aboutsummaryrefslogtreecommitdiff
path: root/plugins/micromega/Tauto.v
blob: 7b9b88c0fe705ddd14c32eda98addbbf8101c099 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
(************************************************************************)
(*         *   The Coq Proof Assistant / The Coq Development Team       *)
(*  v      *   INRIA, CNRS and contributors - Copyright 1999-2018       *)
(* <O___,, *       (see CREDITS file for the list of authors)           *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)
(*                                                                      *)
(* Micromega: A reflexive tactic using the Positivstellensatz           *)
(*                                                                      *)
(*  Frédéric Besson (Irisa/Inria) 2006-20019                            *)
(*                                                                      *)
(************************************************************************)

Require Import List.
Require Import Refl.
Require Import Bool.

Set Implicit Arguments.


Section S.
  Context {TA  : Type}. (* type of interpreted atoms *)
  Context {TX  : Type}. (* type of uninterpreted terms (Prop) *)
  Context {AA  : Type}. (* type of annotations for atoms *)
  Context {AF  : Type}. (* type of formulae identifiers *)

  #[universes(template)]
   Inductive GFormula  : Type :=
  | TT   : GFormula
  | FF   : GFormula
  | X    : TX -> GFormula
  | A    : TA -> AA -> GFormula
  | Cj   : GFormula  -> GFormula  -> GFormula
  | D    : GFormula  -> GFormula  -> GFormula
  | N    : GFormula  -> GFormula
  | I    : GFormula  -> option AF -> GFormula  -> GFormula.

  Section MAPX.
    Variable F : TX -> TX.

    Fixpoint mapX (f : GFormula) : GFormula :=
      match f with
      | TT => TT
      | FF => FF
      | X x => X (F x)
      | A a an => A a an
      | Cj f1 f2 => Cj (mapX f1) (mapX f2)
      | D f1 f2  => D (mapX f1) (mapX f2)
      | N f      => N (mapX f)
      | I f1 o f2 => I (mapX f1) o (mapX f2)
      end.

  End MAPX.

  Section FOLDANNOT.
    Variable ACC : Type.
    Variable F : ACC -> AA -> ACC.

    Fixpoint foldA (f : GFormula) (acc : ACC) : ACC :=
      match f with
      | TT => acc
      | FF => acc
      | X x => acc
      | A a an => F acc an
      | Cj f1 f2
      | D f1 f2
      | I f1 _ f2 => foldA f1 (foldA f2 acc)
      | N f      => foldA f acc
      end.

  End FOLDANNOT.


  Definition cons_id (id : option AF) (l : list AF) :=
    match id with
    | None => l
    | Some id => id :: l
    end.

  Fixpoint ids_of_formula f :=
    match f with
    | I f id f' => cons_id id (ids_of_formula f')
    |  _           => nil
    end.

  Fixpoint collect_annot (f : GFormula) : list AA :=
    match f with
    | TT | FF | X _ => nil
    | A _ a => a ::nil
    | Cj f1 f2
    | D  f1 f2
    | I f1 _ f2  => collect_annot f1 ++ collect_annot f2
    | N  f       => collect_annot f
    end.

  Variable ex : TX -> Prop. (* [ex] will be the identity *)

  Section EVAL.

  Variable ea : TA -> Prop.

  Fixpoint eval_f (f:GFormula) {struct f}: Prop :=
  match f with
  | TT  => True
  | FF  => False
  | A a _ =>  ea a
  | X  p => ex p
  | Cj e1 e2 => (eval_f e1) /\ (eval_f e2)
  | D e1 e2  => (eval_f e1) \/ (eval_f e2)
  | N e     => ~ (eval_f e)
  | I f1 _ f2 => (eval_f f1) -> (eval_f f2)
  end.


  End EVAL.





  Lemma eval_f_morph :
    forall  (ev ev' : TA -> Prop) (f : GFormula),
      (forall a, ev a <-> ev' a) -> (eval_f ev f <-> eval_f ev' f).
  Proof.
    induction f ; simpl ; try tauto.
    intros.
    apply H.
  Qed.


