1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
|
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *)
(* <O___,, * (see CREDITS file for the list of authors) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
(** Intervals (extracted from mfourier.ml) *)
open Num
(** The type of intervals is *)
type interval = num option * num option
(** None models the absence of bound i.e. infinity
As a result,
- None , None -> \]-oo,+oo\[
- None , Some v -> \]-oo,v\]
- Some v, None -> \[v,+oo\[
- Some v, Some v' -> \[v,v'\]
Intervals needs to be explicitly normalised.
*)
let pp o (n1,n2) =
(match n1 with
| None -> output_string o "]-oo"
| Some n -> Printf.fprintf o "[%s" (string_of_num n)
);
output_string o ",";
(match n2 with
| None -> output_string o "+oo["
| Some n -> Printf.fprintf o "%s]" (string_of_num n)
)
(** if then interval [itv] is empty, [norm_itv itv] returns [None]
otherwise, it returns [Some itv] *)
let norm_itv itv =
match itv with
| Some a , Some b -> if a <=/ b then Some itv else None
| _ -> Some itv
(** [inter i1 i2 = None] if the intersection of intervals is empty
[inter i1 i2 = Some i] if [i] is the intersection of the intervals [i1] and [i2] *)
let inter i1 i2 =
let (l1,r1) = i1
and (l2,r2) = i2 in
let inter f o1 o2 =
match o1 , o2 with
| None , None -> None
| Some _ , None -> o1
| None , Some _ -> o2
| Some n1 , Some n2 -> Some (f n1 n2) in
norm_itv (inter max_num l1 l2 , inter min_num r1 r2)
let range = function
| None,_ | _,None -> None
| Some i,Some j -> Some (floor_num j -/ceiling_num i +/ (Int 1))
let smaller_itv i1 i2 =
match range i1 , range i2 with
| None , _ -> false
| _ , None -> true
| Some i , Some j -> i <=/ j
(** [in_bound bnd v] checks whether [v] is within the bounds [bnd] *)
let in_bound bnd v =
let (l,r) = bnd in
match l , r with
| None , None -> true
| None , Some a -> v <=/ a
| Some a , None -> a <=/ v
| Some a , Some b -> a <=/ v && v <=/ b
|