1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
|
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *)
(* <O___,, * (see CREDITS file for the list of authors) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
(* *)
(* Micromega: A reflexive tactic using the Positivstellensatz *)
(* *)
(* Frédéric Besson (Irisa/Inria) 2006-20018 *)
(* *)
(************************************************************************)
open Num
module Utils = Mutils
open Utils
module Mc = Micromega
let max_nb_cstr = ref max_int
type var = int
let debug = false
let (<+>) = add_num
let (<*>) = mult_num
module Monomial :
sig
type t
val const : t
val is_const : t -> bool
val var : var -> t
val is_var : t -> bool
val get_var : t -> var option
val prod : t -> t -> t
val exp : t -> int -> t
val div : t -> t -> t * int
val compare : t -> t -> int
val pp : out_channel -> t -> unit
val fold : (var -> int -> 'a -> 'a) -> t -> 'a -> 'a
val sqrt : t -> t option
val variables : t -> ISet.t
end
= struct
(* A monomial is represented by a multiset of variables *)
module Map = Map.Make(Int)
open Map
type t = int Map.t
let is_singleton m =
try
let (k,v) = choose m in
let (l,e,r) = split k m in
if is_empty l && is_empty r
then Some(k,v) else None
with Not_found -> None
let pp o m =
let pp_elt o (k,v)=
if v = 1 then Printf.fprintf o "x%i" k
else Printf.fprintf o "x%i^%i" k v in
let rec pp_list o l =
match l with
[] -> ()
| [e] -> pp_elt o e
| e::l -> Printf.fprintf o "%a*%a" pp_elt e pp_list l in
pp_list o (Map.bindings m)
(* The monomial that corresponds to a constant *)
let const = Map.empty
let sum_degree m = Map.fold (fun _ n s -> s + n) m 0
(* Total ordering of monomials *)
let compare: t -> t -> int =
fun m1 m2 ->
let s1 = sum_degree m1
and s2 = sum_degree m2 in
if Int.equal s1 s2 then Map.compare Int.compare m1 m2
else Int.compare s1 s2
let is_const m = (m = Map.empty)
(* The monomial 'x' *)
let var x = Map.add x 1 Map.empty
let is_var m =
match is_singleton m with
| None -> false
| Some (_,i) -> i = 1
let get_var m =
match is_singleton m with
| None -> None
| Some (k,i) -> if i = 1 then Some k else None
let sqrt m =
if is_const m then None
else
try
Some (Map.fold (fun v i acc ->
let i' = i / 2 in
if i mod 2 = 0
then add v i' acc
else raise Not_found) m const)
with Not_found -> None
(* Get the degre of a variable in a monomial *)
let find x m = try find x m with Not_found -> 0
(* Product of monomials *)
let prod m1 m2 = Map.fold (fun k d m -> add k ((find k m) + d) m) m1 m2
let exp m n =
let rec exp acc n =
if n = 0 then acc
else exp (prod acc m) (n - 1) in
exp const n
(* [div m1 m2 = mr,n] such that mr * (m2)^n = m1 *)
let div m1 m2 =
let n = fold (fun x i n -> let i' = find x m1 in
let nx = i' / i in
min n nx) m2 max_int in
let mr = fold (fun x i' m ->
let i = find x m2 in
let ir = i' - i * n in
if ir = 0 then m
else add x ir m) m1 empty in
(mr,n)
let variables m = fold (fun v i acc -> ISet.add v acc) m ISet.empty
let fold = fold
end
module MonMap =
struct
include Map.Make(Monomial)
let union f = merge
(fun x v1 v2 ->
match v1 , v2 with
| None , None -> None
| Some v , None | None , Some v -> Some v
| Some v1 , Some v2 -> f x v1 v2)
end
let pp_mon o (m, i) =
if Monomial.is_const m
then if eq_num (Int 0) i then ()
else Printf.fprintf o "%s" (string_of_num i)
else
match i with
| Int 1 -> Monomial.pp o m
| Int -1 -> Printf.fprintf o "-%a" Monomial.pp m
| Int 0 -> ()
| _ -> Printf.fprintf o "%s*%a" (string_of_num i) Monomial.pp m
module Poly :
(* A polynomial is a map of monomials *)
(*
This is probably a naive implementation
(expected to be fast enough - Coq is probably the bottleneck)
*The new ring contribution is using a sparse Horner representation.