End S.



(** Typical boolean formulae *)
Definition BFormula (A : Type) := @GFormula A Prop unit unit.

Section MAPATOMS.
  Context {TA TA':Type}.
  Context {TX  : Type}.
  Context {AA  : Type}.
  Context {AF  : Type}.


Fixpoint map_bformula (fct : TA -> TA') (f : @GFormula TA TX AA AF ) : @GFormula TA' TX AA AF :=
  match f with
  | TT  => TT
  | FF  => FF
  | X p => X  p
  | A a t => A (fct a) t
  | Cj f1 f2 => Cj (map_bformula fct f1) (map_bformula fct f2)
  | D f1 f2 => D (map_bformula fct f1) (map_bformula fct f2)
  | N f     => N (map_bformula fct f)
  | I f1 a f2 => I (map_bformula fct f1) a (map_bformula fct f2)
  end.

End MAPATOMS.

Lemma map_simpl : forall A B f l, @map A B f l = match l with
                                                 | nil => nil
                                                 | a :: l=> (f a) :: (@map A B f l)
                                                 end.
Proof.
  destruct l ; reflexivity.
Qed.


Section S.
  (** A cnf tracking annotations of atoms. *)

  (** Type parameters *)
  Variable Env   : Type.
  Variable Term  : Type.
  Variable Term' : Type.
  Variable Annot : Type.

  Variable unsat : Term'  -> bool. (* see [unsat_prop] *)
  Variable deduce : Term' -> Term' -> option Term'. (* see [deduce_prop] *)

  Definition clause := list  (Term' * Annot).
  Definition cnf := list clause.

  Variable normalise : Term -> Annot -> cnf.
  Variable negate : Term -> Annot -> cnf.


  Definition cnf_tt : cnf := @nil clause.
  Definition cnf_ff : cnf :=  cons (@nil (Term' * Annot)) nil.

  (** Our cnf is optimised and detects contradictions on the fly. *)

  Fixpoint add_term (t: Term' * Annot) (cl : clause) : option clause :=
      match cl with
      | nil =>
        match deduce (fst t) (fst t) with
        | None =>  Some (t ::nil)
        | Some u => if unsat u then None else Some (t::nil)
        end
      | t'::cl =>
        match deduce (fst t) (fst t') with
        | None =>
          match add_term t cl with
          | None => None
          | Some cl' => Some (t' :: cl')
          end
        | Some u =>
          if unsat u then None else
            match add_term t cl with
            | None => None
            | Some cl' => Some (t' :: cl')
            end
        end
      end.

    Fixpoint or_clause (cl1 cl2 : clause) : option clause :=
      match cl1 with
      | nil => Some cl2
      | t::cl => match add_term t cl2 with
               | None => None
               | Some cl' => or_clause cl cl'
                 end
      end.

    (*    Definition or_clause_cnf (t:clause) (f:cnf) : cnf :=
          List.map (fun x => (t++x)) f. *)

    Definition or_clause_cnf (t:clause) (f:cnf) : cnf :=
      List.fold_right (fun e acc =>
                         match or_clause t e with
                         | None => acc
                         | Some cl => cl :: acc
                         end) nil f.


    Fixpoint or_cnf (f : cnf) (f' : cnf) {struct f}: cnf :=
      match f with
      | nil => cnf_tt
      | e :: rst => (or_cnf rst f') ++ (or_clause_cnf e f')
      end.


    Definition and_cnf (f1 : cnf) (f2 : cnf) : cnf :=
      f1 ++ f2.

    (** TX is Prop in Coq and EConstr.constr in Ocaml.
      AF i s unit in Coq and Names.Id.t in Ocaml
     *)
    Definition TFormula (TX: Type) (AF: Type) := @GFormula Term TX Annot AF.

