1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
|
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * Copyright INRIA, CNRS and contributors *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
open Univ
type family = InSProp | InProp | InSet | InType
let all_families = [InSProp; InProp; InSet; InType]
type t =
| SProp
| Prop
| Set
| Type of Universe.t
let sprop = SProp
let prop = Prop
let set = Set
let type1 = Type type1_univ
let univ_of_sort = function
| Type u -> u
| Set -> Universe.type0
| Prop -> Universe.type0m
| SProp -> Universe.sprop
let sort_of_univ u =
if Universe.is_sprop u then sprop
else if is_type0m_univ u then prop
else if is_type0_univ u then set
else Type u
let compare s1 s2 =
if s1 == s2 then 0 else
match s1, s2 with
| SProp, SProp -> 0
| SProp, _ -> -1
| _, SProp -> 1
| Prop, Prop -> 0
| Prop, _ -> -1
| Set, Prop -> 1
| Set, Set -> 0
| Set, _ -> -1
| Type u1, Type u2 -> Universe.compare u1 u2
| Type _, _ -> -1
let equal s1 s2 = Int.equal (compare s1 s2) 0
let super = function
| SProp | Prop | Set -> Type (Universe.type1)
| Type u -> Type (Universe.super u)
let is_sprop = function
| SProp -> true
| Prop | Set | Type _ -> false
let is_prop = function
| Prop -> true
| SProp | Set | Type _ -> false
let is_set = function
| Set -> true
| SProp | Prop | Type _ -> false
let is_small = function
| SProp | Prop | Set -> true
| Type _ -> false
let family = function
| SProp -> InSProp
| Prop -> InProp
| Set -> InSet
| Type _ -> InType
let family_compare a b = match a,b with
| InSProp, InSProp -> 0
| InSProp, _ -> -1
| _, InSProp -> 1
| InProp, InProp -> 0
| InProp, _ -> -1
| _, InProp -> 1
| InSet, InSet -> 0
| InSet, _ -> -1
| _, InSet -> 1
| InType, InType -> 0
let family_equal = (==)
let family_leq a b = family_compare a b <= 0
open Hashset.Combine
let hash = function
| SProp -> combinesmall 1 0
| Prop -> combinesmall 1 1
| Set -> combinesmall 1 2
| Type u ->
let h = Univ.Universe.hash u in
combinesmall 2 h
module Hsorts =
Hashcons.Make(
struct
type _t = t
type t = _t
type u = Universe.t -> Universe.t
let hashcons huniv = function
| Type u as c ->
let u' = huniv u in
if u' == u then c else Type u'
| s -> s
let eq s1 s2 = match (s1,s2) with
| Prop, Prop | Set, Set -> true
| (Type u1, Type u2) -> u1 == u2
|_ -> false
let hash = hash
end)
let hcons = Hashcons.simple_hcons Hsorts.generate Hsorts.hcons hcons_univ
(** On binders: is this variable proof relevant *)
type relevance = Relevant | Irrelevant
let relevance_equal r1 r2 = match r1,r2 with
| Relevant, Relevant | Irrelevant, Irrelevant -> true
| (Relevant | Irrelevant), _ -> false
let relevance_of_sort_family = function
| InSProp -> Irrelevant
| _ -> Relevant
let relevance_hash = function
| Relevant -> 0
| Irrelevant -> 1
let relevance_of_sort = function
| SProp -> Irrelevant
| _ -> Relevant
let debug_print = function
| SProp -> Pp.(str "SProp")
| Prop -> Pp.(str "Prop")
| Set -> Pp.(str "Set")
| Type u -> Pp.(str "Type(" ++ Univ.Universe.pr u ++ str ")")
let pr_sort_family = function
| InSProp -> Pp.(str "SProp")
| InProp -> Pp.(str "Prop")
| InSet -> Pp.(str "Set")
| InType -> Pp.(str "Type")
|