1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
|
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *)
(* <O___,, * (see CREDITS file for the list of authors) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
(** This module is about the low-level declaration of logical objects *)
open Pp
open CErrors
open Util
open Names
open Libnames
open Globnames
open Constr
open Declarations
open Entries
open Libobject
open Lib
open Impargs
open Safe_typing
open Cooking
open Decls
open Decl_kinds
(** flag for internal message display *)
type internal_flag =
| UserAutomaticRequest (* kernel action, a message is displayed *)
| InternalTacticRequest (* kernel action, no message is displayed *)
| UserIndividualRequest (* user action, a message is displayed *)
(** Declaration of constants and parameters *)
type constant_obj = {
cst_decl : Cooking.recipe option;
(** Non-empty only when rebuilding a constant after a section *)
cst_kind : logical_kind;
cst_locl : bool;
}
type constant_declaration = Safe_typing.private_constants constant_entry * logical_kind
(* At load-time, the segment starting from the module name to the discharge *)
(* section (if Remark or Fact) is needed to access a construction *)
let load_constant i ((sp,kn), obj) =
if Nametab.exists_cci sp then
alreadydeclared (Id.print (basename sp) ++ str " already exists");
let con = Global.constant_of_delta_kn kn in
Nametab.push (Nametab.Until i) sp (ConstRef con);
add_constant_kind con obj.cst_kind
let cooking_info segment =
let modlist = replacement_context () in
let { abstr_ctx = hyps; abstr_subst = subst; abstr_uctx = uctx } = segment in
let named_ctx = List.map fst hyps in
let abstract = (named_ctx, subst, uctx) in
{ Opaqueproof.modlist; abstract }
(* Opening means making the name without its module qualification available *)
let open_constant i ((sp,kn), obj) =
(* Never open a local definition *)
if obj.cst_locl then ()
else
let con = Global.constant_of_delta_kn kn in
Nametab.push (Nametab.Exactly i) sp (ConstRef con)
let exists_name id =
variable_exists id || Global.exists_objlabel (Label.of_id id)
let check_exists id =
if exists_name id then alreadydeclared (Id.print id ++ str " already exists")
let cache_constant ((sp,kn), obj) =
(* Invariant: the constant must exist in the logical environment, except when
redefining it when exiting a section. See [discharge_constant]. *)
let id = basename sp in
let kn' =
match obj.cst_decl with
| None ->
if Global.exists_objlabel (Label.of_id (basename sp))
then Constant.make1 kn
else CErrors.anomaly Pp.(str"Missing constant " ++ Id.print(basename sp) ++ str".")
| Some r ->
Global.add_recipe ~in_section:(Lib.sections_are_opened ()) id r
in
assert (Constant.equal kn' (Constant.make1 kn));
Nametab.push (Nametab.Until 1) sp (ConstRef (Constant.make1 kn));
let cst = Global.lookup_constant kn' in
add_section_constant (Declareops.constant_is_polymorphic cst) kn' cst.const_hyps;
add_constant_kind (Constant.make1 kn) obj.cst_kind
let discharge_constant ((sp, kn), obj) =
let con = Constant.make1 kn in
let from = Global.lookup_constant con in
let info = cooking_info (section_segment_of_constant con) in
(* This is a hack: when leaving a section, we lose the constant definition, so
we have to store it in the libobject to be able to retrieve it after. *)
Some { obj with cst_decl = Some { from; info } }
(* Hack to reduce the size of .vo: we keep only what load/open needs *)
let dummy_constant cst = {
cst_decl = None;
cst_kind = cst.cst_kind;
cst_locl = cst.cst_locl;
}
let classify_constant cst = Substitute (dummy_constant cst)
let (inConstant : constant_obj -> obj) =
declare_object { (default_object "CONSTANT") with
cache_function = cache_constant;
load_function = load_constant;
open_function = open_constant;
classify_function = classify_constant;
subst_function = ident_subst_function;
discharge_function = discharge_constant }
let declare_scheme = ref (fun _ _ -> assert false)
let set_declare_scheme f = declare_scheme := f
let update_tables c =
declare_constant_implicits c;
Notation.declare_ref_arguments_scope Evd.empty (ConstRef c)
