1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
|
(* camlp5r *)
(* grammar.ml,v *)
(* Copyright (c) INRIA 2007-2017 *)
open Gramext
open Format
let rec flatten_tree =
function
DeadEnd -> []
| LocAct (_, _) -> [[]]
| Node {node = n; brother = b; son = s} ->
List.map (fun l -> n :: l) (flatten_tree s) @ flatten_tree b
let utf8_print = ref true
let utf8_string_escaped s =
let b = Buffer.create (String.length s) in
let rec loop i =
if i = String.length s then Buffer.contents b
else
begin
begin match s.[i] with
'"' -> Buffer.add_string b "\\\""
| '\\' -> Buffer.add_string b "\\\\"
| '\n' -> Buffer.add_string b "\\n"
| '\t' -> Buffer.add_string b "\\t"
| '\r' -> Buffer.add_string b "\\r"
| '\b' -> Buffer.add_string b "\\b"
| c -> Buffer.add_char b c
end;
loop (i + 1)
end
in
loop 0
let string_escaped s =
if !utf8_print then utf8_string_escaped s else String.escaped s
let print_str ppf s = fprintf ppf "\"%s\"" (string_escaped s)
let rec print_symbol ppf =
function
| Slist0 s -> fprintf ppf "LIST0 %a" print_symbol1 s
| Slist0sep (s, t, osep) ->
fprintf ppf "LIST0 %a SEP %a%s" print_symbol1 s print_symbol1 t
(if osep then " OPT_SEP" else "")
| Slist1 s -> fprintf ppf "LIST1 %a" print_symbol1 s
| Slist1sep (s, t, osep) ->
fprintf ppf "LIST1 %a SEP %a%s" print_symbol1 s print_symbol1 t
(if osep then " OPT_SEP" else "")
| Sopt s -> fprintf ppf "OPT %a" print_symbol1 s
| Stoken (con, prm) when con <> "" && prm <> "" ->
fprintf ppf "%s@ %a" con print_str prm
| Snterml (e, l) ->
fprintf ppf "%s%s@ LEVEL@ %a" e.ename (if e.elocal then "*" else "")
print_str l
| Snterm _ | Snext | Sself | Stoken _ | Stree _ as s ->
print_symbol1 ppf s
and print_symbol1 ppf =
function
| Snterm e -> fprintf ppf "%s%s" e.ename (if e.elocal then "*" else "")
| Sself -> pp_print_string ppf "SELF"
| Snext -> pp_print_string ppf "NEXT"
| Stoken ("", s) -> print_str ppf s
| Stoken (con, "") -> pp_print_string ppf con
| Stree t -> print_level ppf pp_print_space (flatten_tree t)
| Snterml (_, _) | Slist0 _ | Slist0sep (_, _, _) |
Slist1 _ | Slist1sep (_, _, _) | Sopt _ | Stoken _ as s ->
fprintf ppf "(%a)" print_symbol s
and print_rule ppf symbols =
fprintf ppf "@[<hov 0>";
let _ =
List.fold_left
(fun sep symbol ->
fprintf ppf "%t%a" sep print_symbol symbol;
fun ppf -> fprintf ppf ";@ ")
(fun ppf -> ()) symbols
in
fprintf ppf "@]"
and print_level ppf pp_print_space rules =
fprintf ppf "@[<hov 0>[ ";
let _ =
List.fold_left
(fun sep rule ->
fprintf ppf "%t%a" sep print_rule rule;
fun ppf -> fprintf ppf "%a| " pp_print_space ())
(fun ppf -> ()) rules
in
fprintf ppf " ]@]"
let print_levels ppf elev =
let _ =
List.fold_left
(fun sep lev ->
let rules =
List.map (fun t -> Sself :: t) (flatten_tree lev.lsuffix) @
flatten_tree lev.lprefix
in
fprintf ppf "%t@[<hov 2>" sep;
begin match lev.lname with
Some n -> fprintf ppf "%a@;<1 2>" print_str n
| None -> ()
end;
begin match lev.assoc with
LeftA -> fprintf ppf "LEFTA"
| RightA -> fprintf ppf "RIGHTA"
| NonA -> fprintf ppf "NONA"
end;
fprintf ppf "@]@;<1 2>";
print_level ppf pp_force_newline rules;
fun ppf -> fprintf ppf "@,| ")
(fun ppf -> ()) elev
in
()
let print_entry ppf e =
fprintf ppf "@[<v 0>[ ";
begin match e.edesc with
Dlevels elev -> print_levels ppf elev
| Dparser _ -> fprintf ppf "<parser>"
end;
fprintf ppf " ]@]"
let floc = ref (fun _ -> failwith "internal error when computing location")
let loc_of_token_interval bp ep =
if bp == ep then
if bp == 0 then Ploc.dummy else Ploc.after (!floc (bp - 1)) 0 1
else
let loc1 = !floc bp in let loc2 = !floc (pred ep) in Ploc.encl loc1 loc2
let name_of_symbol entry =
function
Snterm e -> "[" ^ e.ename ^ "]"
| Snterml (e, l) -> "[" ^ e.ename ^ " level " ^ l ^ "]"
| Sself | Snext -> "[" ^ entry.ename ^ "]"
| Stoken tok -> entry.egram.glexer.Plexing.tok_text tok
| _ -> "???"
