1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
|
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * Copyright INRIA, CNRS and contributors *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
open Context
open Context.Named.Declaration
(** [start_deriving f suchthat lemma] starts a proof of [suchthat]
(which can contain references to [f]) in the context extended by
[f:=?x]. When the proof ends, [f] is defined as the value of [?x]
and [lemma] as the proof. *)
let start_deriving f suchthat name : Declare.Proof.t =
let env = Global.env () in
let sigma = Evd.from_env env in
let poly = false in
let kind = Decls.(IsDefinition Definition) in
(* create a sort variable for the type of [f] *)
(* spiwack: I don't know what the rigidity flag does, picked the one
that looked the most general. *)
let (sigma,f_type_sort) = Evd.new_sort_variable Evd.univ_flexible_alg sigma in
let f_type_type = EConstr.mkSort f_type_sort in
(* create the initial goals for the proof: |- Type ; |- ?1 ; f:=?2 |- suchthat *)
let goals =
let open Proofview in
TCons ( env , sigma , f_type_type , (fun sigma f_type ->
TCons ( env , sigma , f_type , (fun sigma ef ->
let f_type = EConstr.Unsafe.to_constr f_type in
let ef = EConstr.Unsafe.to_constr ef in
let env' = Environ.push_named (LocalDef (annotR f, ef, f_type)) env in
let sigma, suchthat = Constrintern.interp_type_evars ~program_mode:false env' sigma suchthat in
TCons ( env' , sigma , suchthat , (fun sigma _ ->
TNil sigma))))))
in
let info = Declare.Info.make ~proof_ending:(Declare.Proof_ending.(End_derive {f; name})) ~kind () in
let lemma = Lemmas.start_dependent_lemma ~name ~poly ~info goals in
Declare.Proof.map lemma ~f:(fun p ->
Util.pi1 @@ Proof.run_tactic env Proofview.(tclFOCUS 1 2 shelve) p)
|