let register_constant kn kind local =
let o = inConstant {
cst_decl = None;
cst_kind = kind;
cst_locl = local;
} in
let id = Label.to_id (Constant.label kn) in
let _ = add_leaf id o in
update_tables kn
let register_side_effect (c, role) =
let () = register_constant c (IsProof Theorem) false in
match role with
| Subproof -> ()
| Schema (ind, kind) -> !declare_scheme kind [|ind,c|]
let default_univ_entry = Monomorphic_entry Univ.ContextSet.empty
let definition_entry ?fix_exn ?(opaque=false) ?(inline=false) ?types
?(univs=default_univ_entry) ?(eff=Safe_typing.empty_private_constants) body =
{ const_entry_body = Future.from_val ?fix_exn ((body,Univ.ContextSet.empty), eff);
const_entry_secctx = None;
const_entry_type = types;
const_entry_universes = univs;
const_entry_opaque = opaque;
const_entry_feedback = None;
const_entry_inline_code = inline}
let define_constant ?role ?(export_seff=false) id cd =
(* Logically define the constant and its subproofs, no libobject tampering *)
let is_poly de = match de.const_entry_universes with
| Monomorphic_entry _ -> false
| Polymorphic_entry _ -> true
in
let in_section = Lib.sections_are_opened () in
let export, decl = (* We deal with side effects *)
match cd with
| DefinitionEntry de when
export_seff ||
not de.const_entry_opaque ||
is_poly de ->
(* This globally defines the side-effects in the environment. *)
let body, export = Global.export_private_constants ~in_section (Future.force de.const_entry_body) in
let de = { de with const_entry_body = Future.from_val (body, ()) } in
export, ConstantEntry (PureEntry, DefinitionEntry de)
| _ -> [], ConstantEntry (EffectEntry, cd)
in
let kn, eff = Global.add_constant ?role ~in_section id decl in
kn, eff, export
let declare_constant ?(internal = UserIndividualRequest) ?(local = false) id ?(export_seff=false) (cd, kind) =
let () = check_exists id in
let kn, _eff, export = define_constant ~export_seff id cd in
(* Register the libobjects attached to the constants and its subproofs *)
let () = List.iter register_side_effect export in
let () = register_constant kn kind local in
kn
let declare_private_constant ~role ?(internal=UserIndividualRequest) ?(local = false) id (cd, kind) =
let kn, eff, export = define_constant ~role id cd in
let () = assert (List.is_empty export) in
let () = register_constant kn kind local in
kn, eff
let declare_definition ?(internal=UserIndividualRequest)
?(opaque=false) ?(kind=Decl_kinds.Definition) ?(local = false)
id ?types (body,univs) =
let cb =
definition_entry ?types ~univs ~opaque body
in
declare_constant ~internal ~local id
(Entries.DefinitionEntry cb, Decl_kinds.IsDefinition kind)
(** Declaration of section variables and local definitions *)
type section_variable_entry =
| SectionLocalDef of Safe_typing.private_constants definition_entry
| SectionLocalAssum of types Univ.in_universe_context_set * polymorphic * bool (** Implicit status *)
type variable_declaration = DirPath.t * section_variable_entry * logical_kind
let cache_variable ((sp,_),o) =
match o with
| Inl ctx -> Global.push_context_set false ctx
| Inr (id,(p,d,mk)) ->
(* Constr raisonne sur les noms courts *)
if variable_exists id then
alreadydeclared (Id.print id ++ str " already exists");
let impl,opaq,poly,ctx = match d with (* Fails if not well-typed *)
| SectionLocalAssum ((ty,ctx),poly,impl) ->
let () = Global.push_named_assum ((id,ty,poly),ctx) in
let impl = if impl then Implicit else Explicit in
impl, true, poly, ctx
| SectionLocalDef (de) ->
(* The body should already have been forced upstream because it is a
section-local definition, but it's not enforced by typing *)
let ((body, uctx), eff) = Global.export_private_constants ~in_section:true (Future.force de.const_entry_body) in
let () = List.iter register_side_effect eff in
let poly, univs = match de.const_entry_universes with
| Monomorphic_entry uctx -> false, uctx
| Polymorphic_entry (_, uctx) -> true, Univ.ContextSet.of_context uctx
in
let univs = Univ.ContextSet.union uctx univs in
(* We must declare the universe constraints before type-checking the
term. *)
