1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
|
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * Copyright INRIA, CNRS and contributors *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
open CErrors
open Util
open Names
open Univ
open Sorts
open Term
open Constr
open Context
open Vars
open Declarations
open Environ
open Reduction
open Inductive
open Type_errors
module RelDecl = Context.Rel.Declaration
module NamedDecl = Context.Named.Declaration
exception NotConvertibleVect of int
let conv_leq l2r env x y = default_conv CUMUL ~l2r env x y
let conv_leq_vecti env v1 v2 =
Array.fold_left2_i
(fun i _ t1 t2 ->
try conv_leq false env t1 t2
with NotConvertible -> raise (NotConvertibleVect i))
()
v1
v2
let check_constraints cst env =
if Environ.check_constraints cst env then ()
else error_unsatisfied_constraints env cst
(* This should be a type (a priori without intention to be an assumption) *)
let check_type env c t =
match kind(whd_all env t) with
| Sort s -> s
| _ -> error_not_type env (make_judge c t)
(* This should be a type intended to be assumed. The error message is
not as useful as for [type_judgment]. *)
let infer_assumption env t ty =
try
let s = check_type env t ty in
(match s with Sorts.SProp -> Irrelevant | _ -> Relevant)
with TypeError _ ->
error_assumption env (make_judge t ty)
let warn_bad_relevance_name = "bad-relevance"
let warn_bad_relevance =
CWarnings.create ~name:warn_bad_relevance_name ~category:"debug" ~default:CWarnings.Disabled
Pp.(function
| None -> str "Bad relevance in case annotation."
| Some x -> str "Bad relevance for binder " ++ Name.print x.binder_name ++ str ".")
let warn_bad_relevance_ci ?loc () = warn_bad_relevance ?loc None
let warn_bad_relevance ?loc x = warn_bad_relevance ?loc (Some x)
let check_assumption env x t ty =
let r = x.binder_relevance in
let r' = infer_assumption env t ty in
let x = if Sorts.relevance_equal r r'
then x
else (warn_bad_relevance x; {x with binder_relevance = r'})
in
x
(************************************************)
(* Incremental typing rules: builds a typing judgment given the *)
(* judgments for the subterms. *)
(*s Type of sorts *)
(* Prop and Set *)
let type1 = mkSort Sorts.type1
(* Type of Type(i). *)
let type_of_type u =
let uu = Universe.super u in
mkType uu
let type_of_sort = function
| SProp | Prop | Set -> type1
| Type u -> type_of_type u
(*s Type of a de Bruijn index. *)
let type_of_relative env n =
try
env |> lookup_rel n |> RelDecl.get_type |> lift n
with Not_found ->
error_unbound_rel env n
(* Type of variables *)
let type_of_variable env id =
try named_type id env
with Not_found ->
error_unbound_var env id
(* Management of context of variables. *)
(* Checks if a context of variables can be instantiated by the
variables of the current env.
Order does not have to be checked assuming that all names are distinct *)
let check_hyps_inclusion env ?evars c sign =
let conv env a b = conv env ?evars a b in
Context.Named.fold_outside
(fun d1 () ->
let open Context.Named.Declaration in
let id = NamedDecl.get_id d1 in
try
let d2 = lookup_named id env in
conv env (get_type d2) (get_type d1);
(match d2,d1 with
| LocalAssum _, LocalAssum _ -> ()
| LocalAssum _, LocalDef _ ->
(* This is wrong, because we don't know if the body is
needed or not for typechecking: *) ()
| LocalDef _, LocalAssum _ -> raise NotConvertible
| LocalDef (_,b2,_), LocalDef (_,b1,_) -> conv env b2 b1);