let rec get_token_list entry rev_tokl last_tok tree =
match tree with
Node {node = Stoken tok; son = son; brother = DeadEnd} ->
get_token_list entry (last_tok :: rev_tokl) tok son
| _ -> if rev_tokl = [] then None else Some (rev_tokl, last_tok, tree)
let rec name_of_symbol_failed entry =
function
| Slist0 s -> name_of_symbol_failed entry s
| Slist0sep (s, _, _) -> name_of_symbol_failed entry s
| Slist1 s -> name_of_symbol_failed entry s
| Slist1sep (s, _, _) -> name_of_symbol_failed entry s
| Sopt s -> name_of_symbol_failed entry s
| Stree t -> name_of_tree_failed entry t
| s -> name_of_symbol entry s
and name_of_tree_failed entry =
function
Node {node = s; brother = bro; son = son} ->
let tokl =
match s with
Stoken tok -> get_token_list entry [] tok son
| _ -> None
in
begin match tokl with
None ->
let txt = name_of_symbol_failed entry s in
let txt =
match s, son with
Sopt _, Node _ -> txt ^ " or " ^ name_of_tree_failed entry son
| _ -> txt
in
let txt =
match bro with
DeadEnd | LocAct (_, _) -> txt
| Node _ -> txt ^ " or " ^ name_of_tree_failed entry bro
in
txt
| Some (rev_tokl, last_tok, son) ->
List.fold_left
(fun s tok ->
(if s = "" then "" else s ^ " ") ^
entry.egram.glexer.Plexing.tok_text tok)
"" (List.rev (last_tok :: rev_tokl))
end
| DeadEnd | LocAct (_, _) -> "???"
let search_tree_in_entry prev_symb tree =
function
Dlevels levels ->
let rec search_levels =
function
[] -> tree
| level :: levels ->
match search_level level with
Some tree -> tree
| None -> search_levels levels
and search_level level =
match search_tree level.lsuffix with
Some t -> Some (Node {node = Sself; son = t; brother = DeadEnd})
| None -> search_tree level.lprefix
and search_tree t =
if tree <> DeadEnd && t == tree then Some t
else
match t with
Node n ->
begin match search_symbol n.node with
Some symb ->
Some (Node {node = symb; son = n.son; brother = DeadEnd})
| None ->
match search_tree n.son with
Some t ->
Some (Node {node = n.node; son = t; brother = DeadEnd})
| None -> search_tree n.brother
end
| LocAct (_, _) | DeadEnd -> None
and search_symbol symb =
match symb with
Snterm _ | Snterml (_, _) | Slist0 _ | Slist0sep (_, _, _) |
Slist1 _ | Slist1sep (_, _, _) | Sopt _ | Stoken _ | Stree _
when symb == prev_symb ->
Some symb
| Slist0 symb ->
begin match search_symbol symb with
Some symb -> Some (Slist0 symb)
| None -> None
end
| Slist0sep (symb, sep, b) ->
begin match search_symbol symb with
Some symb -> Some (Slist0sep (symb, sep, b))
| None ->
match search_symbol sep with
Some sep -> Some (Slist0sep (symb, sep, b))
| None -> None
end
| Slist1 symb ->
begin match search_symbol symb with
Some symb -> Some (Slist1 symb)
| None -> None
end
| Slist1sep (symb, sep, b) ->
begin match search_symbol symb with
Some symb -> Some (Slist1sep (symb, sep, b))
| None ->
match search_symbol sep with
Some sep -> Some (Slist1sep (symb, sep, b))
| None -> None
end
| Sopt symb ->
begin match search_symbol symb with
Some symb -> Some (Sopt symb)
| None -> None
end
| Stree t ->
begin match search_tree t with
Some t -> Some (Stree t)
| None -> None
end
| _ -> None
in
