blob: 4cb91ea5209238b84fd0538d3b0d32b1addcaf55 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
|
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * Copyright INRIA, CNRS and contributors *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
module type ZArith = sig
type t
val zero : t
val one : t
val two : t
val add : t -> t -> t
val sub : t -> t -> t
val mul : t -> t -> t
val div : t -> t -> t
val neg : t -> t
val sign : t -> int
val equal : t -> t -> bool
val compare : t -> t -> int
val power_int : t -> int -> t
val quomod : t -> t -> t * t
val ppcm : t -> t -> t
val gcd : t -> t -> t
val lcm : t -> t -> t
val to_string : t -> string
end
module Z = struct
type t = Big_int.big_int
open Big_int
let zero = zero_big_int
let one = unit_big_int
let two = big_int_of_int 2
let add = Big_int.add_big_int
let sub = Big_int.sub_big_int
let mul = Big_int.mult_big_int
let div = Big_int.div_big_int
let neg = Big_int.minus_big_int
let sign = Big_int.sign_big_int
let equal = eq_big_int
let compare = compare_big_int
let power_int = power_big_int_positive_int
let quomod = quomod_big_int
let ppcm x y =
let g = gcd_big_int x y in
let x' = div_big_int x g in
let y' = div_big_int y g in
mult_big_int g (mult_big_int x' y')
let gcd = gcd_big_int
let lcm x y =
if eq_big_int x zero && eq_big_int y zero then zero
else abs_big_int (div_big_int (mult_big_int x y) (gcd x y))
let to_string = string_of_big_int
end
module type QArith = sig
module Z : ZArith
type t
val of_int : int -> t
val zero : t
val one : t
val two : t
val ten : t
val neg_one : t
module Notations : sig
val ( // ) : t -> t -> t
val ( +/ ) : t -> t -> t
val ( -/ ) : t -> t -> t
val ( */ ) : t -> t -> t
val ( =/ ) : t -> t -> bool
val ( <>/ ) : t -> t -> bool
val ( >/ ) : t -> t -> bool
val ( >=/ ) : t -> t -> bool
val ( </ ) : t -> t -> bool
val ( <=/ ) : t -> t -> bool
end
val compare : t -> t -> int
val make : Z.t -> Z.t -> t
val den : t -> Z.t
val num : t -> Z.t
val of_bigint : Z.t -> t
val to_bigint : t -> Z.t
val neg : t -> t
(* val inv : t -> t *)
val max : t -> t -> t
val min : t -> t -> t
val sign : t -> int
val abs : t -> t
val mod_ : t -> t -> t
val floor : t -> t
(* val floorZ : t -> Z.t *)
val ceiling : t -> t
val round : t -> t
val pow2 : int -> t
val pow10 : int -> t
val power : int -> t -> t
val to_string : t -> string
val of_string : string -> t
val to_float : t -> float
end
module Q : QArith with module Z = Z = struct
module Z = Z
type t = Num.num
open Num
let of_int x = Int x
let zero = Int 0
let one = Int 1
let two = Int 2
let ten = Int 10
let neg_one = Int (-1)
module Notations = struct
let ( // ) = div_num
let ( +/ ) = add_num
let ( -/ ) = sub_num
let ( */ ) = mult_num
let ( =/ ) = eq_num
let ( <>/ ) = ( <>/ )
let ( >/ ) = ( >/ )
let ( >=/ ) = ( >=/ )
let ( </ ) = ( </ )
let ( <=/ ) = ( <=/ )
end
let compare = compare_num
let make x y = Big_int x // Big_int y
let numdom r =
let r' = Ratio.normalize_ratio (ratio_of_num r) in
(Ratio.numerator_ratio r', Ratio.denominator_ratio r')
let num x = numdom x |> fst
let den x = numdom x |> snd
let of_bigint x = Big_int x
let to_bigint = big_int_of_num
let neg = minus_num
(* let inv = *)
let max = max_num
let min = min_num
let sign = sign_num
let abs = abs_num
let mod_ = mod_num
let floor = floor_num
let ceiling = ceiling_num
let round = round_num
let pow2 n = power_num two (Int n)
let pow10 n = power_num ten (Int n)
let power x = power_num (Int x)
let to_string = string_of_num
let of_string = num_of_string
let to_float = float_of_num
end
|