blob: 46b0500507da3e92dd61269b289d9ce11cd682b9 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
|
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *)
(* <O___,, * (see CREDITS file for the list of authors) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
open Names
open Constr
open Mod_subst
(** This module implements the handling of opaque proof terms.
Opaque proof terms are special since:
- they can be lazily computed and substituted
- they are stored in an optionally loaded segment of .vo files
An [opaque] proof terms holds the real data until fully discharged.
In this case it is called [direct].
When it is [turn_indirect] the data is relocated to an opaque table
and the [opaque] is turned into an index. *)
type proofterm = (constr * Univ.ContextSet.t) Future.computation
type opaquetab
type opaque
val empty_opaquetab : opaquetab
(** From a [proofterm] to some [opaque]. *)
val create : proofterm -> opaque
(** Turn a direct [opaque] into an indirect one. It is your responsibility to
hashcons the inner term beforehand. The integer is an hint of the maximum id
used so far *)
val turn_indirect : DirPath.t -> opaque -> opaquetab -> opaque * opaquetab
type indirect_accessor = {
access_proof : DirPath.t -> int -> constr option;
}
(** When stored indirectly, opaque terms are indexed by their library
dirpath and an integer index. The two functions above activate
this indirect storage, by telling how to retrieve terms.
*)
(** From a [opaque] back to a [constr]. This might use the
indirect opaque accessor given as an argument. *)
val force_proof : indirect_accessor -> opaquetab -> opaque -> constr
val force_constraints : indirect_accessor -> opaquetab -> opaque -> Univ.ContextSet.t
val get_direct_constraints : opaque -> Univ.ContextSet.t Future.computation
val subst_opaque : substitution -> opaque -> opaque
type work_list = (Univ.Instance.t * Id.t array) Cmap.t *
(Univ.Instance.t * Id.t array) Mindmap.t
type cooking_info = {
modlist : work_list;
abstract : Constr.named_context * Univ.Instance.t * Univ.AUContext.t }
(* The type has two caveats:
1) cook_constr is defined after
2) we have to store the input in the [opaque] in order to be able to
discharge it when turning a .vi into a .vo *)
val discharge_direct_opaque :
cook_constr:(constr -> constr) -> cooking_info -> opaque -> opaque
val join_opaque : ?except:Future.UUIDSet.t -> opaquetab -> opaque -> unit
val dump : ?except:Future.UUIDSet.t -> opaquetab ->
Constr.t option array *
cooking_info list array *
int Future.UUIDMap.t
|