*)
sig
type t
val pp : out_channel -> t -> unit
val get : Monomial.t -> t -> num
val variable : var -> t
val add : Monomial.t -> num -> t -> t
val constant : num -> t
val product : t -> t -> t
val addition : t -> t -> t
val uminus : t -> t
val fold : (Monomial.t -> num -> 'a -> 'a) -> t -> 'a -> 'a
val factorise : var -> t -> t * t
end = struct
(*normalisation bug : 0*x ... *)
module P = Map.Make(Monomial)
open P
type t = num P.t
let pp o p = P.iter (fun mn i -> Printf.fprintf o "%a + " pp_mon (mn, i)) p
(* Get the coefficient of monomial mn *)
let get : Monomial.t -> t -> num =
fun mn p -> try find mn p with Not_found -> (Int 0)
(* The polynomial 1.x *)
let variable : var -> t =
fun x -> add (Monomial.var x) (Int 1) empty
(*The constant polynomial *)
let constant : num -> t =
fun c -> add (Monomial.const) c empty
(* The addition of a monomial *)
let add : Monomial.t -> num -> t -> t =
fun mn v p ->
if sign_num v = 0 then p
else
let vl = (get mn p) <+> v in
if sign_num vl = 0 then
remove mn p
else add mn vl p
(** Design choice: empty is not a polynomial
I do not remember why ....
**)
(* The product by a monomial *)
let mult : Monomial.t -> num -> t -> t =
fun mn v p ->
if sign_num v = 0
then constant (Int 0)
else
fold (fun mn' v' res -> P.add (Monomial.prod mn mn') (v<*>v') res) p empty
let addition : t -> t -> t =
fun p1 p2 -> fold (fun mn v p -> add mn v p) p1 p2
let product : t -> t -> t =
fun p1 p2 ->
fold (fun mn v res -> addition (mult mn v p2) res ) p1 empty
let uminus : t -> t =
fun p -> map (fun v -> minus_num v) p
let fold = P.fold
let factorise x p =
let x = Monomial.var x in
P.fold (fun m v (px,cx) ->
let (m1,i) = Monomial.div m x in
if i = 0
then (px, add m v cx)
else
let mx = Monomial.prod m1 (Monomial.exp x (i-1)) in
(add mx v px,cx) ) p (constant (Int 0) , constant (Int 0))
end
type vector = Vect.t
type cstr = {coeffs : vector ; op : op ; cst : num}
and op = |Eq | Ge | Gt
exception Strict
let is_strict c = Pervasives.(=) c.op Gt
let eval_op = function
| Eq -> (=/)
| Ge -> (>=/)
| Gt -> (>/)
let string_of_op = function Eq -> "=" | Ge -> ">=" | Gt -> ">"
let output_cstr o { coeffs ; op ; cst } =
Printf.fprintf o "%a %s %s" Vect.pp coeffs (string_of_op op) (string_of_num cst)
let opMult o1 o2 =
match o1, o2 with
| Eq , _ | _ , Eq -> Eq
| Ge , _ | _ , Ge -> Ge
| Gt , Gt -> Gt
let opAdd o1 o2 =
match o1, o2 with
| Eq , x | x , Eq -> x
| Gt , x | x , Gt -> Gt
| Ge , Ge -> Ge
module LinPoly = struct
(** A linear polynomial a0 + a1.x1 + ... + an.xn
By convention, the constant a0 is the coefficient of the variable 0.