with Not_found | NotConvertible | Option.Heterogeneous ->
error_reference_variables env id c)
sign
~init:()
(* Instantiation of terms on real arguments. *)
(* Make a type polymorphic if an arity *)
(* Type of constants *)
let type_of_constant env (kn,_u as cst) =
let cb = lookup_constant kn env in
let () = check_hyps_inclusion env (GlobRef.ConstRef kn) cb.const_hyps in
let ty, cu = constant_type env cst in
let () = check_constraints cu env in
ty
let type_of_constant_in env (kn,_u as cst) =
let cb = lookup_constant kn env in
let () = check_hyps_inclusion env (GlobRef.ConstRef kn) cb.const_hyps in
constant_type_in env cst
(* Type of a lambda-abstraction. *)
(* [judge_of_abstraction env name var j] implements the rule
env, name:typ |- j.uj_val:j.uj_type env, |- (name:typ)j.uj_type : s
-----------------------------------------------------------------------
env |- [name:typ]j.uj_val : (name:typ)j.uj_type
Since all products are defined in the Calculus of Inductive Constructions
and no upper constraint exists on the sort $s$, we don't need to compute $s$
*)
let type_of_abstraction _env name var ty =
mkProd (name, var, ty)
(* Type of an application. *)
let make_judgev c t =
Array.map2 make_judge c t
let rec check_empty_stack = function
| [] -> true
| CClosure.Zupdate _ :: s -> check_empty_stack s
| _ -> false
let type_of_apply env func funt argsv argstv =
let open CClosure in
let len = Array.length argsv in
let infos = create_clos_infos all env in
let tab = create_tab () in
let rec apply_rec i typ =
if Int.equal i len then term_of_fconstr typ
else
let typ, stk = whd_stack infos tab typ [] in
(** The return stack is known to be empty *)
let () = assert (check_empty_stack stk) in
match fterm_of typ with
| FProd (_, c1, c2, e) ->
let arg = argsv.(i) in
let argt = argstv.(i) in
let c1 = term_of_fconstr c1 in
begin match conv_leq false env argt c1 with
| () -> apply_rec (i+1) (mk_clos (Esubst.subs_cons ([| inject arg |], e)) c2)
| exception NotConvertible ->
error_cant_apply_bad_type env
(i+1,c1,argt)
(make_judge func funt)
(make_judgev argsv argstv)
end
| _ ->
error_cant_apply_not_functional env
(make_judge func funt)
(make_judgev argsv argstv)
in
apply_rec 0 (inject funt)
(* Type of primitive constructs *)
let type_of_prim_type _env u (type a) (prim : a CPrimitives.prim_type) = match prim with
| CPrimitives.PT_int63 ->
assert (Univ.Instance.is_empty u);
Constr.mkSet
| CPrimitives.PT_float64 ->
assert (Univ.Instance.is_empty u);
Constr.mkSet
| CPrimitives.PT_array ->
begin match Univ.Instance.to_array u with
| [|u|] ->
let ty = Constr.mkType (Univ.Universe.make u) in
Constr.mkProd(Context.anonR, ty , ty)
| _ -> anomaly Pp.(str"universe instance for array type should have length 1")
end
let type_of_int env =
match env.retroknowledge.Retroknowledge.retro_int63 with
| Some c -> mkConst c
| None -> CErrors.user_err Pp.(str"The type int must be registered before this construction can be typechecked.")
let type_of_float env =
match env.retroknowledge.Retroknowledge.retro_float64 with
| Some c -> mkConst c
| None -> raise
(Invalid_argument "Typeops.type_of_float: float64 not_defined")
let type_of_array env u =
assert (Univ.Instance.length u = 1);
match env.retroknowledge.Retroknowledge.retro_array with
| Some c -> mkConstU (c,u)
| None -> CErrors.user_err Pp.(str"The type array must be registered before this construction can be typechecked.")