search_levels levels
| Dparser _ -> tree
let error_verbose = ref false
let tree_failed entry prev_symb_result prev_symb tree =
let txt = name_of_tree_failed entry tree in
let txt =
match prev_symb with
Slist0 s ->
let txt1 = name_of_symbol_failed entry s in
txt1 ^ " or " ^ txt ^ " expected"
| Slist1 s ->
let txt1 = name_of_symbol_failed entry s in
txt1 ^ " or " ^ txt ^ " expected"
| Slist0sep (s, sep, _) ->
begin match Obj.magic prev_symb_result with
[] ->
let txt1 = name_of_symbol_failed entry s in
txt1 ^ " or " ^ txt ^ " expected"
| _ ->
let txt1 = name_of_symbol_failed entry sep in
txt1 ^ " or " ^ txt ^ " expected"
end
| Slist1sep (s, sep, _) ->
begin match Obj.magic prev_symb_result with
[] ->
let txt1 = name_of_symbol_failed entry s in
txt1 ^ " or " ^ txt ^ " expected"
| _ ->
let txt1 = name_of_symbol_failed entry sep in
txt1 ^ " or " ^ txt ^ " expected"
end
| Sopt _ | Stree _ -> txt ^ " expected"
| _ -> txt ^ " expected after " ^ name_of_symbol_failed entry prev_symb
in
if !error_verbose then
begin let tree = search_tree_in_entry prev_symb tree entry.edesc in
let ppf = err_formatter in
fprintf ppf "@[<v 0>@,";
fprintf ppf "----------------------------------@,";
fprintf ppf "Parse error in entry [%s], rule:@;<0 2>" entry.ename;
fprintf ppf "@[";
print_level ppf pp_force_newline (flatten_tree tree);
fprintf ppf "@]@,";
fprintf ppf "----------------------------------@,";
fprintf ppf "@]@."
end;
txt ^ " (in [" ^ entry.ename ^ "])"
let symb_failed entry prev_symb_result prev_symb symb =
let tree = Node {node = symb; brother = DeadEnd; son = DeadEnd} in
tree_failed entry prev_symb_result prev_symb tree
external app : Obj.t -> 'a = "%identity"
let is_level_labelled n lev =
match lev.lname with
Some n1 -> n = n1
| None -> false
let level_number entry lab =
let rec lookup levn =
function
[] -> failwith ("unknown level " ^ lab)
| lev :: levs ->
if is_level_labelled lab lev then levn else lookup (succ levn) levs
in
match entry.edesc with
Dlevels elev -> lookup 0 elev
| Dparser _ -> raise Not_found
let rec top_symb entry =
function
Sself | Snext -> Snterm entry
| Snterml (e, _) -> Snterm e
| Slist1sep (s, sep, b) -> Slist1sep (top_symb entry s, sep, b)
| _ -> raise Stream.Failure
let entry_of_symb entry =
function
Sself | Snext -> entry
| Snterm e -> e
| Snterml (e, _) -> e
| _ -> raise Stream.Failure
let top_tree entry =
function
Node {node = s; brother = bro; son = son} ->
Node {node = top_symb entry s; brother = bro; son = son}
| LocAct (_, _) | DeadEnd -> raise Stream.Failure
let skip_if_empty bp p strm =
if Stream.count strm == bp then Gramext.action (fun a -> p strm)
else raise Stream.Failure
let continue entry bp a s son p1 (strm__ : _ Stream.t) =
let a = (entry_of_symb entry s).econtinue 0 bp a strm__ in
let act =
try p1 strm__ with
Stream.Failure -> raise (Stream.Error (tree_failed entry a s son))
in
Gramext.action (fun _ -> app act a)
let do_recover parser_of_tree entry nlevn alevn bp a s son
(strm__ : _ Stream.t) =
try parser_of_tree entry nlevn alevn (top_tree entry son) strm__ with
Stream.Failure ->
try
