Const _,_) -> Termenv.defined_existential !isevars k
  | _ -> false
;;

let restrict_hyps isevars c =
  if ise_undefined isevars c & not (closed0 c)
  then
    (let (sigma,rc) = do_restrict_hyps !isevars c in
    isevars := sigma;
    rc)
  else c
;;


let error_occur_check sp rhs =
  let id = string_of_id (Names.basename sp) in
  let pt = prterm rhs in
  errorlabstrm "Trad.occur_check"
    [< 'sTR"Occur check failed: tried to define "; 'sTR id;
      'sTR" with term"; 'bRK(1,1); pt >]
;;

(* We need the environment here *)
let error_not_clean sp t =
  let c = Rel (List.hd (Listset.elements(free_rels t))) in
  let id = string_of_id (Names.basename sp) in
  let var = pTERM(c) in
  errorlabstrm "Trad.not_clean"
    [< 'sTR"Tried to define "; 'sTR id;
       'sTR" with a term using variable "; var; 'sPC;
       'sTR"which is not in its scope." >]
;;

(* We try to instanciate the evar assuming the body won't depend
 * on arguments that are not Rels or VARs, or appearing several times.
 *)
(* Note: error_not_clean should not be an error: it simply means that the
 * conversion test that lead to the faulty call to [real_clean] should return
 * false. The problem is that we won't get the right error message.
 *)
let real_clean isevars sp args rhs =
  let subst = List.map (fun (x,y) -> (y,VAR x)) (filter_unique args) in
  let rec subs k t =
    match t with
      Rel i ->
 	if i<=k then t
 	else (try List.assoc (Rel (i-k)) subst with Not_found -> t)
    | VAR _ -> (try List.assoc t subst with Not_found -> t)
    | DOP0 _ -> t
    | DOP1(o,a) -> DOP1(o, subs k a)
    | DOP2(o,a,b) -> DOP2(o, subs k a, subs k b)
    | DOPN(o,v) -> restrict_hyps isevars (DOPN(o, Array.map (subs k) v))
    | DOPL(o,l) -> DOPL(o, List.map (subs k) l)
    | DLAM(n,a) -> DLAM(n, subs (k+1) a)
    | DLAMV(n,v) -> DLAMV(n, Array.map (subs (k+1)) v) in
  let body = subs 0 rhs in
  if not (closed0 body) then error_not_clean sp body;
  body
;;


(* [new_isevar] declares a new existential in an env env with type typ *)
(* Converting the env into the sign of the evar to define *)
let new_isevar isevars env typ k =
  let (ENVIRON(sign,dbenv)) = env in
  let t =
    List.fold_left (fun b (na,d)-> mkLambda na (incast_type d) b) typ dbenv in
  let rec aux sign = function
      (0, t) -> (sign,t)
    | (n, (DOP2(Lambda,d,(DLAM(na,b))))) ->
	let na = if na = Anonymous then Name(id_of_string"_") else na in
       	let id = next_name_away na (ids_of_sign sign) in
       	aux (add_sign (id,(outcast_type d)) sign) (n-1, subst1 (VAR id) b)
    | (_, _) -> anomaly "Trad.new_isevar" in
  let (sign',typ') = aux sign (List.length dbenv, t) in
  let newargs =
    (List.rev(rel_list 0 (List.length dbenv)))
    @(List.map (fun id -> VAR id) (ids_of_sign sign)) in
  let (sigma',evar) =
    new_isevar_sign !isevars sign' typ' (Array.of_list newargs) k in
  isevars := sigma';
  (evar,typ')
;;


