blob: 02c4bab49794304f95622cc8829aae0b3df92bb4 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
|
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * Copyright INRIA, CNRS and contributors *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
module type ZArith = sig
type t
val zero : t
val one : t
val two : t
val add : t -> t -> t
val sub : t -> t -> t
val mul : t -> t -> t
val div : t -> t -> t
val neg : t -> t
val sign : t -> int
val equal : t -> t -> bool
val compare : t -> t -> int
val power_int : t -> int -> t
val quomod : t -> t -> t * t
val ppcm : t -> t -> t
val gcd : t -> t -> t
val lcm : t -> t -> t
val to_string : t -> string
end
module Z = struct
(* Beware this only works fine in ZArith >= 1.10 due to
https://github.com/ocaml/Zarith/issues/58 *)
include Z
(* Constants *)
let two = Z.of_int 2
let ten = Z.of_int 10
let power_int = Big_int_Z.power_big_int_positive_int
let quomod = Big_int_Z.quomod_big_int
(* zarith fails with division by zero if x == 0 && y == 0 *)
let lcm x y = if Z.equal x zero && Z.equal y zero then zero else Z.lcm x y
let ppcm x y =
let g = gcd x y in
let x' = Z.div x g in
let y' = Z.div y g in
Z.mul g (Z.mul x' y')
end
module type QArith = sig
module Z : ZArith
type t
val of_int : int -> t
val zero : t
val one : t
val two : t
val ten : t
val minus_one : t
module Notations : sig
val ( // ) : t -> t -> t
val ( +/ ) : t -> t -> t
val ( -/ ) : t -> t -> t
val ( */ ) : t -> t -> t
val ( =/ ) : t -> t -> bool
val ( <>/ ) : t -> t -> bool
val ( >/ ) : t -> t -> bool
val ( >=/ ) : t -> t -> bool
val ( </ ) : t -> t -> bool
val ( <=/ ) : t -> t -> bool
end
val compare : t -> t -> int
val make : Z.t -> Z.t -> t
val den : t -> Z.t
val num : t -> Z.t
val of_bigint : Z.t -> t
val to_bigint : t -> Z.t
val neg : t -> t
(* val inv : t -> t *)
val max : t -> t -> t
val min : t -> t -> t
val sign : t -> int
val abs : t -> t
val mod_ : t -> t -> t
val floor : t -> t
(* val floorZ : t -> Z.t *)
val ceiling : t -> t
val round : t -> t
val pow2 : int -> t
val pow10 : int -> t
val power : int -> t -> t
val to_string : t -> string
val of_string : string -> t
val to_float : t -> float
end
module Q : QArith with module Z = Z = struct
module Z = Z
let pow_check_exp x y =
let z_res =
if y = 0 then Z.one
else if y > 0 then Z.pow x y
else (* s < 0 *)
Z.pow x (abs y)
in
let z_res = Q.of_bigint z_res in
if 0 <= y then z_res else Q.inv z_res
include Q
let two = Q.(of_int 2)
let ten = Q.(of_int 10)
module Notations = struct
let ( // ) = Q.div
let ( +/ ) = Q.add
let ( -/ ) = Q.sub
let ( */ ) = Q.mul
let ( =/ ) = Q.equal
let ( <>/ ) x y = not (Q.equal x y)
let ( >/ ) = Q.gt
let ( >=/ ) = Q.geq
let ( </ ) = Q.lt
let ( <=/ ) = Q.leq
end
(* XXX: review / improve *)
let floorZ q : Z.t = Z.fdiv (num q) (den q)
let floor q : t = floorZ q |> Q.of_bigint
let ceiling q : t = Z.cdiv (Q.num q) (Q.den q) |> Q.of_bigint
let half = Q.make Z.one Z.two
(* We imitate Num's round which is to the nearest *)
let round q = floor (Q.add half q)
(* XXX: review / improve *)
let quo x y =
let s = sign y in
let res = floor (x / abs y) in
if Int.equal s (-1) then neg res else res
let mod_ x y = x - (y * quo x y)
(* XXX: review / improve *)
(* Note that Z.pow doesn't support negative exponents *)
let pow2 y = pow_check_exp Z.two y
let pow10 y = pow_check_exp Z.ten y
let power (x : int) (y : t) : t =
let y =
try Q.to_int y
with Z.Overflow ->
(* XXX: make doesn't link Pp / CErrors for csdpcert, that could be fixed *)
raise (Invalid_argument "[micromega] overflow in exponentiation")
(* CErrors.user_err (Pp.str "[micromega] overflow in exponentiation") *)
in
pow_check_exp (Z.of_int x) y
end
|