skip_if_empty bp (fun (strm__ : _ Stream.t) -> raise Stream.Failure)
strm__
with Stream.Failure ->
continue entry bp a s son (parser_of_tree entry nlevn alevn son)
strm__
let strict_parsing = ref false
let recover parser_of_tree entry nlevn alevn bp a s son strm =
if !strict_parsing then raise (Stream.Error (tree_failed entry a s son))
else do_recover parser_of_tree entry nlevn alevn bp a s son strm
let token_count = ref 0
let peek_nth n strm =
let list = Stream.npeek n strm in
token_count := Stream.count strm + n;
let rec loop list n =
match list, n with
x :: _, 1 -> Some x
| _ :: l, n -> loop l (n - 1)
| [], _ -> None
in
loop list n
let item_skipped = ref false
let call_and_push ps al strm =
item_skipped := false;
let a = ps strm in
let al = if !item_skipped then al else a :: al in item_skipped := false; al
let token_ematch gram tok =
let tematch = gram.glexer.Plexing.tok_match tok in
fun tok -> Obj.repr (tematch tok : string)
let rec parser_of_tree entry nlevn alevn =
function
DeadEnd -> (fun (strm__ : _ Stream.t) -> raise Stream.Failure)
| LocAct (act, _) -> (fun (strm__ : _ Stream.t) -> act)
| Node {node = Sself; son = LocAct (act, _); brother = DeadEnd} ->
(fun (strm__ : _ Stream.t) ->
let a = entry.estart alevn strm__ in app act a)
| Node {node = Sself; son = LocAct (act, _); brother = bro} ->
let p2 = parser_of_tree entry nlevn alevn bro in
(fun (strm__ : _ Stream.t) ->
match
try Some (entry.estart alevn strm__) with Stream.Failure -> None
with
Some a -> app act a
| _ -> p2 strm__)
| Node {node = s; son = son; brother = DeadEnd} ->
let tokl =
match s with
Stoken tok -> get_token_list entry [] tok son
| _ -> None
in
begin match tokl with
None ->
let ps = parser_of_symbol entry nlevn s in
let p1 = parser_of_tree entry nlevn alevn son in
let p1 = parser_cont p1 entry nlevn alevn s son in
(fun (strm__ : _ Stream.t) ->
let bp = Stream.count strm__ in
let a = ps strm__ in
let act =
try p1 bp a strm__ with
Stream.Failure ->
raise (Stream.Error (tree_failed entry a s son))
in
app act a)
| Some (rev_tokl, last_tok, son) ->
let lt = Stoken last_tok in
let p1 = parser_of_tree entry nlevn alevn son in
let p1 = parser_cont p1 entry nlevn alevn lt son in
parser_of_token_list entry s son p1
(fun (strm__ : _ Stream.t) -> raise Stream.Failure) rev_tokl
last_tok
end
| Node {node = s; son = son; brother = bro} ->
let tokl =
match s with
Stoken tok -> get_token_list entry [] tok son
| _ -> None
in
match tokl with
None ->
let ps = parser_of_symbol entry nlevn s in
let p1 = parser_of_tree entry nlevn alevn son in
let p1 = parser_cont p1 entry nlevn alevn s son in
let p2 = parser_of_tree entry nlevn alevn bro in
(fun (strm : _ Stream.t) ->
let bp = Stream.count strm in
match try Some (ps strm) with Stream.Failure -> None with
Some a ->
begin match
(try Some (p1 bp a strm) with Stream.Failure -> None)
with
Some act -> app act a
| None -> raise (Stream.Error (tree_failed entry a s son))
end
| None -> p2 strm)
| Some (rev_tokl, last_tok, son) ->
let lt = Stoken last_tok in
let p2 = parser_of_tree entry nlevn alevn bro in
let p1 = parser_of_tree entry nlevn alevn son in