*)
type t = Vect.t
module MonT = struct
module MonoMap = Map.Make(Monomial)
module IntMap = Map.Make(Int)
(** A hash table might be preferable but requires a hash function. *)
let (index_of_monomial : int MonoMap.t ref) = ref (MonoMap.empty)
let (monomial_of_index : Monomial.t IntMap.t ref) = ref (IntMap.empty)
let fresh = ref 0
let clear () =
index_of_monomial := MonoMap.empty;
monomial_of_index := IntMap.empty ;
fresh := 0
let register m =
try
MonoMap.find m !index_of_monomial
with Not_found ->
begin
let res = !fresh in
index_of_monomial := MonoMap.add m res !index_of_monomial ;
monomial_of_index := IntMap.add res m !monomial_of_index ;
incr fresh ; res
end
let retrieve i = IntMap.find i !monomial_of_index
let _ = register Monomial.const
end
let var v = Vect.set (MonT.register (Monomial.var v)) (Int 1) Vect.null
let of_monomial m =
let v = MonT.register m in
Vect.set v (Int 1) Vect.null
let linpol_of_pol p =
Poly.fold
(fun mon num vct ->
let vr = MonT.register mon in
Vect.set vr num vct) p Vect.null
let pol_of_linpol v =
Vect.fold (fun p vr n -> Poly.add (MonT.retrieve vr) n p) (Poly.constant (Int 0)) v
let coq_poly_of_linpol cst p =
let pol_of_mon m =
Monomial.fold (fun x v p -> Mc.PEmul(Mc.PEpow(Mc.PEX(CamlToCoq.positive x),CamlToCoq.n v),p)) m (Mc.PEc (cst (Int 1))) in
Vect.fold (fun acc x v ->
let mn = MonT.retrieve x in
Mc.PEadd(Mc.PEmul(Mc.PEc (cst v), pol_of_mon mn),acc)) (Mc.PEc (cst (Int 0))) p
let pp_var o vr =
try
Monomial.pp o (MonT.retrieve vr) (* this is a non-linear variable *)
with Not_found -> Printf.fprintf o "v%i" vr
let pp o p = Vect.pp_gen pp_var o p
let constant c =
if sign_num c = 0
then Vect.null
else Vect.set 0 c Vect.null
let is_linear p =
Vect.for_all (fun v _ ->
let mn = (MonT.retrieve v) in
Monomial.is_var mn || Monomial.is_const mn) p
let is_variable p =
let ((x,v),r) = Vect.decomp_fst p in
if Vect.is_null r && v >/ Int 0
then Monomial.get_var (MonT.retrieve x)
else None
let factorise x p =
let (px,cx) = Poly.factorise x (pol_of_linpol p) in
(linpol_of_pol px, linpol_of_pol cx)
let is_linear_for x p =
let (a,b) = factorise x p in
Vect.is_constant a
let search_all_linear p l =
Vect.fold (fun acc x v ->
if p v
then
let x' = MonT.retrieve x in
match Monomial.get_var x' with
| None -> acc
| Some x ->
if is_linear_for x l
then x::acc
else acc
else acc) [] l
let min_list (l:int list) =
match l with
| [] -> None
| e::l -> Some (List.fold_left Pervasives.min e l)
let search_linear p l =
min_list (search_all_linear p l)
let product p1 p2 =
linpol_of_pol (Poly.product (pol_of_linpol p1) (pol_of_linpol p2))
let addition p1 p2 = Vect.add p1 p2
let of_vect v =
Vect.fold (fun acc v vl -> addition (product (var v) (constant vl)) acc) Vect.null v
let variables p = Vect.fold
(fun acc v _ ->
ISet.union (Monomial.variables (MonT.retrieve v)) acc) ISet.empty p
let pp_goal typ o l =
let vars = List.fold_left (fun acc p -> ISet.union acc (variables (fst p))) ISet.empty l in
let pp_vars o i = ISet.iter (fun v -> Printf.fprintf o "(x%i : %s) " v typ) vars in
Printf.fprintf o "forall %a\n" pp_vars vars ;
List.iteri (fun i (p,op) -> Printf.fprintf o "(H%i : %a %s 0)\n" i pp p (string_of_op op)) l;
Printf.fprintf o ", False\n"
let collect_square p =
Vect.fold (fun acc v _ ->
let m = (MonT.retrieve v) in
match Monomial.sqrt m with
| None -> acc
| Some s -> MonMap.add s m acc
) MonMap.empty p
end
module ProofFormat = struct
open Big_int
type prf_rule =
| Annot of string * prf_rule
| Hyp of int
| Def of int
| Cst of Num.num
| Zero
| Square of Vect.t
| MulC of Vect.t * prf_rule
| Gcd of Big_int.big_int * prf_rule
| MulPrf of prf_rule * prf_rule
| AddPrf of prf_rule * prf_rule
| CutPrf of prf_rule
type proof =
| Done
| Step of int * prf_rule * proof
| Enum of int * prf_rule * Vect.t * prf_rule * proof list
let rec output_prf_rule o = function
| Annot(s,p) -> Printf.fprintf o "(%a)@%s" output_prf_rule p s
| Hyp i -> Printf.fprintf o "Hyp %i" i
| Def i -> Printf.fprintf o "Def %i" i
| Cst c -> Printf.fprintf o "Cst %s" (string_of_num c)
| Zero -> Printf.fprintf o "Zero"
| Square s -> Printf.fprintf o "(%a)^2" Poly.pp (LinPoly.pol_of_linpol s)
| MulC(p,pr) -> Printf.fprintf o "(%a) * (%a)" Poly.pp (LinPoly.pol_of_linpol p) output_prf_rule pr
| MulPrf(p1,p2) -> Printf.fprintf o "(%a) * (%a)" output_prf_rule p1 output_prf_rule p2
| AddPrf(p1,p2) -> Printf.fprintf o "%a + %a" output_prf_rule p1 output_prf_rule p2
| CutPrf(p) -> Printf.fprintf o "[%a]" output_prf_rule p
| Gcd(c,p) -> Printf.fprintf o "(%a)/%s" output_prf_rule p (string_of_big_int c)
let rec output_proof o = function
| Done -> Printf.fprintf o "."
