aboutsummaryrefslogtreecommitdiff
path: root/plugins/micromega/ZifyClasses.v
blob: d3f7f91074f839e70485064fed7b95a6b7fc297e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
(************************************************************************)
(*         *   The Coq Proof Assistant / The Coq Development Team       *)
(*  v      *   INRIA, CNRS and contributors - Copyright 1999-2019       *)
(* <O___,, *       (see CREDITS file for the list of authors)           *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)
Set Primitive Projections.

(** An alternative to [zify] in ML parametrised by user-provided classes instances.

    The framework has currently several limitations that are in place for simplicity.
    For instance, we only consider binary operators of type [Op: S -> S -> S].
    Another limitation is that our injection theorems e.g. [TBOpInj],
    are using Leibniz equality; the payoff is that there is no need for morphisms...
 *)

(** An injection [InjTyp S T] declares an injection
    from source type S to target type T.
*)
Class InjTyp (S : Type) (T : Type) :=
  mkinj {
      (* [inj] is the injection function *)
      inj  : S -> T;
      pred : T -> Prop;
      (* [cstr] states that [pred] holds for any injected element.
         [cstr (inj x)] is introduced in the goal for any leaf
         term of the form [inj x]
       *)
      cstr : forall x, pred (inj x)
    }.

(** [BinOp Op] declares a source operator [Op: S1 -> S2 -> S3].
 *)
Class BinOp {S1 S2 S3:Type} {T:Type} (Op : S1 -> S2 -> S3) {I1 : InjTyp S1 T} {I2 : InjTyp S2 T} {I3 : InjTyp S3 T} :=
  mkbop {
      (* [TBOp] is the target operator after injection of operands. *)
      TBOp : T -> T -> T;
      (* [TBOpInj] states the correctness of the injection. *)
      TBOpInj : forall (n:S1) (m:S2), inj (Op n m) = TBOp (inj n) (inj m)
    }.

(** [Unop Op] declares a source operator [Op : S1 -> S2]. *)
Class UnOp {S1 S2 T:Type} (Op : S1 -> S2) {I1 : InjTyp S1 T} {I2 : InjTyp S2 T}  :=
  mkuop {
      (* [TUOp] is the target operator after injection of operands. *)
      TUOp : T -> T;
      (* [TUOpInj] states the correctness of the injection. *)
      TUOpInj : forall (x:S1), inj (Op x) = TUOp (inj x)
    }.

(** [CstOp Op] declares a source constant [Op : S]. *)
Class CstOp {S T:Type} (Op : S) {I : InjTyp S T} :=
  mkcst {
      (* [TCst] is the target constant. *)
      TCst : T;
      (* [TCstInj] states the correctness of the injection. *)
      TCstInj : inj Op = TCst
    }.

(** In the framework, [Prop] is mapped to [Prop] and the injection is phrased in
    terms  of [=] instead of [<->].
*)

(** [BinRel R] declares the injection of a binary relation. *)
Class BinRel {S:Type} {T:Type} (R : S -> S -> Prop) {I : InjTyp S T}  :=
    mkbrel {
        TR : T -> T -> Prop;
        TRInj : forall n m : S, R n m <->  TR (@inj _ _ I n) (inj m)
      }.

(** [PropOp Op] declares morphisms for [<->].
    This will be used to deal with e.g. [and], [or],... *)
Class PropOp (Op : Prop -> Prop -> Prop) :=
  mkprop {
      op_iff : forall (p1 p2 q1 q2:Prop), (p1 <-> q1) -> (p2 <-> q2) -> (Op p1 p2 <-> Op q1 q2)
    }.

Class PropUOp (Op : Prop -> Prop) :=
  mkuprop {
      uop_iff : forall (p1 q1 :Prop), (p1 <-> q1) -> (Op p1 <-> Op q1)
    }.



(** Once the term is injected, terms can be replaced by their specification.
    NB1: The Ltac code is currently limited to (Op: Z -> Z -> Z)
    NB2: This is not sufficient to cope with [Z.div] or [Z.mod]
 *)
Class BinOpSpec {S T: Type} (Op : T -> T -> T) {I : InjTyp S T} :=
  mkbspec {
      BPred : T -> T -> T -> Prop;
      BSpec : forall x y, BPred x y (Op x y)
    }.

Class UnOpSpec {S T: Type} (Op : T -> T) {I : InjTyp S T} :=
  mkuspec {
      UPred : T -> T -> Prop;
      USpec : forall x, UPred x (Op x)
    }.

(** After injections, e.g. nat -> Z,
    the fact that Z.of_nat x * Z.of_nat y is positive is lost.
    This information can be recovered using instance of the  [Saturate] class.
*)
Class Saturate {T: Type} (Op : T -> T -> T) :=
  mksat {
      (** Given [Op x y],
          - [PArg1] is the pre-condition of x
          - [PArg2] is the pre-condition of y
          - [PRes]  is the pos-condition of (Op x y) *)
      PArg1 : T -> Prop;
      PArg2 : T -> Prop;
      PRes  : T -> Prop;
      (** [SatOk] states the correctness of the reasoning *)
      SatOk : forall x y, PArg1 x -> PArg2 y -> PRes (Op x y)
    }.
(* The [ZifyInst.saturate] iterates over all the instances
   and for every pattern of the form
   [H1 : PArg1 ?x , H2 : PArg2 ?y , T : context[Op ?x ?y] |- _ ]
   [H1 : PArg1 ?x , H2 : PArg2 ?y |- context[Op ?x ?y] ]
   asserts  (SatOK x y H1 H2) *)

(** The rest of the file is for internal use by the ML tactic.
    There are  data-structures and lemmas used to inductively construct
    the injected terms. *)

(** The data-structures [injterm] and [injected_prop]
    are used to store source and target expressions together
    with a correctness proof. *)

Record injterm {S T: Type} {I : S -> T} :=
  mkinjterm { source : S ; target : T ; inj_ok : I source = target}.