(* [evar_define] solves the problem lhs = rhs when lhs is an uninstantiated
 * evar, i.e. tries to find the body ?sp for lhs=DOPN(Const sp,args)
 * ?sp [ sp.hyps \ args ]  unifies to rhs
 * ?sp must be a closed term, not referring to itself.
 * Not so trivial because some terms of args may be terms that are not
 * variables. In this case, the non-var-or-Rels arguments are replaced
 * by <implicit>. [clean_rhs] will ignore this part of the subtitution. 
 * This leads to incompleteness (we don't deal with pbs that require
 * inference of dependent types), but it seems sensible.
 *
 * If after cleaning, some free vars still occur, the function [restrict_hyps]
 * tries to narrow the env of the evars that depend on Rels.
 *
 * If after that free Rels still occur it means that the instantiation
 * cannot be done, as in  [x:?1; y:nat; z:(le y y)] x=z
 * ?1 would be instantiated by (le y y) but y is not in the scope of ?1
 *)
let evar_define isevars lhs rhs =
  let (sp,argsv) = destConst lhs in
  let _ = if occur_opern (Const sp) rhs then error_occur_check sp rhs in
  let args = List.map (function (VAR _ | Rel _) as t -> t | _ -> mkImplicit)
      (Array.to_list argsv) in 
  let evd = ise_map isevars sp in
  let hyps= evd.hyps in
  (* the substitution to invert *)
  let worklist = List.combine (ids_of_sign hyps) args in
  let body = real_clean isevars sp worklist rhs in
  ise_define isevars sp body;
  [sp]
;;


(* Solve pbs (?i x1..xn) = (?i y1..yn) which arises often in fixpoint
 * definitions. We try to unify the xi with the yi pairwise. The pairs
 * that don't unify are discarded (i.e. ?i is redefined so that it does not
 * depend on these args).
 *)
let solve_refl conv_algo isevars c1 c2 =
  let (sp,argsv1) = destConst c1
  and (_,argsv2) = destConst c2 in
  let evd = Evd.map !isevars sp in
  let hyps = evd.Evd.hyps in
  let (_,rsign) = it_vect2
      (fun (sgn,rsgn) a1 a2 ->
	if conv_algo a1 a2
 	then (tl_sign sgn, add_sign (hd_sign sgn) rsgn)
	else (tl_sign sgn, rsgn))
      (hyps,nil_sign) argsv1 argsv2 in
  let nsign = rev_sign rsign in
  let nargs = (Array.of_list (List.map mkVar (ids_of_sign nsign))) in
  let newsp = new_isevar_path CCI in
  isevars :=
    Evd.define (Evd.add_noinfo !isevars newsp nsign evd.Evd.concl)
      sp (mkConst newsp nargs);
  Some [sp]


(* Tries to solve problem t1 = t2.
 * Precondition: one of t1,t2 is an uninstanciated evar, possibly
 * applied to arguments.
 * Returns an optional list of evars that were instantiated, or None
 * if the problem couldn't be solved.
 *)
(* Rq: uncomplete algorithm if pbty = CONV_X_LEQ ! *)
let rec solve_simple_eqn conv_algo isevars ((pbty,t1,t2) as pb) =
  let t1 = nf_ise1 !isevars t1 in
  let t2 = nf_ise1 !isevars t2 in
  if eq_constr t1 t2 then Some []
  else match (ise_undefined isevars t1, ise_undefined isevars t2) with
    (true,true) ->
      if path_of_const t1 = path_of_const t2
      then solve_refl conv_algo isevars t1 t2
      else if Array.length(args_of_const t1) < Array.length(args_of_const t2)
      then Some (evar_define isevars t2 t1)
      else Some (evar_define isevars t1 t2)
  | (true,false) -> Some (evar_define isevars t1 t2)
  | (false,true) -> Some (evar_define isevars t2 t1)
  | _ -> None
;;

(*-------------------*)
(* Now several auxiliary functions for the conversion algorithms modulo
 * evars. used in trad and progmach
 *)


let has_undefined_isevars isevars c =
  let rec hasrec = function
    DOPN(Const sp,cl) as k ->
    if ise_in_dom isevars sp then 
       if defined_const !isevars k
       then hasrec (const_value !isevars k)
       else failwith "caught"
    else Array.iter hasrec cl

  | DOP1(_,c) -> hasrec c
  | DOP2(_,c1,c2) -> (hasrec c1; hasrec c2)
  | DOPL(_,l) -> List.iter hasrec l
  | DOPN(_,cl) -> Array.iter hasrec cl
  | DLAM(_,c) -> hasrec c
  | DLAMV(_,cl) -> Array.iter hasrec cl
  | (VAR _|Rel _|DOP0 _) -> ()
 in (try (hasrec c ; false) with Failure "caught" -> true)
    