| Step(i,p,pf) -> Printf.fprintf o "%i:= %a ; %a" i output_prf_rule p output_proof pf
| Enum(i,p1,v,p2,pl) -> Printf.fprintf o "%i{%a<=%a<=%a}%a" i
output_prf_rule p1 Vect.pp v output_prf_rule p2
(pp_list ";" output_proof) pl
let rec pr_size = function
| Annot(_,p) -> pr_size p
| Zero| Square _ -> Int 0
| Hyp _ -> Int 1
| Def _ -> Int 1
| Cst n -> n
| Gcd(i, p) -> pr_size p // (Big_int i)
| MulPrf(p1,p2) | AddPrf(p1,p2) -> pr_size p1 +/ pr_size p2
| CutPrf p -> pr_size p
| MulC(v, p) -> pr_size p
let rec pr_rule_max_id = function
| Annot(_,p) -> pr_rule_max_id p
| Hyp i | Def i -> i
| Cst _ | Zero | Square _ -> -1
| MulC(_,p) | CutPrf p | Gcd(_,p) -> pr_rule_max_id p
| MulPrf(p1,p2)| AddPrf(p1,p2) -> max (pr_rule_max_id p1) (pr_rule_max_id p2)
let rec proof_max_id = function
| Done -> -1
| Step(i,pr,prf) -> max i (max (pr_rule_max_id pr) (proof_max_id prf))
| Enum(i,p1,_,p2,l) ->
let m = max (pr_rule_max_id p1) (pr_rule_max_id p2) in
List.fold_left (fun i prf -> max i (proof_max_id prf)) (max i m) l
let rec pr_rule_def_cut id = function
| Annot(_,p) -> pr_rule_def_cut id p
| MulC(p,prf) ->
let (bds,id',prf') = pr_rule_def_cut id prf in
(bds, id', MulC(p,prf'))
| MulPrf(p1,p2) ->
let (bds1,id,p1) = pr_rule_def_cut id p1 in
let (bds2,id,p2) = pr_rule_def_cut id p2 in
(bds2@bds1,id,MulPrf(p1,p2))
| AddPrf(p1,p2) ->
let (bds1,id,p1) = pr_rule_def_cut id p1 in
let (bds2,id,p2) = pr_rule_def_cut id p2 in
(bds2@bds1,id,AddPrf(p1,p2))
| CutPrf p ->
let (bds,id,p) = pr_rule_def_cut id p in
((id,p)::bds,id+1,Def id)
| Gcd(c,p) ->
let (bds,id,p) = pr_rule_def_cut id p in
((id,p)::bds,id+1,Def id)
| Square _|Cst _|Def _|Hyp _|Zero as x -> ([],id,x)
(* Do not define top-level cuts *)
let pr_rule_def_cut id = function
| CutPrf p ->
let (bds,ids,p') = pr_rule_def_cut id p in
bds,ids, CutPrf p'
| p -> pr_rule_def_cut id p
let rec implicit_cut p =
match p with
| CutPrf p -> implicit_cut p
| _ -> p
let rec pr_rule_collect_hyps pr =
match pr with
| Annot(_,pr) -> pr_rule_collect_hyps pr
| Hyp i | Def i -> ISet.add i ISet.empty
| Cst _ | Zero | Square _ -> ISet.empty
| MulC(_,pr) | Gcd(_,pr)| CutPrf pr -> pr_rule_collect_hyps pr
| MulPrf(p1,p2) | AddPrf(p1,p2) -> ISet.union (pr_rule_collect_hyps p1) (pr_rule_collect_hyps p2)
let simplify_proof p =
let rec simplify_proof p =
match p with
| Done -> (Done, ISet.empty)
| Step(i,pr,Done) -> (p, ISet.add i (pr_rule_collect_hyps pr))
| Step(i,pr,prf) ->
let (prf',hyps) = simplify_proof prf in
if not (ISet.mem i hyps)
then (prf',hyps)
else
(Step(i,pr,prf'), ISet.add i (ISet.union (pr_rule_collect_hyps pr) hyps))
| Enum(i,p1,v,p2,pl) ->
let (pl,hl) = List.split (List.map simplify_proof pl) in
let hyps = List.fold_left ISet.union ISet.empty hl in
(Enum(i,p1,v,p2,pl),ISet.add i (ISet.union (ISet.union (pr_rule_collect_hyps p1) (pr_rule_collect_hyps p2)) hyps)) in
fst (simplify_proof p)
let rec normalise_proof id prf =
match prf with
| Done -> (id,Done)
| Step(i,Gcd(c,p),Done) -> normalise_proof id (Step(i,p,Done))
| Step(i,p,prf) ->
let bds,id,p' = pr_rule_def_cut id p in