let p1 = parser_cont p1 entry nlevn alevn lt son in
let p1 =
parser_of_token_list entry lt son p1 p2 rev_tokl last_tok
in
fun (strm__ : _ Stream.t) ->
try p1 strm__ with Stream.Failure -> p2 strm__
and parser_cont p1 entry nlevn alevn s son bp a (strm__ : _ Stream.t) =
try p1 strm__ with
Stream.Failure ->
recover parser_of_tree entry nlevn alevn bp a s son strm__
and parser_of_token_list entry s son p1 p2 rev_tokl last_tok =
let plast =
let n = List.length rev_tokl + 1 in
let tematch = token_ematch entry.egram last_tok in
let ps strm =
match peek_nth n strm with
Some tok ->
let r = tematch tok in
for _i = 1 to n do Stream.junk strm done; Obj.repr r
| None -> raise Stream.Failure
in
fun (strm : _ Stream.t) ->
let bp = Stream.count strm in
let a = ps strm in
match try Some (p1 bp a strm) with Stream.Failure -> None with
Some act -> app act a
| None -> raise (Stream.Error (tree_failed entry a s son))
in
match List.rev rev_tokl with
[] -> (fun (strm__ : _ Stream.t) -> plast strm__)
| tok :: tokl ->
let tematch = token_ematch entry.egram tok in
let ps strm =
match peek_nth 1 strm with
Some tok -> tematch tok
| None -> raise Stream.Failure
in
let p1 =
let rec loop n =
function
[] -> plast
| tok :: tokl ->
let tematch = token_ematch entry.egram tok in
let ps strm =
match peek_nth n strm with
Some tok -> tematch tok
| None -> raise Stream.Failure
in
let p1 = loop (n + 1) tokl in
fun (strm__ : _ Stream.t) ->
let a = ps strm__ in let act = p1 strm__ in app act a
in
loop 2 tokl
in
fun (strm__ : _ Stream.t) ->
let a = ps strm__ in let act = p1 strm__ in app act a
and parser_of_symbol entry nlevn =
function
| Slist0 s ->
let ps = call_and_push (parser_of_symbol entry nlevn s) in
let rec loop al (strm__ : _ Stream.t) =
match try Some (ps al strm__) with Stream.Failure -> None with
Some al -> loop al strm__
| _ -> al
in
(fun (strm__ : _ Stream.t) ->
let a = loop [] strm__ in Obj.repr (List.rev a))
| Slist0sep (symb, sep, false) ->
let ps = call_and_push (parser_of_symbol entry nlevn symb) in
let pt = parser_of_symbol entry nlevn sep in
let rec kont al (strm__ : _ Stream.t) =
match try Some (pt strm__) with Stream.Failure -> None with
Some v ->
let al =
try ps al strm__ with
Stream.Failure ->
raise (Stream.Error (symb_failed entry v sep symb))
in
kont al strm__
| _ -> al
in
(fun (strm__ : _ Stream.t) ->
match try Some (ps [] strm__) with Stream.Failure -> None with
Some al -> let a = kont al strm__ in Obj.repr (List.rev a)
| _ -> Obj.repr [])
| Slist0sep (symb, sep, true) ->
let ps = call_and_push (parser_of_symbol entry nlevn symb) in
let pt = parser_of_symbol entry nlevn sep in
let rec kont al (strm__ : _ Stream.t) =
match try Some (pt strm__) with Stream.Failure -> None with
Some v ->
begin match
(try Some (ps al strm__) with Stream.Failure -> None)
with
Some al -> kont al strm__
| _ -> al
end
| _ -> al
in
(fun (strm__ : _ Stream.t) ->
match try Some (ps [] strm__) with Stream.Failure -> None with
Some al -> let a = kont al strm__ in Obj.repr (List.rev a)
| _ -> Obj.repr [])
| Slist1 s ->
let ps = call_and_push (parser_of_symbol entry nlevn s) in