Record injprop  :=
  mkinjprop {
      source_prop : Prop ; target_prop : Prop ;
      injprop_ok : source_prop <-> target_prop}.

(** Lemmas for building [injterm] and [injprop]. *)

Definition mkprop_op  (Op : Prop -> Prop -> Prop) (POp : PropOp Op)
           (p1 :injprop) (p2: injprop) : injprop :=
  {| source_prop := (Op (source_prop p1) (source_prop p2)) ;
     target_prop := (Op (target_prop p1) (target_prop p2)) ;
     injprop_ok  := (op_iff (source_prop p1) (source_prop p2) (target_prop p1) (target_prop p2)
                            (injprop_ok p1) (injprop_ok p2))
  |}.


Definition mkuprop_op  (Op : Prop -> Prop) (POp : PropUOp Op)
           (p1 :injprop)  : injprop :=
  {| source_prop := (Op (source_prop p1)) ;
     target_prop := (Op (target_prop p1)) ;
     injprop_ok  := (uop_iff (source_prop p1) (target_prop p1)  (injprop_ok p1))
  |}.


Lemma mkapp2 (S1 S2 S3 T : Type) (Op : S1 -> S2 -> S3)
      {I1 : InjTyp S1 T} {I2 : InjTyp S2 T} {I3 : InjTyp S3 T}
         (B : @BinOp S1 S2 S3 T Op I1 I2 I3)
         (t1 : @injterm S1 T inj) (t2 : @injterm S2 T inj)
         : @injterm S3 T inj.
Proof.
  apply (mkinjterm _ _ inj (Op (source t1) (source t2)) (TBOp (target t1) (target t2))).
   (rewrite <- inj_ok;
    rewrite <- inj_ok;
    apply TBOpInj).
Defined.

Lemma mkapp (S1 S2 T : Type) (Op : S1 -> S2)
      {I1 : InjTyp S1 T}
      {I2 : InjTyp S2 T}
      (B : @UnOp S1 S2 T Op I1 I2 )
      (t1 : @injterm S1 T inj)
         : @injterm S2 T inj.
Proof.
  apply (mkinjterm _ _ inj (Op (source t1)) (TUOp (target t1))).
  (rewrite <- inj_ok; apply TUOpInj).
Defined.

Lemma mkapp0 (S T : Type) (Op : S)
      {I : InjTyp S T}
      (B : @CstOp S T Op I)
         : @injterm S T inj.
Proof.
  apply (mkinjterm _ _ inj Op  TCst).
   (apply TCstInj).
Defined.

Lemma mkrel (S T : Type) (R : S -> S -> Prop)
         {Inj : InjTyp S T}
         (B : @BinRel S T R Inj)
         (t1 : @injterm S T inj) (t2 : @injterm S T inj)
         : @injprop.
Proof.
  apply (mkinjprop  (R (source t1) (source t2)) (TR (target t1) (target t2))).
  (rewrite <- inj_ok; rewrite <- inj_ok;apply TRInj).
Defined.

(** Registering constants for use by the plugin *)
Register target_prop as ZifyClasses.target_prop.
Register mkrel       as ZifyClasses.mkrel.
Register target      as ZifyClasses.target.
Register mkapp2      as ZifyClasses.mkapp2.
Register mkapp       as ZifyClasses.mkapp.
Register mkapp0      as ZifyClasses.mkapp0.
Register op_iff      as ZifyClasses.op_iff.
Register uop_iff     as ZifyClasses.uop_iff.
Register TR          as ZifyClasses.TR.
Register TBOp        as ZifyClasses.TBOp.
Register TUOp        as ZifyClasses.TUOp.
Register TCst        as ZifyClasses.TCst.
Register mkprop_op   as ZifyClasses.mkprop_op.
Register mkuprop_op  as ZifyClasses.mkuprop_op.
Register injprop_ok  as ZifyClasses.injprop_ok.
Register inj_ok      as ZifyClasses.inj_ok.
Register source      as ZifyClasses.source.
Register source_prop as ZifyClasses.source_prop.
Register inj         as ZifyClasses.inj.
Register TRInj       as ZifyClasses.TRInj.
Register TUOpInj     as ZifyClasses.TUOpInj.
Register not         as ZifyClasses.not.
Register mkinjterm   as ZifyClasses.mkinjterm.
Register eq_refl     as ZifyClasses.eq_refl.
Register mkinjprop   as ZifyClasses.mkinjprop.
Register iff_refl    as ZifyClasses.iff_refl.
Register source_prop as ZifyClasses.source_prop.
Register injprop_ok  as ZifyClasses.injprop_ok.
Register iff         as ZifyClasses.iff.