let (id,prf) = normalise_proof id prf in
let prf = List.fold_left (fun acc (i,p) -> Step(i, CutPrf p,acc))
(Step(i,p',prf)) bds in
(id,prf)
| Enum(i,p1,v,p2,pl) ->
(* Why do I have top-level cuts ? *)
(* let p1 = implicit_cut p1 in
let p2 = implicit_cut p2 in
let (ids,prfs) = List.split (List.map (normalise_proof id) pl) in
(List.fold_left max 0 ids ,
Enum(i,p1,v,p2,prfs))
*)
let bds1,id,p1' = pr_rule_def_cut id (implicit_cut p1) in
let bds2,id,p2' = pr_rule_def_cut id (implicit_cut p2) in
let (ids,prfs) = List.split (List.map (normalise_proof id) pl) in
(List.fold_left max 0 ids ,
List.fold_left (fun acc (i,p) -> Step(i, CutPrf p,acc))
(Enum(i,p1',v,p2',prfs)) (bds2@bds1))
let normalise_proof id prf =
let prf = simplify_proof prf in
let res = normalise_proof id prf in
if debug then Printf.printf "normalise_proof %a -> %a" output_proof prf output_proof (snd res) ;
res
module OrdPrfRule =
struct
type t = prf_rule
let id_of_constr = function
| Annot _ -> 0
| Hyp _ -> 1
| Def _ -> 2
| Cst _ -> 3
| Zero -> 4
| Square _ -> 5
| MulC _ -> 6
| Gcd _ -> 7
| MulPrf _ -> 8
| AddPrf _ -> 9
| CutPrf _ -> 10
let cmp_pair c1 c2 (x1,x2) (y1,y2) =
match c1 x1 y1 with
| 0 -> c2 x2 y2
| i -> i
let rec compare p1 p2 =
match p1, p2 with
| Annot(s1,p1) , Annot(s2,p2) -> if s1 = s2 then compare p1 p2
else Pervasives.compare s1 s2
| Hyp i , Hyp j -> Pervasives.compare i j
| Def i , Def j -> Pervasives.compare i j
| Cst n , Cst m -> Num.compare_num n m
| Zero , Zero -> 0
| Square v1 , Square v2 -> Vect.compare v1 v2
| MulC(v1,p1) , MulC(v2,p2) -> cmp_pair Vect.compare compare (v1,p1) (v2,p2)
| Gcd(b1,p1) , Gcd(b2,p2) -> cmp_pair Big_int.compare_big_int compare (b1,p1) (b2,p2)
| MulPrf(p1,q1) , MulPrf(p2,q2) -> cmp_pair compare compare (p1,q1) (p2,q2)
| AddPrf(p1,q1) , MulPrf(p2,q2) -> cmp_pair compare compare (p1,q1) (p2,q2)
| CutPrf p , CutPrf p' -> compare p p'
| _ , _ -> Pervasives.compare (id_of_constr p1) (id_of_constr p2)
end
let add_proof x y =
match x, y with
| Zero , p | p , Zero -> p
| _ -> AddPrf(x,y)
let rec mul_cst_proof c p =
match p with
| Annot(s,p) -> Annot(s,mul_cst_proof c p)
| MulC(v,p') -> MulC(Vect.mul c v,p')
| _ ->
match sign_num c with
| 0 -> Zero (* This is likely to be a bug *)
| -1 -> MulC(LinPoly.constant c, p) (* [p] should represent an equality *)
| 1 ->
if eq_num (Int 1) c
then p
else MulPrf(Cst c,p)
| _ -> assert false
let sMulC v p =
let (c,v') = Vect.decomp_cst v in
if Vect.is_null v' then mul_cst_proof c p
else MulC(v,p)
let mul_proof p1 p2 =
match p1 , p2 with
| Zero , _ | _ , Zero -> Zero
| Cst c , p | p , Cst c -> mul_cst_proof c p
| _ , _ ->
MulPrf(p1,p2)
module PrfRuleMap = Map.Make(OrdPrfRule)
let prf_rule_of_map m =
PrfRuleMap.fold (fun k v acc -> add_proof (sMulC v k) acc) m Zero
let rec dev_prf_rule p =
match p with
| Annot(s,p) -> dev_prf_rule p
| Hyp _ | Def _ | Cst _ | Zero | Square _ -> PrfRuleMap.singleton p (LinPoly.constant (Int 1))
| MulC(v,p) -> PrfRuleMap.map (fun v1 -> LinPoly.product v v1) (dev_prf_rule p)
| AddPrf(p1,p2) -> PrfRuleMap.merge (fun k o1 o2 ->