    Fixpoint xcnf {TX AF: Type} (pol : bool) (f : TFormula TX AF)  {struct f}: cnf :=
      match f with
      | TT  => if pol then cnf_tt else cnf_ff
      | FF  => if pol then cnf_ff else cnf_tt
      | X  p => if pol then cnf_ff else cnf_ff (* This is not complete - cannot negate any proposition *)
      | A x t => if pol then normalise x  t else negate x  t
      | N e  => xcnf (negb pol) e
      | Cj e1 e2 =>
        (if pol then and_cnf else or_cnf) (xcnf pol e1) (xcnf pol e2)
      | D e1 e2  => (if pol then or_cnf else and_cnf) (xcnf pol e1) (xcnf pol e2)
      | I e1 _ e2 => (if pol then or_cnf else and_cnf) (xcnf (negb pol) e1) (xcnf pol e2)
      end.

    Section CNFAnnot.

      (** Records annotations used to optimise the cnf.
          Those need to be kept when pruning the formula.
          For efficiency, this is a separate function.
       *)



      Fixpoint radd_term (t : Term' * Annot) (cl : clause) : clause + list Annot :=
        match cl with
        | nil => (* if t is unsat, the clause is empty BUT t is needed. *)
          match deduce (fst t) (fst t) with
          | Some u => if unsat u then inr ((snd t)::nil) else inl (t::nil)
          | None   => inl (t::nil)
          end
        | t'::cl => (* if t /\ t' is unsat, the clause is empty BUT t & t' are needed *)
          match deduce (fst t) (fst t') with
          | Some u => if unsat u then inr ((snd t)::(snd t')::nil)
                      else match radd_term t cl with
                           | inl cl' => inl (t'::cl')
                           | inr l   => inr l
                           end
          | None  => match radd_term t cl  with
                     | inl cl' => inl (t'::cl')
                     | inr l   => inr l
                     end
          end
        end.

      Fixpoint ror_clause cl1 cl2 :=
        match cl1 with
        | nil => inl cl2
        | t::cl => match radd_term t cl2 with
                   | inl cl' => ror_clause cl cl'
                   | inr l   => inr l
                   end
        end.

      Definition ror_clause_cnf t f :=
        List.fold_right (fun e '(acc,tg) =>
                           match ror_clause t e with
                           | inl cl => (cl :: acc,tg)
                           | inr l => (acc,tg++l)
                           end) (nil,nil) f .


      Fixpoint ror_cnf f f' :=
        match f with
        | nil => (cnf_tt,nil)
        | e :: rst =>
          let (rst_f',t) := ror_cnf rst f' in
          let (e_f', t') := ror_clause_cnf e f' in
          (rst_f' ++ e_f', t ++ t')
        end.

      Fixpoint rxcnf {TX AF: Type}(polarity : bool) (f : TFormula TX AF) :=
        match f with
        | TT => if polarity then (cnf_tt,nil) else (cnf_ff,nil)
        | FF  => if polarity then (cnf_ff,nil) else (cnf_tt,nil)
        | X p => if polarity then (cnf_ff,nil) else (cnf_ff,nil)
        | A x t  => ((if polarity then normalise x t else negate x t),nil)
        | N e  => rxcnf (negb polarity) e
        | Cj e1 e2 =>
          let (e1,t1) := rxcnf polarity e1 in
          let (e2,t2) := rxcnf polarity e2 in
          if polarity
          then  (e1 ++ e2, t1 ++ t2)
       else let (f',t') := ror_cnf e1 e2 in
            (f', t1 ++ t2 ++ t')
        | D e1 e2  =>
          let (e1,t1) := rxcnf polarity e1 in
          let (e2,t2) := rxcnf polarity e2 in
          if polarity
       then let (f',t') := ror_cnf e1 e2 in
            (f', t1 ++ t2 ++ t')
          else (e1 ++ e2, t1 ++ t2)
        | I e1 _ e2 =>
          let (e1 , t1) := (rxcnf (negb polarity) e1) in
          let (e2 , t2) := (rxcnf polarity e2) in
          if polarity
          then let (f',t') := ror_cnf e1 e2 in
               (f', t1 ++ t2 ++ t')
          else (and_cnf e1 e2, t1 ++ t2)
        end.