(* Type of product *)
let sort_of_product env domsort rangsort =
match (domsort, rangsort) with
| (_, SProp) | (SProp, _) -> rangsort
(* Product rule (s,Prop,Prop) *)
| (_, Prop) -> rangsort
(* Product rule (Prop/Set,Set,Set) *)
| ((Prop | Set), Set) -> rangsort
(* Product rule (Type,Set,?) *)
| (Type u1, Set) ->
if is_impredicative_set env then
(* Rule is (Type,Set,Set) in the Set-impredicative calculus *)
rangsort
else
(* Rule is (Type_i,Set,Type_i) in the Set-predicative calculus *)
Sorts.sort_of_univ (Universe.sup Universe.type0 u1)
(* Product rule (Prop,Type_i,Type_i) *)
| (Set, Type u2) -> Sorts.sort_of_univ (Universe.sup Universe.type0 u2)
(* Product rule (Prop,Type_i,Type_i) *)
| (Prop, Type _) -> rangsort
(* Product rule (Type_i,Type_i,Type_i) *)
| (Type u1, Type u2) -> Sorts.sort_of_univ (Universe.sup u1 u2)
(* [judge_of_product env name (typ1,s1) (typ2,s2)] implements the rule
env |- typ1:s1 env, name:typ1 |- typ2 : s2
-------------------------------------------------------------------------
s' >= (s1,s2), env |- (name:typ)j.uj_val : s'
where j.uj_type is convertible to a sort s2
*)
let type_of_product env _name s1 s2 =
let s = sort_of_product env s1 s2 in
mkSort s
(* Type of a type cast *)
(* [judge_of_cast env (c,typ1) (typ2,s)] implements the rule
env |- c:typ1 env |- typ2:s env |- typ1 <= typ2
---------------------------------------------------------------------
env |- c:typ2
*)
let check_cast env c ct k expected_type =
try
match k with
| VMcast ->
Vconv.vm_conv CUMUL env ct expected_type
| DEFAULTcast ->
default_conv ~l2r:false CUMUL env ct expected_type
| REVERTcast ->
default_conv ~l2r:true CUMUL env ct expected_type
| NATIVEcast ->
let sigma = Nativelambda.empty_evars in
Nativeconv.native_conv CUMUL sigma env ct expected_type
with NotConvertible ->
error_actual_type env (make_judge c ct) expected_type
let judge_of_int env i =
make_judge (Constr.mkInt i) (type_of_int env)
let judge_of_float env f =
make_judge (Constr.mkFloat f) (type_of_float env)
let judge_of_array env u tj defj =
let def = defj.uj_val in
let ty = defj.uj_type in
Array.iter (fun j -> check_cast env j.uj_val j.uj_type DEFAULTcast ty) tj;
make_judge (mkArray(u, Array.map j_val tj, def, ty)) (mkApp (type_of_array env u, [|ty|]))
(* Inductive types. *)
(* The type is parametric over the uniform parameters whose conclusion
is in Type; to enforce the internal constraints between the
parameters and the instances of Type occurring in the type of the
constructors, we use the level variables _statically_ assigned to
the conclusions of the parameters as mediators: e.g. if a parameter
has conclusion Type(alpha), static constraints of the form alpha<=v
exist between alpha and the Type's occurring in the constructor
types; when the parameters is finally instantiated by a term of
conclusion Type(u), then the constraints u<=alpha is computed in
the App case of execute; from this constraints, the expected
dynamic constraints of the form u<=v are enforced *)
let type_of_inductive_knowing_parameters env (ind,u) args =
let (mib,_mip) as spec = lookup_mind_specif env ind in
check_hyps_inclusion env (GlobRef.IndRef ind) mib.mind_hyps;
let t,cst = Inductive.constrained_type_of_inductive_knowing_parameters
(spec,u) (Inductive.make_param_univs env args)
in
check_constraints cst env;
t
let type_of_inductive env (ind,u) =
let (mib,mip) = lookup_mind_specif env ind in
check_hyps_inclusion env (GlobRef.IndRef ind) mib.mind_hyps;
let t,cst = Inductive.constrained_type_of_inductive ((mib,mip),u) in
check_constraints cst env;
t
(* Constructors. *)
let type_of_constructor env (c,_u as cu) =
let () =
let ((kn,_),_) = c in
let mib = lookup_mind kn env in
check_hyps_inclusion env (GlobRef.ConstructRef c) mib.mind_hyps
in
let specif = lookup_mind_specif env (inductive_of_constructor c) in
let t,cst = constrained_type_of_constructor cu specif in
let () = check_constraints cst env in
t
(* Case. *)
let check_branch_types env (ind,u) c ct lft explft =