let () = Global.push_context_set (not poly) univs in
let se = {
secdef_body = body;
secdef_secctx = de.const_entry_secctx;
secdef_feedback = de.const_entry_feedback;
secdef_type = de.const_entry_type;
} in
let () = Global.push_named_def (id, se) in
Explicit, de.const_entry_opaque,
poly, univs in
Nametab.push (Nametab.Until 1) (restrict_path 0 sp) (VarRef id);
add_section_variable id impl poly ctx;
add_variable_data id (p,opaq,ctx,poly,mk)
let discharge_variable (_,o) = match o with
| Inr (id,_) ->
if variable_polymorphic id then None
else Some (Inl (variable_context id))
| Inl _ -> Some o
type variable_obj =
(Univ.ContextSet.t, Id.t * variable_declaration) union
let inVariable : variable_obj -> obj =
declare_object { (default_object "VARIABLE") with
cache_function = cache_variable;
discharge_function = discharge_variable;
classify_function = (fun _ -> Dispose) }
(* for initial declaration *)
let declare_variable id obj =
let oname = add_leaf id (inVariable (Inr (id,obj))) in
declare_var_implicits id;
Notation.declare_ref_arguments_scope Evd.empty (VarRef id);
oname
(** Declaration of inductive blocks *)
let declare_inductive_argument_scopes kn mie =
List.iteri (fun i {mind_entry_consnames=lc} ->
Notation.declare_ref_arguments_scope Evd.empty (IndRef (kn,i));
for j=1 to List.length lc do
Notation.declare_ref_arguments_scope Evd.empty (ConstructRef ((kn,i),j));
done) mie.mind_entry_inds
let inductive_names sp kn mie =
let (dp,_) = repr_path sp in
let kn = Global.mind_of_delta_kn kn in
let names, _ =
List.fold_left
(fun (names, n) ind ->
let ind_p = (kn,n) in
let names, _ =
List.fold_left
(fun (names, p) l ->
let sp =
Libnames.make_path dp l
in
((sp, ConstructRef (ind_p,p)) :: names, p+1))
(names, 1) ind.mind_entry_consnames in
let sp = Libnames.make_path dp ind.mind_entry_typename
in
((sp, IndRef ind_p) :: names, n+1))
([], 0) mie.mind_entry_inds
in names
let load_inductive i ((sp,kn),mie) =
let names = inductive_names sp kn mie in
List.iter (fun (sp, ref) -> Nametab.push (Nametab.Until i) sp ref ) names
let open_inductive i ((sp,kn),mie) =
let names = inductive_names sp kn mie in
List.iter (fun (sp, ref) -> Nametab.push (Nametab.Exactly i) sp ref) names
let cache_inductive ((sp,kn),mie) =
let names = inductive_names sp kn mie in
List.iter check_exists (List.map (fun p -> basename (fst p)) names);
let id = basename sp in
let kn' = Global.add_mind id mie in
assert (MutInd.equal kn' (MutInd.make1 kn));
let mind = Global.lookup_mind kn' in
add_section_kn (Declareops.inductive_is_polymorphic mind) kn' mind.mind_hyps;
List.iter (fun (sp, ref) -> Nametab.push (Nametab.Until 1) sp ref) names
let discharge_inductive ((sp,kn),mie) =
let mind = Global.mind_of_delta_kn kn in
let mie = Global.lookup_mind mind in
let info = cooking_info (section_segment_of_mutual_inductive mind) in
Some (Cooking.cook_inductive info mie)
let dummy_one_inductive_entry mie = {
mind_entry_typename = mie.mind_entry_typename;
mind_entry_arity = mkProp;
mind_entry_template = false;
mind_entry_consnames = mie.mind_entry_consnames;
mind_entry_lc = []
}
(* Hack to reduce the size of .vo: we keep only what load/open needs *)
let dummy_inductive_entry m = {
mind_entry_params = [];
mind_entry_record = None;
mind_entry_finite = Declarations.BiFinite;
mind_entry_inds = List.map dummy_one_inductive_entry m.mind_entry_inds;
mind_entry_universes = default_univ_entry;
mind_entry_variance = None;
mind_entry_private = None;
}
(* reinfer subtyping constraints for inductive after section is dischared. *)
let rebuild_inductive mind_ent =
let env = Global.env () in
InferCumulativity.infer_inductive env mind_ent
let inInductive : mutual_inductive_entry -> obj =
declare_object {(default_object "INDUCTIVE") with
cache_function = cache_inductive;
load_function = load_inductive;
open_function = open_inductive;
classify_function = (fun a -> Substitute (dummy_inductive_entry a));
subst_function = ident_subst_function;
discharge_function = discharge_inductive;
rebuild_function = rebuild_inductive }
let cache_prim (_,(p,c)) = Recordops.register_primitive_projection p c
let load_prim _ p = cache_prim p