      End CNFAnnot.



    Variable eval  : Env -> Term -> Prop.

    Variable eval'  : Env -> Term' -> Prop.

    Variable no_middle_eval' : forall env d, (eval' env d) \/ ~ (eval' env d).


    Variable unsat_prop : forall t, unsat t  = true ->
                                    forall env, eval' env t -> False.



    Variable deduce_prop : forall env t t' u,
        eval' env t -> eval' env t' -> deduce t t' = Some u -> eval' env u.



    Definition eval_tt (env : Env) (tt : Term' * Annot) := eval' env (fst tt).


    Definition eval_clause (env : Env) (cl : clause) := ~ make_conj  (eval_tt env) cl.

    Definition eval_cnf (env : Env) (f:cnf) := make_conj  (eval_clause  env) f.


    Lemma eval_cnf_app : forall env x y, eval_cnf env (x++y) -> eval_cnf env x /\ eval_cnf env y.
    Proof.
      unfold eval_cnf.
      intros.
      rewrite make_conj_app in H ; auto.
    Qed.


    Definition eval_opt_clause (env : Env) (cl: option clause) :=
      match cl with
      | None => True
      | Some cl => eval_clause env cl
      end.


  Lemma add_term_correct : forall env t cl , eval_opt_clause env (add_term t cl) -> eval_clause env (t::cl).
  Proof.
    induction cl.
    - (* BC *)
    simpl.
    case_eq (deduce (fst t) (fst t)) ; auto.
    intros *.
    case_eq (unsat t0) ; auto.
    unfold eval_clause.
    rewrite make_conj_cons.
    intros. intro.
    apply unsat_prop with (1:= H) (env := env).
    apply deduce_prop with (3:= H0) ; tauto.
    - (* IC *)
    simpl.
    case_eq (deduce (fst t) (fst a)).
    intro u.
    case_eq (unsat u).
    simpl. intros.
    unfold eval_clause.
    intro.
    apply unsat_prop  with (1:= H) (env:= env).
    repeat rewrite make_conj_cons in H2.
    apply deduce_prop with (3:= H0); tauto.
    intro.
    case_eq (add_term t cl) ; intros.
    simpl in H2.
    rewrite H0 in IHcl.
    simpl in IHcl.
    unfold eval_clause in *.
    intros.
    repeat rewrite make_conj_cons in *.
    tauto.
    rewrite H0 in IHcl ; simpl in *.
    unfold eval_clause in *.
    intros.
    repeat rewrite make_conj_cons in *.
    tauto.
    case_eq (add_term t cl) ; intros.
    simpl in H1.
    unfold eval_clause in *.
    repeat rewrite make_conj_cons in *.
    rewrite H in IHcl.
    simpl in IHcl.
    tauto.
    simpl in *.
    rewrite H in IHcl.
    simpl in IHcl.
    unfold eval_clause in *.
    repeat rewrite make_conj_cons in *.
    tauto.
  Qed.


  Lemma no_middle_eval_tt : forall env a,
      eval_tt env a \/ ~ eval_tt env a.
  Proof.
    unfold eval_tt.
    auto.
  Qed.

  Hint Resolve no_middle_eval_tt : tauto.

