1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
|
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * Copyright INRIA, CNRS and contributors *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
(** Numerals in different forms: signed or unsigned, possibly with
fractional part and exponent.
Numerals are represented using raw strings of (hexa)decimal
literals and a separate sign flag.
Note that this representation is not unique, due to possible
multiple leading or trailing zeros, and -0 = +0, for instances.
The reason to keep the numeral exactly as it was parsed is that
specific notations can be declared for specific numerals
(e.g. [Notation "0" := False], or [Notation "00" := (nil,nil)], or
[Notation "2e1" := ...]). Those notations override the generic
interpretation as numeral. So, one has to record the form of the
numeral which exactly matches the notation. *)
type sign = SPlus | SMinus
type num_class = CDec | CHex
type 'a exp = EDec of 'a | EBin of 'a
(** {6 String representation of a natural number } *)
module UnsignedNat :
sig
type t
val of_string : string -> t
(** Convert from a non-empty sequence of digits (which may contain "_")
(or hexdigits when starting with "0x" or "0X") *)
val to_string : t -> string
(** Convert to a non-empty sequence of digit that does not contain "_"
(or hexdigits, starting with "0x", all hexdigits are lower case) *)
val sprint : t -> string
val print : t -> Pp.t
(** [sprint] and [print] returns the numeral as it was parsed, for printing *)
val classify : t -> num_class
val compare : t -> t -> int
end
(** {6 String representation of a signed natural number } *)
module SignedNat :
sig
type t = sign * UnsignedNat.t
val of_string : string -> t
(** Convert from a non-empty sequence of (hex)digits which may contain "_" *)
val to_string : t -> string
(** Convert to a non-empty sequence of (hex)digit that does not contain "_"
(hexadecimals start with "0x" and all hexdigits are lower case) *)
val classify : t -> num_class
val of_bigint : num_class -> Bigint.bigint -> t
val to_bigint : t -> Bigint.bigint
end
(** {6 Unsigned decimal numerals } *)
module Unsigned :
sig
type t
val equal : t -> t -> bool
val is_nat : t -> bool
val to_nat : t -> string option
val sprint : t -> string
val print : t -> Pp.t
(** [sprint] and [print] returns the numeral as it was parsed, for printing *)
val parse : char Stream.t -> t
(** Parse a positive Coq numeral.
Precondition: the first char on the stream is already known to be a digit (\[0-9\]).
Precondition: at least two extra chars after the numeral to parse.
The recognized syntax is:
- integer part: \[0-9\]\[0-9_\]*
- fractional part: empty or .\[0-9_\]+
- exponent part: empty or \[eE\]\[+-\]?\[0-9\]\[0-9_\]*
or
- integer part: 0\[xX\]\[0-9a-fA-F\]\[0-9a-fA-F_\]*
- fractional part: empty or .\[0-9a-fA-F_\]+
- exponent part: empty or \[pP\]\[+-\]?\[0-9\]\[0-9_\]* *)
val parse_string : string -> t option
(** Parse the string as a non negative Coq numeral, if possible *)
val classify : t -> num_class
end
(** {6 Signed decimal numerals } *)
module Signed :
sig
type t = sign * Unsigned.t
val equal : t -> t -> bool
val is_zero : t -> bool
val of_nat : UnsignedNat.t -> t
val of_int : SignedNat.t -> t
val to_int : t -> SignedNat.t option
val is_int : t -> bool
val sprint : t -> string
val print : t -> Pp.t
(** [sprint] and [print] returns the numeral as it was parsed, for printing *)
val parse_string : string -> t option
(** Parse the string as a signed Coq numeral, if possible *)
val of_int_string : string -> t
(** Convert from a string in the syntax of OCaml's int/int64 *)
val of_string : string -> t
(** Convert from a string in the syntax of OCaml's string_of_float *)
val to_string : t -> string
(** Returns a string in the syntax of OCaml's float_of_string *)
val of_bigint : num_class -> Bigint.bigint -> t
val to_bigint : t -> Bigint.bigint option
(** Convert from and to bigint when the denotation of a bigint *)
val of_int_frac_and_exponent : SignedNat.t -> UnsignedNat.t option -> SignedNat.t option -> t
val to_int_frac_and_exponent : t -> SignedNat.t * UnsignedNat.t option * SignedNat.t option
(** n, p and q such that the number is n.p*10^q or n.p*2^q
pre/postcondition: classify n = classify p, classify q = CDec *)
val of_bigint_and_exponent : Bigint.bigint -> Bigint.bigint exp -> t
val to_bigint_and_exponent : t -> Bigint.bigint * Bigint.bigint exp
(** n and p such that the number is n*10^p or n*2^p *)
val classify : t -> num_class
val is_bigger_int_than : t -> UnsignedNat.t -> bool
(** Test if an integer whose absolute value is bounded *)
end
|