match o1 , o2 with
| None , None -> None
| None , Some v | Some v, None -> Some v
| Some v1 , Some v2 -> Some (LinPoly.addition v1 v2)) (dev_prf_rule p1) (dev_prf_rule p2)
| MulPrf(p1, p2) ->
begin
let p1' = dev_prf_rule p1 in
let p2' = dev_prf_rule p2 in
let p1'' = prf_rule_of_map p1' in
let p2'' = prf_rule_of_map p2' in
match p1'' with
| Cst c -> PrfRuleMap.map (fun v1 -> Vect.mul c v1) p2'
| _ -> PrfRuleMap.singleton (MulPrf(p1'',p2'')) (LinPoly.constant (Int 1))
end
| _ -> PrfRuleMap.singleton p (LinPoly.constant (Int 1))
let simplify_prf_rule p =
prf_rule_of_map (dev_prf_rule p)
(*
let mul_proof p1 p2 =
let res = mul_proof p1 p2 in
Printf.printf "mul_proof %a %a = %a\n"
output_prf_rule p1 output_prf_rule p2 output_prf_rule res; res
let add_proof p1 p2 =
let res = add_proof p1 p2 in
Printf.printf "add_proof %a %a = %a\n"
output_prf_rule p1 output_prf_rule p2 output_prf_rule res; res
let sMulC v p =
let res = sMulC v p in
Printf.printf "sMulC %a %a = %a\n" Vect.pp v output_prf_rule p output_prf_rule res ;
res
let mul_cst_proof c p =
let res = mul_cst_proof c p in
Printf.printf "mul_cst_proof %s %a = %a\n" (Num.string_of_num c) output_prf_rule p output_prf_rule res ;
res
*)
let proof_of_farkas env vect =
Vect.fold (fun prf x n ->
add_proof (mul_cst_proof n (IMap.find x env)) prf) Zero vect
module Env = struct
let rec string_of_int_list l =
match l with
| [] -> ""
| i::l -> Printf.sprintf "%i,%s" i (string_of_int_list l)
let id_of_hyp hyp l =
let rec xid_of_hyp i l' =
match l' with
| [] -> failwith (Printf.sprintf "id_of_hyp %i %s" hyp (string_of_int_list l))
| hyp'::l' -> if Pervasives.(=) hyp hyp' then i else xid_of_hyp (i+1) l' in
xid_of_hyp 0 l
end
let cmpl_prf_rule norm (cst:num-> 'a) env prf =
let rec cmpl =
function
| Annot(s,p) -> cmpl p
| Hyp i | Def i -> Mc.PsatzIn (CamlToCoq.nat (Env.id_of_hyp i env))
| Cst i -> Mc.PsatzC (cst i)
| Zero -> Mc.PsatzZ
| MulPrf(p1,p2) -> Mc.PsatzMulE(cmpl p1, cmpl p2)
| AddPrf(p1,p2) -> Mc.PsatzAdd(cmpl p1 , cmpl p2)
| MulC(lp,p) -> let lp = norm (LinPoly.coq_poly_of_linpol cst lp) in
Mc.PsatzMulC(lp,cmpl p)
| Square lp -> Mc.PsatzSquare (norm (LinPoly.coq_poly_of_linpol cst lp))
| _ -> failwith "Cuts should already be compiled" in
cmpl prf
let cmpl_prf_rule_z env r = cmpl_prf_rule Mc.normZ (fun x -> CamlToCoq.bigint (numerator x)) env r
let rec cmpl_proof env = function
| Done -> Mc.DoneProof
| Step(i,p,prf) ->
begin
match p with
| CutPrf p' ->
Mc.CutProof(cmpl_prf_rule_z env p', cmpl_proof (i::env) prf)
| _ -> Mc.RatProof(cmpl_prf_rule_z env p,cmpl_proof (i::env) prf)
end
| Enum(i,p1,_,p2,l) ->
Mc.EnumProof(cmpl_prf_rule_z env p1,cmpl_prf_rule_z env p2,List.map (cmpl_proof (i::env)) l)
let compile_proof env prf =
let id = 1 + proof_max_id prf in
let _,prf = normalise_proof id prf in
cmpl_proof env prf
let rec eval_prf_rule env = function
| Annot(s,p) -> eval_prf_rule env p
| Hyp i | Def i -> env i
| Cst n -> (Vect.set 0 n Vect.null,
match Num.compare_num n (Int 0) with
| 0 -> Ge
| 1 -> Gt
| _ -> failwith "eval_prf_rule : negative constant"