  Lemma or_clause_correct : forall cl cl' env,  eval_opt_clause env (or_clause cl cl') -> eval_clause env cl \/ eval_clause env cl'.
  Proof.
    induction cl.
    - simpl. tauto.
    - intros *.
      simpl.
      assert (HH := add_term_correct env a cl').
      case_eq (add_term a cl').
      +
      intros.
      apply IHcl in H0.
      rewrite H in HH.
      simpl in HH.
      unfold eval_clause in *.
      destruct H0.
      *
      repeat rewrite make_conj_cons in *.
      tauto.
      * apply HH in H0.
        apply not_make_conj_cons in H0 ; auto with tauto.
        repeat rewrite make_conj_cons in *.
        tauto.
      +
      intros.
      rewrite H in HH.
      simpl in HH.
      unfold eval_clause in *.
      assert (HH' := HH Coq.Init.Logic.I).
      apply not_make_conj_cons in HH'; auto with tauto.
      repeat rewrite make_conj_cons in *.
      tauto.
  Qed.


  Lemma or_clause_cnf_correct : forall env t f, eval_cnf env (or_clause_cnf t f) -> (eval_clause env t) \/ (eval_cnf env f).
  Proof.
    unfold eval_cnf.
    unfold or_clause_cnf.
    intros until t.
    set (F := (fun (e : clause) (acc : list clause) =>
                 match or_clause t e with
                 | Some cl => cl :: acc
                 | None => acc
                 end)).
    induction f;auto.
    simpl.
    intros.
    destruct f.
    -  simpl in H.
       simpl in IHf.
       unfold F in H.
       revert H.
       intros.
       apply or_clause_correct.
       destruct (or_clause t a) ; simpl in * ; auto.
    -
      unfold F in H at 1.
      revert H.
      assert (HH := or_clause_correct t a env).
      destruct (or_clause t a); simpl in HH ;
        rewrite make_conj_cons in * ; intuition.
      rewrite make_conj_cons in *.
      tauto.
  Qed.


  Lemma eval_cnf_cons : forall env a f,  (~ make_conj  (eval_tt env) a) -> eval_cnf env f -> eval_cnf env (a::f).
  Proof.
    intros.
    unfold eval_cnf in *.
    rewrite make_conj_cons ; eauto.
  Qed.

  Lemma or_cnf_correct : forall env f f', eval_cnf env (or_cnf f f') -> (eval_cnf env  f) \/ (eval_cnf  env f').
  Proof.
    induction f.
    unfold eval_cnf.
    simpl.
    tauto.
    (**)
    intros.
    simpl in H.
    destruct (eval_cnf_app _ _ _ H).
    clear H.
    destruct (IHf _ H0).
    destruct (or_clause_cnf_correct _ _ _ H1).
    left.
    apply eval_cnf_cons ; auto.
    right ; auto.
    right ; auto.
  Qed.

  Variable normalise_correct : forall env t tg, eval_cnf  env (normalise t tg) -> eval env t.

  Variable negate_correct : forall env t tg, eval_cnf env (negate t tg) -> ~ eval env t.

