blob: 5b215549b05fc42245ced476cfdd2decc7fb930f (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
|
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * Copyright INRIA, CNRS and contributors *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
module Mc = Micromega
(** [use_simplex] is bound to the Coq option Simplex.
If set, use the Simplex method, otherwise use Fourier *)
val use_simplex : unit -> bool
type ('prf, 'model) res = Prf of 'prf | Model of 'model | Unknown
type zres = (Mc.zArithProof, int * Mc.z list) res
type qres = (Mc.q Mc.psatz, int * Mc.q list) res
(** [q_cert_of_pos prf] converts a Sos proof into a rational Coq proof *)
val q_cert_of_pos : Sos_types.positivstellensatz -> Mc.q Mc.psatz
(** [z_cert_of_pos prf] converts a Sos proof into an integer Coq proof *)
val z_cert_of_pos : Sos_types.positivstellensatz -> Mc.z Mc.psatz
(** [lia enum depth sys] generates an unsat proof for the linear constraints in [sys].
If the Simplex option is set, any failure to find a proof should be considered as a bug. *)
val lia : bool -> int -> (Mc.z Mc.pExpr * Mc.op1) list -> zres
(** [nlia enum depth sys] generates an unsat proof for the non-linear constraints in [sys].
The solver is incomplete -- the problem is undecidable *)
val nlia : bool -> int -> (Mc.z Mc.pExpr * Mc.op1) list -> zres
(** [linear_prover_with_cert depth sys] generates an unsat proof for the linear constraints in [sys].
Over the rationals, the solver is complete. *)
val linear_prover_with_cert : int -> (Mc.q Mc.pExpr * Mc.op1) list -> qres
(** [nlinear depth sys] generates an unsat proof for the non-linear constraints in [sys].
The solver is incompete -- the problem is decidable. *)
val nlinear_prover : int -> (Mc.q Mc.pExpr * Mc.op1) list -> qres
|