try conv_leq_vecti env lft explft
with
NotConvertibleVect i ->
error_ill_formed_branch env c ((ind,i+1),u) lft.(i) explft.(i)
| Invalid_argument _ ->
error_number_branches env (make_judge c ct) (Array.length explft)
let should_invert_case env ci =
ci.ci_relevance == Sorts.Relevant &&
let mib,mip = lookup_mind_specif env ci.ci_ind in
mip.mind_relevance == Sorts.Irrelevant &&
(* NB: it's possible to have 2 ctors or arguments to 1 ctor by unsetting univ checks
but we don't do special reduction in such cases
XXX Someday consider more carefully what happens with letin params and arguments
(currently they're squashed, see indtyping)
*)
Array.length mip.mind_nf_lc = 1 &&
List.length (fst mip.mind_nf_lc.(0)) = List.length mib.mind_params_ctxt
let type_of_case env ci p pt iv c ct _lf lft =
let (pind, _ as indspec) =
try find_rectype env ct
with Not_found -> error_case_not_inductive env (make_judge c ct) in
let _, sp = try dest_arity env pt
with NotArity -> error_elim_arity env pind c (make_judge p pt) None in
let rp = Sorts.relevance_of_sort sp in
let ci = if ci.ci_relevance == rp then ci
else (warn_bad_relevance_ci (); {ci with ci_relevance=rp})
in
let () = check_case_info env pind rp ci in
let () =
let is_inversion = match iv with
| NoInvert -> false
| CaseInvert _ -> true (* contents already checked *)
in
if not (is_inversion = should_invert_case env ci)
then error_bad_invert env
in
let (bty,rslty) =
type_case_branches env indspec (make_judge p pt) c in
let () = check_branch_types env pind c ct lft bty in
ci, rslty
let type_of_projection env p c ct =
let pty = lookup_projection p env in
let (ind,u), args =
try find_rectype env ct
with Not_found -> error_case_not_inductive env (make_judge c ct)
in
assert(eq_ind (Projection.inductive p) ind);
let ty = Vars.subst_instance_constr u pty in
substl (c :: CList.rev args) ty
(* Fixpoints. *)
(* Checks the type of a general (co)fixpoint, i.e. without checking *)
(* the specific guard condition. *)
let check_fixpoint env lna lar vdef vdeft =
let lt = Array.length vdeft in
assert (Int.equal (Array.length lar) lt);
try
conv_leq_vecti env vdeft (Array.map (fun ty -> lift lt ty) lar)
with NotConvertibleVect i ->
error_ill_typed_rec_body env i lna (make_judgev vdef vdeft) lar
(* Global references *)
let type_of_global_in_context env r =
let open Names.GlobRef in
match r with
| VarRef id -> Environ.named_type id env, Univ.AUContext.empty
| ConstRef c ->
let cb = Environ.lookup_constant c env in
let univs = Declareops.constant_polymorphic_context cb in
cb.Declarations.const_type, univs
| IndRef ind ->
let (mib,_ as specif) = Inductive.lookup_mind_specif env ind in
let univs = Declareops.inductive_polymorphic_context mib in
let inst = Univ.make_abstract_instance univs in
Inductive.type_of_inductive (specif, inst), univs
| ConstructRef cstr ->
let (mib,_ as specif) =
Inductive.lookup_mind_specif env (inductive_of_constructor cstr)
in
let univs = Declareops.inductive_polymorphic_context mib in
let inst = Univ.make_abstract_instance univs in
Inductive.type_of_constructor (cstr,inst) specif, univs
(************************************************************************)
(************************************************************************)
let check_binder_annot s x =
let r = x.binder_relevance in
let r' = Sorts.relevance_of_sort s in
if r' == r
then x
else (warn_bad_relevance x; {x with binder_relevance = r'})
(* The typing machine. *)
(* ATTENTION : faudra faire le typage du contexte des Const,
Ind et Constructsi un jour cela devient des constructions
arbitraires et non plus des variables *)
let rec execute env cstr =
let open Context.Rel.Declaration in
match kind cstr with
(* Atomic terms *)
| Sort s ->
(match s with
| SProp -> if not (Environ.sprop_allowed env) then error_disallowed_sprop env
| _ -> ());
cstr, type_of_sort s
| Rel n ->
cstr, type_of_relative env n
| Var id ->
cstr, type_of_variable env id
| Const c ->