  Lemma xcnf_correct : forall (f : @GFormula Term Prop Annot unit)  pol env, eval_cnf env (xcnf pol f) -> eval_f (fun x => x) (eval env) (if pol then f else N f).
  Proof.
    induction f.
    (* TT *)
    unfold eval_cnf.
    simpl.
    destruct pol ; simpl ; auto.
    (* FF *)
    unfold eval_cnf.
    destruct pol; simpl ; auto.
    unfold eval_clause ; simpl.
    tauto.
    (* P *)
    simpl.
    destruct pol ; intros ;simpl.
    unfold eval_cnf in H.
    (* Here I have to drop the proposition *)
    simpl in H.
    unfold eval_clause in H ; simpl in H.
    tauto.
    (* Here, I could store P in the clause *)
    unfold eval_cnf in H;simpl in H.
    unfold eval_clause in H ; simpl in H.
    tauto.
    (* A *)
    simpl.
    destruct pol ; simpl.
    intros.
    eapply normalise_correct  ; eauto.
    (* A 2 *)
    intros.
    eapply  negate_correct ; eauto.
    auto.
    (* Cj *)
    destruct pol ; simpl.
    (* pol = true *)
    intros.
    unfold and_cnf in H.
    destruct (eval_cnf_app  _ _ _ H).
    clear H.
    split.
    apply (IHf1 _ _ H0).
    apply (IHf2 _ _ H1).
    (* pol = false *)
    intros.
    destruct (or_cnf_correct _ _ _ H).
    generalize (IHf1 false  env H0).
    simpl.
    tauto.
    generalize (IHf2 false  env H0).
    simpl.
    tauto.
    (* D *)
    simpl.
    destruct pol.
    (* pol = true *)
    intros.
    destruct (or_cnf_correct _ _ _ H).
    generalize (IHf1 _  env H0).
    simpl.
    tauto.
    generalize (IHf2 _  env H0).
    simpl.
    tauto.
    (* pol = true *)
    unfold and_cnf.
    intros.
    destruct (eval_cnf_app  _ _ _ H).
    clear H.
    simpl.
    generalize (IHf1 _ _ H0).
    generalize (IHf2 _ _ H1).
    simpl.
    tauto.
    (**)
    simpl.
    destruct pol ; simpl.
    intros.
    apply (IHf false) ; auto.
    intros.
    generalize (IHf _ _ H).
    tauto.
    (* I *)
    simpl; intros.
    destruct pol.
    simpl.
    intro.
    destruct (or_cnf_correct _ _ _ H).
    generalize (IHf1 _ _ H1).
    simpl in *.
    tauto.
    generalize (IHf2 _ _ H1).
    auto.
    (* pol = false *)
    unfold and_cnf in H.
    simpl in H.
    destruct (eval_cnf_app _ _ _ H).
    generalize (IHf1 _ _ H0).
    generalize (IHf2 _ _ H1).
    simpl.
    tauto.
  Qed.


  Variable Witness : Type.
  Variable checker : list (Term'*Annot) -> Witness -> bool.

  Variable checker_sound : forall t  w, checker t w = true -> forall env, make_impl (eval_tt env)  t False.

  Fixpoint cnf_checker (f : cnf) (l : list Witness)  {struct f}: bool :=
    match f with
    | nil => true
    | e::f => match l with
              | nil => false
              | c::l => match checker e c with
                        | true => cnf_checker f l
                        |   _  => false
                        end
              end
    end.

  Lemma cnf_checker_sound : forall t  w, cnf_checker t w = true -> forall env, eval_cnf  env  t.
  Proof.
    unfold eval_cnf.
    induction t.
    (* bc *)
    simpl.
    auto.
    (* ic *)
    simpl.
    destruct w.
    intros ; discriminate.
    case_eq (checker a w) ; intros ; try discriminate.
    generalize (@checker_sound _ _ H env).
    generalize (IHt _ H0 env) ; intros.
    destruct t.
    red ; intro.
    rewrite <- make_conj_impl in H2.
    tauto.
    rewrite <- make_conj_impl in H2.
    tauto.
  Qed.


  Definition tauto_checker (f:@GFormula Term Prop Annot unit) (w:list Witness) : bool :=
    cnf_checker (xcnf true f) w.

  Lemma tauto_checker_sound : forall t  w, tauto_checker t w = true -> forall env, eval_f (fun x => x) (eval env)  t.
  Proof.
    unfold tauto_checker.
    intros.
    change (eval_f (fun x => x) (eval env) t) with (eval_f (fun x => x) (eval env) (if true then t else TT)).
    apply (xcnf_correct t true).
    eapply cnf_checker_sound ; eauto.
  Qed.

  Definition eval_bf {A : Type} (ea : A -> Prop) (f: BFormula A) := eval_f (fun x => x) ea f.


  Lemma eval_bf_map : forall T U (fct: T-> U) env f ,
    eval_bf env  (map_bformula fct f)  = eval_bf (fun x => env (fct x)) f.
Proof.
  induction f ; simpl ; try (rewrite IHf1 ; rewrite IHf2) ; auto.
  rewrite <- IHf.  auto.
Qed.


End S.


(* Local Variables: *)
(* coding: utf-8 *)
(* End: *)