)
| Zero -> (Vect.null, Ge)
| Square v -> (LinPoly.product v v,Ge)
| MulC(v, p) ->
let (p1,o) = eval_prf_rule env p in
begin match o with
| Eq -> (LinPoly.product v p1,Eq)
| _ ->
Printf.fprintf stdout "MulC(%a,%a) invalid 2d arg %a %s" Vect.pp v output_prf_rule p Vect.pp p1 (string_of_op o);
failwith "eval_prf_rule : not an equality"
end
| Gcd(g,p) -> let (v,op) = eval_prf_rule env p in
(Vect.div (Big_int g) v, op)
| MulPrf(p1,p2) ->
let (v1,o1) = eval_prf_rule env p1 in
let (v2,o2) = eval_prf_rule env p2 in
(LinPoly.product v1 v2, opMult o1 o2)
| AddPrf(p1,p2) ->
let (v1,o1) = eval_prf_rule env p1 in
let (v2,o2) = eval_prf_rule env p2 in
(LinPoly.addition v1 v2, opAdd o1 o2)
| CutPrf p -> eval_prf_rule env p
let is_unsat (p,o) =
let (c,r) = Vect.decomp_cst p in
if Vect.is_null r
then not (eval_op o c (Int 0))
else false
let rec eval_proof env p =
match p with
| Done -> failwith "Proof is not finished"
| Step(i, prf, rst) ->
let (p,o) = eval_prf_rule (fun i -> IMap.find i env) prf in
if is_unsat (p,o) then true
else
if Pervasives.(=) rst Done
then
begin
Printf.fprintf stdout "Last inference %a %s\n" LinPoly.pp p (string_of_op o);
false
end
else eval_proof (IMap.add i (p,o) env) rst
| Enum(i,r1,v,r2,l) -> let _ = eval_prf_rule (fun i -> IMap.find i env) r1 in
let _ = eval_prf_rule (fun i -> IMap.find i env) r2 in
(* Should check bounds *)
failwith "Not implemented"
end
module WithProof = struct
type t = ((LinPoly.t * op) * ProofFormat.prf_rule)
let annot s (p,prf) = (p, ProofFormat.Annot(s,prf))
let output o ((lp,op),prf) =
Printf.fprintf o "%a %s 0 by %a\n" LinPoly.pp lp (string_of_op op) ProofFormat.output_prf_rule prf
let output_sys o l =
List.iter (Printf.fprintf o "%a\n" output) l
exception InvalidProof
let zero = ((Vect.null,Eq), ProofFormat.Zero)
let const n = ((LinPoly.constant n,Ge), ProofFormat.Cst n)
let of_cstr (c,prf) =
(Vect.set 0 (Num.minus_num (c.cst)) c.coeffs,c.op), prf
let product : t -> t -> t = fun ((p1,o1),prf1) ((p2,o2),prf2) ->
((LinPoly.product p1 p2 , opMult o1 o2), ProofFormat.mul_proof prf1 prf2)
let addition : t -> t -> t = fun ((p1,o1),prf1) ((p2,o2),prf2) ->
((Vect.add p1 p2, opAdd o1 o2), ProofFormat.add_proof prf1 prf2)
let mult p ((p1,o1),prf1) =
match o1 with
| Eq -> ((LinPoly.product p p1,o1), ProofFormat.sMulC p prf1)
| Gt| Ge -> let (n,r) = Vect.decomp_cst p in
if Vect.is_null r && n >/ Int 0
then ((LinPoly.product p p1, o1), ProofFormat.mul_cst_proof n prf1)
else raise InvalidProof
let cutting_plane ((p,o),prf) =
let (c,p') = Vect.decomp_cst p in
let g = (Vect.gcd p') in
if (Big_int.eq_big_int Big_int.unit_big_int g) || c =/ Int 0 ||
not (Big_int.eq_big_int (denominator c) Big_int.unit_big_int)
then None (* Nothing to do *)
else
let c1 = c // (Big_int g) in
let c1' = Num.floor_num c1 in
if c1 =/ c1'
then None
else
match o with
| Eq -> Some ((Vect.set 0 (Int (-1)) Vect.null,Eq), ProofFormat.Gcd(g,prf))
| Gt -> failwith "cutting_plane ignore strict constraints"
| Ge ->
(* This is a non-trivial common divisor *)