let rec loop al (strm__ : _ Stream.t) =
match try Some (ps al strm__) with Stream.Failure -> None with
Some al -> loop al strm__
| _ -> al
in
(fun (strm__ : _ Stream.t) ->
let al = ps [] strm__ in
let a = loop al strm__ in Obj.repr (List.rev a))
| Slist1sep (symb, sep, false) ->
let ps = call_and_push (parser_of_symbol entry nlevn symb) in
let pt = parser_of_symbol entry nlevn sep in
let rec kont al (strm__ : _ Stream.t) =
match try Some (pt strm__) with Stream.Failure -> None with
Some v ->
let al =
try ps al strm__ with
Stream.Failure ->
let a =
try parse_top_symb entry symb strm__ with
Stream.Failure ->
raise (Stream.Error (symb_failed entry v sep symb))
in
a :: al
in
kont al strm__
| _ -> al
in
(fun (strm__ : _ Stream.t) ->
let al = ps [] strm__ in
let a = kont al strm__ in Obj.repr (List.rev a))
| Slist1sep (symb, sep, true) ->
let ps = call_and_push (parser_of_symbol entry nlevn symb) in
let pt = parser_of_symbol entry nlevn sep in
let rec kont al (strm__ : _ Stream.t) =
match try Some (pt strm__) with Stream.Failure -> None with
Some v ->
begin match
(try Some (ps al strm__) with Stream.Failure -> None)
with
Some al -> kont al strm__
| _ ->
match
try Some (parse_top_symb entry symb strm__) with
Stream.Failure -> None
with
Some a -> kont (a :: al) strm__
| _ -> al
end
| _ -> al
in
(fun (strm__ : _ Stream.t) ->
let al = ps [] strm__ in
let a = kont al strm__ in Obj.repr (List.rev a))
| Sopt s ->
let ps = parser_of_symbol entry nlevn s in
(fun (strm__ : _ Stream.t) ->
match try Some (ps strm__) with Stream.Failure -> None with
Some a -> Obj.repr (Some a)
| _ -> Obj.repr None)
| Stree t ->
let pt = parser_of_tree entry 1 0 t in
(fun (strm__ : _ Stream.t) ->
let bp = Stream.count strm__ in
let a = pt strm__ in
let ep = Stream.count strm__ in
let loc = loc_of_token_interval bp ep in app a loc)
| Snterm e -> (fun (strm__ : _ Stream.t) -> e.estart 0 strm__)
| Snterml (e, l) ->
(fun (strm__ : _ Stream.t) -> e.estart (level_number e l) strm__)
| Sself -> (fun (strm__ : _ Stream.t) -> entry.estart 0 strm__)
| Snext -> (fun (strm__ : _ Stream.t) -> entry.estart nlevn strm__)
| Stoken tok -> parser_of_token entry tok
and parser_of_token entry tok =
let f = entry.egram.glexer.Plexing.tok_match tok in
fun strm ->
match Stream.peek strm with
Some tok -> let r = f tok in Stream.junk strm; Obj.repr r
| None -> raise Stream.Failure
and parse_top_symb entry symb = parser_of_symbol entry 0 (top_symb entry symb)
let rec start_parser_of_levels entry clevn =
function
[] -> (fun levn (strm__ : _ Stream.t) -> raise Stream.Failure)
| lev :: levs ->
let p1 = start_parser_of_levels entry (succ clevn) levs in
match lev.lprefix with
DeadEnd -> p1
| tree ->
let alevn =
match lev.assoc with
LeftA | NonA -> succ clevn
| RightA -> clevn
in
let p2 = parser_of_tree entry (succ clevn) alevn tree in
match levs with
[] ->
(fun levn strm ->
(* this code should be there but is commented to preserve
compatibility with previous versions... with this code,
the grammar entry e: [[ "x"; a = e | "y" ]] should fail
because it should be: e: [RIGHTA[ "x"; a = e | "y" ]]...