let subst_prim (subst,(p,c)) = Mod_subst.subst_proj_repr subst p, Mod_subst.subst_constant subst c
let discharge_prim (_,(p,c)) = Some (Lib.discharge_proj_repr p, c)
let inPrim : (Projection.Repr.t * Constant.t) -> obj =
declare_object {
(default_object "PRIMPROJS") with
cache_function = cache_prim ;
load_function = load_prim;
subst_function = subst_prim;
classify_function = (fun x -> Substitute x);
discharge_function = discharge_prim }
let declare_primitive_projection p c = Lib.add_anonymous_leaf (inPrim (p,c))
let declare_one_projection univs (mind,_ as ind) ~proj_npars proj_arg label (term,types) =
let id = Label.to_id label in
let univs, u = match univs with
| Monomorphic_entry _ ->
(* Global constraints already defined through the inductive *)
default_univ_entry, Univ.Instance.empty
| Polymorphic_entry (nas, ctx) ->
Polymorphic_entry (nas, ctx), Univ.UContext.instance ctx
in
let term = Vars.subst_instance_constr u term in
let types = Vars.subst_instance_constr u types in
let entry = definition_entry ~types ~univs term in
let cst = declare_constant id (DefinitionEntry entry, IsDefinition StructureComponent) in
let p = Projection.Repr.make ind ~proj_npars ~proj_arg label in
declare_primitive_projection p cst
let declare_projections univs mind =
let env = Global.env () in
let mib = Environ.lookup_mind mind env in
match mib.mind_record with
| PrimRecord info ->
let iter_ind i (_, labs, _, _) =
let ind = (mind, i) in
let projs = Inductiveops.compute_projections env ind in
Array.iter2_i (declare_one_projection univs ind ~proj_npars:mib.mind_nparams) labs projs
in
let () = Array.iteri iter_ind info in
true
| FakeRecord -> false
| NotRecord -> false
(* for initial declaration *)
let declare_mind mie =
let id = match mie.mind_entry_inds with
| ind::_ -> ind.mind_entry_typename
| [] -> anomaly (Pp.str "cannot declare an empty list of inductives.") in
let (sp,kn as oname) = add_leaf id (inInductive mie) in
let mind = Global.mind_of_delta_kn kn in
let isprim = declare_projections mie.mind_entry_universes mind in
declare_mib_implicits mind;
declare_inductive_argument_scopes mind mie;
oname, isprim
(* Declaration messages *)
let pr_rank i = pr_nth (i+1)
let fixpoint_message indexes l =
Flags.if_verbose Feedback.msg_info (match l with
| [] -> anomaly (Pp.str "no recursive definition.")
| [id] -> Id.print id ++ str " is recursively defined" ++
(match indexes with
| Some [|i|] -> str " (decreasing on "++pr_rank i++str " argument)"
| _ -> mt ())
| l -> hov 0 (prlist_with_sep pr_comma Id.print l ++
spc () ++ str "are recursively defined" ++
match indexes with
| Some a -> spc () ++ str "(decreasing respectively on " ++
prvect_with_sep pr_comma pr_rank a ++
str " arguments)"
| None -> mt ()))
let cofixpoint_message l =
Flags.if_verbose Feedback.msg_info (match l with
| [] -> anomaly (Pp.str "No corecursive definition.")
| [id] -> Id.print id ++ str " is corecursively defined"
| l -> hov 0 (prlist_with_sep pr_comma Id.print l ++
spc () ++ str "are corecursively defined"))
let recursive_message isfix i l =
(if isfix then fixpoint_message i else cofixpoint_message) l
let definition_message id =
Flags.if_verbose Feedback.msg_info (Id.print id ++ str " is defined")
let assumption_message id =
(* Changing "assumed" to "declared", "assuming" referring more to
the type of the object than to the name of the object (see
discussion on coqdev: "Chapter 4 of the Reference Manual", 8/10/2015) *)
Flags.if_verbose Feedback.msg_info (Id.print id ++ str " is declared")
(** Monomorphic universes need to survive sections. *)
let input_universe_context : Univ.ContextSet.t -> Libobject.obj =
declare_object @@ local_object "Monomorphic section universes"
~cache:(fun (na, uctx) -> Global.push_context_set false uctx)
~discharge:(fun (_, x) -> Some x)
let declare_universe_context poly ctx =
if poly then
(Global.push_context_set true ctx; Lib.add_section_context ctx)
else
Lib.add_anonymous_leaf (input_universe_context ctx)
(** Global universes are not substitutive objects but global objects
bound at the *library* or *module* level. The polymorphic flag is