;;

let head_is_exist isevars = 
 let rec hrec = function
    DOPN(Const _,_) as k -> ise_undefined isevars k
  | DOPN(AppL,cl) -> hrec (hd_vect cl)
  | DOP2(Cast,c,_) -> hrec c
  | _ -> false
 in hrec 
;;


let rec is_eliminator = function
    DOPN (AppL,_)          -> true
  | DOPN(MutCase _,_) -> true
  | DOP2 (Cast,c,_)        -> is_eliminator c
  | _ -> false
;;

let head_is_embedded_exist isevars c =
    (head_is_exist isevars c) & (is_eliminator c)
;;

let headconstant = 
 let rec hrec = function
    DOPN(Const sp,_)       -> sp
  | DOPN(MutCase _,_) as mc -> 
       let (_,_,c,_) = destCase mc in
       hrec c
  | DOPN(AppL,cl)          -> hrec (hd_vect cl)
  | DOP2(Cast,c,_)         -> hrec c
  | _                      -> failwith "headconstant"
 in hrec 
;;

let status_changed lsp (pbty,t1,t2) =
    try List.mem (headconstant t1) lsp or List.mem (headconstant t2) lsp
    with Failure _ ->
    try List.mem (headconstant t2) lsp
    with Failure _ -> false
;;



(* Operations on value/type constraints used in trad and progmach *)

type trad_constraint = bool * (constr option * constr option)
(* Basically, we have the following kind of constraints (in increasing
 * strength order):
 *   (false,(None,None)) -> no constraint at all
 *   (true,(None,None))  -> we must build a judgement which _TYPE is a kind
 *   (_,(None,Some ty))  -> we must build a judgement which _TYPE is ty
 *   (_,(Some v,_))      -> we must build a judgement which _VAL is v
 * Maybe a concrete datatype would be easier to understand.
 * We differentiate (true,(None,None)) from (_,(None,Some Type))
 * because otherwise Case(s) would be misled, as in
 * (n:nat) Case n of bool [_]nat end  would infer the predicate Type instead
 * of Set.
 *)



(* The empty constraint *)
let mt_tycon = (false,(None,None));;

(* The default constraints for types. *)
let def_vty_con = (true,(None,None));;

(* Constrain only the type *)
let mk_tycon ty = (false,(None,Some ty));;
let mk_tycon2 (is_ass,_) ty = (is_ass,(None,Some ty))


(* Propagation of constraints through application and abstraction *)

(* Given a type constraint on a term, returns the type constraint on its first
 * argument. If the input constraint is an evar instantiate it with the product
 * of 2 new evars.
 *)
let prod_dom_tycon_unif isevars = function
    None -> None
  | Some c ->
      (match whd_betadeltaiota !isevars c with
        DOP2(Prod,c1,_) -> Some c1
      |	t ->
	  if (ise_undefined isevars t) then
	    (let (sigma,dom,_) = split_evar_to_arrow !isevars t in
	    isevars := sigma;
	    Some dom)
	  else None)
;;

(* Given a constraint on a term, returns the constraint corresponding to its
 * first argument.
 *) 
let app_dom_tycon isevars (_,(_,tyc)) =
  (false,(None, prod_dom_tycon_unif isevars tyc))
;;

(* Given a constraint on a term, returns the constraint corresponding to this
 * term applied to arg.
 *)
let app_rng_tycon isevars arg = function
    (_,(_,None)) as vtcon -> vtcon
  | (_,(_,Some c)) ->
      (match whd_betadeltaiota !isevars c with
        DOP2(Prod,_,DLAM(_,b)) -> mk_tycon (subst1 arg b)
      | _ -> mt_tycon)
;;

(* Given a constraint on an abstraction, returns the constraint on the value
 * of the domain type. If we had no constraint, we still know it should be
 * a type.
 *)
let abs_dom_valcon isevars (_,(_,tyc)) =
  (true,(prod_dom_tycon_unif isevars tyc, None))
;;

(* Given a constraint on an abstraction, returns the constraint on the body *)
let abs_rng_tycon isevars = function
    (_,(_,None)) -> mt_tycon
  | (_,(_,Some c)) ->
      (match whd_betadeltaiota !isevars c with
      | DOP2(Prod,_,DLAM(_,b)) -> mk_tycon b
      | _ -> mt_tycon)
;;

(* $Id$ *)