Some ((Vect.set 0 c1' (Vect.div (Big_int g) p),o),ProofFormat.Gcd(g, prf))
let construct_sign p =
let (c,p') = Vect.decomp_cst p in
if Vect.is_null p'
then
Some (begin match sign_num c with
| 0 -> (true, Eq, ProofFormat.Zero)
| 1 -> (true,Gt, ProofFormat.Cst c)
| _ (*-1*) -> (false,Gt, ProofFormat.Cst (minus_num c))
end)
else None
let get_sign l p =
match construct_sign p with
| None -> begin
try
let ((p',o),prf) =
List.find (fun ((p',o),prf) -> Vect.equal p p') l in
Some (true,o,prf)
with Not_found ->
let p = Vect.uminus p in
try
let ((p',o),prf) = List.find (fun ((p',o),prf) -> Vect.equal p p') l in
Some (false,o,prf)
with Not_found -> None
end
| Some s -> Some s
let mult_sign : bool -> t -> t = fun b ((p,o),prf) ->
if b then ((p,o),prf)
else ((Vect.uminus p,o),prf)
let rec linear_pivot sys ((lp1,op1), prf1) x ((lp2,op2), prf2) =
(* lp1 = a1.x + b1 *)
let (a1,b1) = LinPoly.factorise x lp1 in
(* lp2 = a2.x + b2 *)
let (a2,b2) = LinPoly.factorise x lp2 in
if Vect.is_null a2
then (* We are done *)
Some ((lp2,op2),prf2)
else
match op1,op2 with
| Eq , (Ge|Gt) -> begin
match get_sign sys a1 with
| None -> None (* Impossible to pivot without sign information *)
| Some(b,o,prf) ->
let sa1 = mult_sign b ((a1,o),prf) in
let sa2 = if b then (Vect.uminus a2) else a2 in
let ((lp2,op2),prf2) =
addition (product sa1 ((lp2,op2),prf2))
(mult sa2 ((lp1,op1),prf1)) in
linear_pivot sys ((lp1,op1),prf1) x ((lp2,op2),prf2)
end
| Eq , Eq ->
let ((lp2,op2),prf2) = addition (mult a1 ((lp2,op2),prf2))
(mult (Vect.uminus a2) ((lp1,op1),prf1)) in
linear_pivot sys ((lp1,op1),prf1) x ((lp2,op2),prf2)
| (Ge | Gt) , (Ge| Gt) -> begin
match get_sign sys a1 , get_sign sys a2 with
| Some(b1,o1,p1) , Some(b2,o2,p2) ->
if b1 <> b2
then
let ((lp2,op2),prf2) =
addition (product (mult_sign b1 ((a1,o1), p1)) ((lp2,op2),prf2))
(product (mult_sign b2 ((a2,o2), p2)) ((lp1,op1),prf1)) in
linear_pivot sys ((lp1,op1),prf1) x ((lp2,op2),prf2)
else None
| _ -> None
end
| (Ge|Gt) , Eq -> failwith "pivot: equality as second argument"
let linear_pivot sys ((lp1,op1), prf1) x ((lp2,op2), prf2) =
match linear_pivot sys ((lp1,op1), prf1) x ((lp2,op2), prf2) with
| None -> None
| Some (c,p) -> Some(c, ProofFormat.simplify_prf_rule p)
let is_substitution strict ((p,o),prf) =
let pred v = if strict then v =/ Int 1 || v =/ Int (-1) else true in
match o with
| Eq -> LinPoly.search_linear pred p
| _ -> None
let subst1 sys0 =
let (oeq,sys') = extract (is_substitution true) sys0 in
match oeq with
| None -> sys0
| Some(v,pc) ->
match simplify (linear_pivot sys0 pc v) sys' with
| None -> sys0
| Some sys' -> sys'
let subst sys0 =
let elim sys =
let (oeq,sys') = extract (is_substitution true) sys in
match oeq with
| None -> None
| Some(v,pc) -> simplify (linear_pivot sys0 pc v) sys' in
iterate_until_stable elim sys0
let saturate_subst b sys0 =
let select = is_substitution b in
let gen (v,pc) ((c,op),prf) =
if ISet.mem v (LinPoly.variables c)
then linear_pivot sys0 pc v ((c,op),prf)
else None
in
saturate select gen sys0
end
(* Local Variables: *)
(* coding: utf-8 *)
(* End: *)
|