cstr, type_of_constant env c
| Proj (p, c) ->
let c', ct = execute env c in
let cstr = if c == c' then cstr else mkProj (p,c') in
cstr, type_of_projection env p c' ct
(* Lambda calculus operators *)
| App (f,args) ->
let args', argst = execute_array env args in
let f', ft =
match kind f with
| Ind ind when Environ.template_polymorphic_pind ind env ->
f, type_of_inductive_knowing_parameters env ind argst
| _ ->
(* No template polymorphism *)
execute env f
in
let cstr = if f == f' && args == args' then cstr else mkApp (f',args') in
cstr, type_of_apply env f' ft args' argst
| Lambda (name,c1,c2) ->
let c1', s = execute_is_type env c1 in
let name' = check_binder_annot s name in
let env1 = push_rel (LocalAssum (name',c1')) env in
let c2', c2t = execute env1 c2 in
let cstr = if name == name' && c1 == c1' && c2 == c2' then cstr else mkLambda(name',c1',c2') in
cstr, type_of_abstraction env name' c1 c2t
| Prod (name,c1,c2) ->
let c1', vars = execute_is_type env c1 in
let name' = check_binder_annot vars name in
let env1 = push_rel (LocalAssum (name',c1')) env in
let c2', vars' = execute_is_type env1 c2 in
let cstr = if name == name' && c1 == c1' && c2 == c2' then cstr else mkProd(name',c1',c2') in
cstr, type_of_product env name' vars vars'
| LetIn (name,c1,c2,c3) ->
let c1', c1t = execute env c1 in
let c2', c2s = execute_is_type env c2 in
let name' = check_binder_annot c2s name in
let () = check_cast env c1' c1t DEFAULTcast c2' in
let env1 = push_rel (LocalDef (name',c1',c2')) env in
let c3', c3t = execute env1 c3 in
let cstr = if name == name' && c1 == c1' && c2 == c2' && c3 == c3' then cstr
else mkLetIn(name',c1',c2',c3')
in
cstr, subst1 c1 c3t
| Cast (c,k,t) ->
let c', ct = execute env c in
let t', _ts = execute_is_type env t in
let () = check_cast env c' ct k t' in
let cstr = if c == c' && t == t' then cstr else mkCast(c',k,t') in
cstr, t'
(* Inductive types *)
| Ind ind ->
cstr, type_of_inductive env ind
| Construct c ->
cstr, type_of_constructor env c
| Case (ci,p,iv,c,lf) ->
let c', ct = execute env c in
let iv' = match iv with
| NoInvert -> NoInvert
| CaseInvert {univs;args} ->
let ct' = mkApp (mkIndU (ci.ci_ind,univs), args) in
let (ct', _) : constr * Sorts.t = execute_is_type env ct' in
let () = conv_leq false env ct ct' in
let _, args' = decompose_appvect ct' in
if args == args' then iv else CaseInvert {univs;args=args'}
in
let p', pt = execute env p in
let lf', lft = execute_array env lf in
let ci', t = type_of_case env ci p' pt iv' c' ct lf' lft in
let cstr = if ci == ci' && c == c' && p == p' && iv == iv' && lf == lf' then cstr
else mkCase(ci',p',iv',c',lf')
in
cstr, t
| Fix ((_vn,i as vni),recdef as fix) ->
let (fix_ty,recdef') = execute_recdef env recdef i in
let cstr, fix = if recdef == recdef' then cstr, fix else
let fix = (vni,recdef') in mkFix fix, fix
in
check_fix env fix; cstr, fix_ty
| CoFix (i,recdef as cofix) ->
let (fix_ty,recdef') = execute_recdef env recdef i in
let cstr, cofix = if recdef == recdef' then cstr, cofix else
let cofix = (i,recdef') in mkCoFix cofix, cofix
in
check_cofix env cofix; cstr, fix_ty
(* Primitive types *)
| Int _ -> cstr, type_of_int env
| Float _ -> cstr, type_of_float env
| Array(u,t,def,ty) ->
(* ty : Type@{u} and all of t,def : ty *)
let ulev = match Univ.Instance.to_array u with
| [|u|] -> u
| _ -> assert false
in
let ty',tyty = execute env ty in
check_cast env ty' tyty DEFAULTcast (mkType (Universe.make ulev));
let def', def_ty = execute env def in
check_cast env def' def_ty DEFAULTcast ty';
let ta = type_of_array env u in
let t' = Array.Smart.map (fun x ->
let x', xt = execute env x in
check_cast env x' xt DEFAULTcast ty';
x') t in
let cstr = if def'==def && t'==t && ty'==ty then cstr else mkArray(u, t',def',ty') in
cstr, mkApp(ta, [|ty'|])
(* Partial proofs: unsupported by the kernel *)
| Meta _ ->
anomaly (Pp.str "the kernel does not support metavariables.")
| Evar _ ->
anomaly (Pp.str "the kernel does not support existential variables.")