used to distinguish universes declared in polymorphic sections, which
are discharged and do not remain in scope. *)
type universe_source =
| BoundUniv (* polymorphic universe, bound in a function (this will go away someday) *)
| QualifiedUniv of Id.t (* global universe introduced by some global value *)
| UnqualifiedUniv (* other global universe *)
type universe_name_decl = universe_source * (Id.t * Univ.Level.UGlobal.t) list
let check_exists sp =
if Nametab.exists_universe sp then
alreadydeclared (str "Universe " ++ Id.print (basename sp) ++ str " already exists")
else ()
let qualify_univ i dp src id =
match src with
| BoundUniv | UnqualifiedUniv ->
i, Libnames.make_path dp id
| QualifiedUniv l ->
let dp = DirPath.repr dp in
Nametab.map_visibility succ i, Libnames.make_path (DirPath.make (l::dp)) id
let do_univ_name ~check i dp src (id,univ) =
let i, sp = qualify_univ i dp src id in
if check then check_exists sp;
Nametab.push_universe i sp univ
let cache_univ_names ((sp, _), (src, univs)) =
let depth = sections_depth () in
let dp = pop_dirpath_n depth (dirpath sp) in
List.iter (do_univ_name ~check:true (Nametab.Until 1) dp src) univs
let load_univ_names i ((sp, _), (src, univs)) =
List.iter (do_univ_name ~check:false (Nametab.Until i) (dirpath sp) src) univs
let open_univ_names i ((sp, _), (src, univs)) =
List.iter (do_univ_name ~check:false (Nametab.Exactly i) (dirpath sp) src) univs
let discharge_univ_names = function
| _, (BoundUniv, _) -> None
| _, ((QualifiedUniv _ | UnqualifiedUniv), _ as x) -> Some x
let input_univ_names : universe_name_decl -> Libobject.obj =
declare_object
{ (default_object "Global universe name state") with
cache_function = cache_univ_names;
load_function = load_univ_names;
open_function = open_univ_names;
discharge_function = discharge_univ_names;
subst_function = (fun (subst, a) -> (* Actually the name is generated once and for all. *) a);
classify_function = (fun a -> Substitute a) }
let declare_univ_binders gr pl =
if Global.is_polymorphic gr then
()
else
let l = match gr with
| ConstRef c -> Label.to_id @@ Constant.label c
| IndRef (c, _) -> Label.to_id @@ MutInd.label c
| VarRef id -> anomaly ~label:"declare_univ_binders" Pp.(str "declare_univ_binders on variable " ++ Id.print id ++ str".")
| ConstructRef _ ->
anomaly ~label:"declare_univ_binders"
Pp.(str "declare_univ_binders on an constructor reference")
in
let univs = Id.Map.fold (fun id univ univs ->
match Univ.Level.name univ with
| None -> assert false (* having Prop/Set/Var as binders is nonsense *)
| Some univ -> (id,univ)::univs) pl []
in
Lib.add_anonymous_leaf (input_univ_names (QualifiedUniv l, univs))
let do_universe poly l =
let in_section = Lib.sections_are_opened () in
let () =
if poly && not in_section then
user_err ~hdr:"Constraint"
(str"Cannot declare polymorphic universes outside sections")
in
let l = List.map (fun {CAst.v=id} -> (id, UnivGen.new_univ_global ())) l in
let ctx = List.fold_left (fun ctx (_,qid) -> Univ.LSet.add (Univ.Level.make qid) ctx)
Univ.LSet.empty l, Univ.Constraint.empty
in
let () = declare_universe_context poly ctx in
let src = if poly then BoundUniv else UnqualifiedUniv in
Lib.add_anonymous_leaf (input_univ_names (src, l))
let do_constraint poly l =
let open Univ in
let u_of_id x =
let level = Pretyping.interp_known_glob_level (Evd.from_env (Global.env ())) x in
Lib.is_polymorphic_univ level, level
in
let in_section = Lib.sections_are_opened () in
let () =
if poly && not in_section then
user_err ~hdr:"Constraint"
(str"Cannot declare polymorphic constraints outside sections")
in
let check_poly p p' =
if poly then ()
else if p || p' then
user_err ~hdr:"Constraint"
(str "Cannot declare a global constraint on " ++
str "a polymorphic universe, use "
++ str "Polymorphic Constraint instead")
in
let constraints = List.fold_left (fun acc (l, d, r) ->
let p, lu = u_of_id l and p', ru = u_of_id r in
check_poly p p';
Constraint.add (lu, d, ru) acc)
Constraint.empty l
in
let uctx = ContextSet.add_constraints constraints ContextSet.empty in
declare_universe_context poly uctx
|