and execute_is_type env constr =
let c, t = execute env constr in
c, check_type env constr t
and execute_recdef env (names,lar,vdef as recdef) i =
let lar', lart = execute_array env lar in
let names' = Array.Smart.map_i (fun i na -> check_assumption env na lar'.(i) lart.(i)) names in
let env1 = push_rec_types (names',lar',vdef) env in (* vdef is ignored *)
let vdef', vdeft = execute_array env1 vdef in
let () = check_fixpoint env1 names' lar' vdef' vdeft in
let recdef = if names == names' && lar == lar' && vdef == vdef' then recdef else (names',lar',vdef') in
(lar'.(i),recdef)
and execute_array env cs =
let tys = Array.make (Array.length cs) mkProp in
let cs = Array.Smart.map_i (fun i c -> let c, ty = execute env c in tys.(i) <- ty; c) cs in
cs, tys
(* Derived functions *)
let check_wellformed_universes env c =
let univs = universes_of_constr c in
try UGraph.check_declared_universes (universes env) univs
with UGraph.UndeclaredLevel u ->
error_undeclared_universe env u
let infer env constr =
let () = check_wellformed_universes env constr in
let constr, t = execute env constr in
make_judge constr t
let infer =
if Flags.profile then
let infer_key = CProfile.declare_profile "Fast_infer" in
CProfile.profile2 infer_key (fun b c -> infer b c)
else (fun b c -> infer b c)
let assumption_of_judgment env {uj_val=c; uj_type=t} =
infer_assumption env c t
let type_judgment env {uj_val=c; uj_type=t} =
let s = check_type env c t in
{utj_val = c; utj_type = s }
let infer_type env constr =
let () = check_wellformed_universes env constr in
let constr, t = execute env constr in
let s = check_type env constr t in
{utj_val = constr; utj_type = s}
(* Typing of several terms. *)
let check_context env rels =
let open Context.Rel.Declaration in
Context.Rel.fold_outside (fun d (env,rels) ->
match d with
| LocalAssum (x,ty) ->
let jty = infer_type env ty in
let x = check_binder_annot jty.utj_type x in
push_rel d env, LocalAssum (x,jty.utj_val) :: rels
| LocalDef (x,bd,ty) ->
let j1 = infer env bd in
let jty = infer_type env ty in
conv_leq false env j1.uj_type ty;
let x = check_binder_annot jty.utj_type x in
push_rel d env, LocalDef (x,j1.uj_val,jty.utj_val) :: rels)
rels ~init:(env,[])
let judge_of_prop = make_judge mkProp type1
let judge_of_set = make_judge mkSet type1
let judge_of_type u = make_judge (mkType u) (type_of_type u)
let judge_of_relative env k = make_judge (mkRel k) (type_of_relative env k)
let judge_of_variable env x = make_judge (mkVar x) (type_of_variable env x)
let judge_of_constant env cst = make_judge (mkConstU cst) (type_of_constant env cst)
let judge_of_projection env p cj =
make_judge (mkProj (p,cj.uj_val)) (type_of_projection env p cj.uj_val cj.uj_type)
let dest_judgev v =
Array.map j_val v, Array.map j_type v
let judge_of_apply env funj argjv =
let args, argtys = dest_judgev argjv in
make_judge (mkApp (funj.uj_val, args)) (type_of_apply env funj.uj_val funj.uj_type args argtys)
(* let judge_of_abstraction env x varj bodyj = *)
(* make_judge (mkLambda (x, varj.utj_val, bodyj.uj_val)) *)
(* (type_of_abstraction env x varj.utj_val bodyj.uj_type) *)
(* let judge_of_product env x varj outj = *)
(* make_judge (mkProd (x, varj.utj_val, outj.utj_val)) *)
(* (mkSort (sort_of_product env varj.utj_type outj.utj_type)) *)
(* let judge_of_letin env name defj typj j = *)
(* make_judge (mkLetIn (name, defj.uj_val, typj.utj_val, j.uj_val)) *)
(* (subst1 defj.uj_val j.uj_type) *)
let judge_of_cast env cj k tj =
let () = check_cast env cj.uj_val cj.uj_type k tj.utj_val in
let c = match k with | REVERTcast -> cj.uj_val | _ -> mkCast (cj.uj_val, k, tj.utj_val) in
make_judge c tj.utj_val
let judge_of_inductive env indu =
make_judge (mkIndU indu) (type_of_inductive env indu)
let judge_of_constructor env cu =
make_judge (mkConstructU cu) (type_of_constructor env cu)
let judge_of_case env ci pj iv cj lfj =
let lf, lft = dest_judgev lfj in
let ci, t = type_of_case env ci pj.uj_val pj.uj_type iv cj.uj_val cj.uj_type lf lft in
make_judge (mkCase (ci, (*nf_betaiota*) pj.uj_val, iv, cj.uj_val, lft)) t
(* Building type of primitive operators and type *)
let type_of_prim_const env _u c =
let int_ty () = type_of_int env in
match c with
| CPrimitives.Arraymaxlength ->
int_ty ()
let type_of_prim env u t =
let int_ty () = type_of_int env in
let float_ty () = type_of_float env in
let array_ty u a = mkApp(type_of_array env u, [|a|]) in
let bool_ty () =
match env.retroknowledge.Retroknowledge.retro_bool with
| Some ((ind,_),_) -> Constr.mkInd ind
| None -> CErrors.user_err Pp.(str"The type bool must be registered before this primitive.")
in
let compare_ty () =
match env.retroknowledge.Retroknowledge.retro_cmp with
| Some ((ind,_),_,_) -> Constr.mkInd ind
| None -> CErrors.user_err Pp.(str"The type compare must be registered before this primitive.")
in
let f_compare_ty () =
match env.retroknowledge.Retroknowledge.retro_f_cmp with
| Some ((ind,_),_,_,_) -> Constr.mkInd ind
| None -> CErrors.user_err Pp.(str"The type float_comparison must be registered before this primitive.")
in
let f_class_ty () =
match env.retroknowledge.Retroknowledge.retro_f_class with
| Some ((ind,_),_,_,_,_,_,_,_,_) -> Constr.mkInd ind
| None -> CErrors.user_err Pp.(str"The type float_class must be registered before this primitive.")
in
let pair_ty fst_ty snd_ty =
match env.retroknowledge.Retroknowledge.retro_pair with
| Some (ind,_) -> Constr.mkApp(Constr.mkInd ind, [|fst_ty;snd_ty|])
| None -> CErrors.user_err Pp.(str"The type pair must be registered before this primitive.")
in
let carry_ty int_ty =
match env.retroknowledge.Retroknowledge.retro_carry with
| Some ((ind,_),_) -> Constr.mkApp(Constr.mkInd ind, [|int_ty|])
| None -> CErrors.user_err Pp.(str"The type carry must be registered before this primitive.")
in
let open CPrimitives in
let tr_prim_type (tr_type : ind_or_type -> constr) (type a) (ty : a prim_type) (t : a) = match ty with
| PT_int63 -> int_ty t
| PT_float64 -> float_ty t
| PT_array -> array_ty (fst t) (tr_type (snd t))
in
let tr_ind (tr_type : ind_or_type -> constr) (type t) (i : t prim_ind) (a : t) = match i, a with
| PIT_bool, () -> bool_ty ()
| PIT_carry, t -> carry_ty (tr_type t)
| PIT_pair, (t1, t2) -> pair_ty (tr_type t1) (tr_type t2)
| PIT_cmp, () -> compare_ty ()
| PIT_f_cmp, () -> f_compare_ty ()
| PIT_f_class, () -> f_class_ty ()
in
let rec tr_type n = function
| PITT_ind (i, a) -> tr_ind (tr_type n) i a
| PITT_type (ty,t) -> tr_prim_type (tr_type n) ty t
| PITT_param i -> Constr.mkRel (n+i)
in
let rec nary_op n = function
| [] -> assert false
| [ret_ty] -> tr_type n ret_ty
| arg_ty :: r ->
Constr.mkProd(Context.nameR (Id.of_string "x"), tr_type n arg_ty, nary_op (n+1) r)
in
let params, sign = types t in
assert (AUContext.size (univs t) = Instance.length u);
Vars.subst_instance_constr u (Term.it_mkProd_or_LetIn (nary_op 0 sign) params)
let type_of_prim_or_type env u = let open CPrimitives in
function
| OT_type t -> type_of_prim_type env u t
| OT_op op -> type_of_prim env u op
| OT_const c -> type_of_prim_const env u c
|