if levn > clevn then match strm with parser []
else
*)
let (strm__ : _ Stream.t) = strm in
let bp = Stream.count strm__ in
let act = p2 strm__ in
let ep = Stream.count strm__ in
let a = app act (loc_of_token_interval bp ep) in
entry.econtinue levn bp a strm)
| _ ->
fun levn strm ->
if levn > clevn then p1 levn strm
else
let (strm__ : _ Stream.t) = strm in
let bp = Stream.count strm__ in
match try Some (p2 strm__) with Stream.Failure -> None with
Some act ->
let ep = Stream.count strm__ in
let a = app act (loc_of_token_interval bp ep) in
entry.econtinue levn bp a strm
| _ -> p1 levn strm__
let rec continue_parser_of_levels entry clevn =
function
[] -> (fun levn bp a (strm__ : _ Stream.t) -> raise Stream.Failure)
| lev :: levs ->
let p1 = continue_parser_of_levels entry (succ clevn) levs in
match lev.lsuffix with
DeadEnd -> p1
| tree ->
let alevn =
match lev.assoc with
LeftA | NonA -> succ clevn
| RightA -> clevn
in
let p2 = parser_of_tree entry (succ clevn) alevn tree in
fun levn bp a strm ->
if levn > clevn then p1 levn bp a strm
else
let (strm__ : _ Stream.t) = strm in
try p1 levn bp a strm__ with
Stream.Failure ->
let act = p2 strm__ in
let ep = Stream.count strm__ in
let a = app act a (loc_of_token_interval bp ep) in
entry.econtinue levn bp a strm
let continue_parser_of_entry entry =
match entry.edesc with
Dlevels elev ->
let p = continue_parser_of_levels entry 0 elev in
(fun levn bp a (strm__ : _ Stream.t) ->
try p levn bp a strm__ with Stream.Failure -> a)
| Dparser p -> fun levn bp a (strm__ : _ Stream.t) -> raise Stream.Failure
let empty_entry ename levn strm =
raise (Stream.Error ("entry [" ^ ename ^ "] is empty"))
let start_parser_of_entry entry =
match entry.edesc with
Dlevels [] -> empty_entry entry.ename
| Dlevels elev -> start_parser_of_levels entry 0 elev
| Dparser p -> fun levn strm -> p strm
(* Extend syntax *)
let init_entry_functions entry =
entry.estart <-
(fun lev strm ->
let f = start_parser_of_entry entry in entry.estart <- f; f lev strm);
entry.econtinue <-
(fun lev bp a strm ->
let f = continue_parser_of_entry entry in
entry.econtinue <- f; f lev bp a strm)
let extend_entry entry position rules =
try
let elev = Gramext.levels_of_rules entry position rules in
entry.edesc <- Dlevels elev; init_entry_functions entry
with Plexing.Error s ->
Printf.eprintf "Lexer initialization error:\n- %s\n" s;
flush stderr;
failwith "Grammar.extend"
(* Deleting a rule *)
let delete_rule entry sl =
match entry.edesc with
Dlevels levs ->
let levs = Gramext.delete_rule_in_level_list entry sl levs in
entry.edesc <- Dlevels levs;
entry.estart <-
(fun lev strm ->
let f = start_parser_of_entry entry in
entry.estart <- f; f lev strm);
entry.econtinue <-
(fun lev bp a strm ->
let f = continue_parser_of_entry entry in
entry.econtinue <- f; f lev bp a strm)
| Dparser _ -> ()
(* Normal interface *)
let create_toktab () = Hashtbl.create 301
let gcreate glexer =
{gtokens = create_toktab (); glexer = glexer }
let tokens g con =
let list = ref [] in
Hashtbl.iter
(fun (p_con, p_prm) c -> if p_con = con then list := (p_prm, !c) :: !list)
g.gtokens;
!list
let glexer g = g.glexer
type 'te gen_parsable =
{ pa_chr_strm : char Stream.t;
pa_tok_strm : 'te Stream.t;
pa_loc_func : Plexing.location_function }
let parse_parsable entry p =
let efun = entry.estart 0 in
let ts = p.pa_tok_strm in
let cs = p.pa_chr_strm in
let fun_loc = p.pa_loc_func in
let restore =
let old_floc = !floc in
let old_tc = !token_count in
fun () -> floc := old_floc; token_count := old_tc
in
let get_loc () =
try
let cnt = Stream.count ts in
let loc = fun_loc cnt in
if !token_count - 1 <= cnt then loc
else Ploc.encl loc (fun_loc (!token_count - 1))
with Failure _ -> Ploc.make_unlined (Stream.count cs, Stream.count cs + 1)
in
floc := fun_loc;
token_count := 0;
try let r = efun ts in restore (); r with
Stream.Failure ->
let loc = get_loc () in
restore ();
Ploc.raise loc (Stream.Error ("illegal begin of " ^ entry.ename))
| Stream.Error _ as exc ->
let loc = get_loc () in restore (); Ploc.raise loc exc
| exc ->
let loc = Stream.count cs, Stream.count cs + 1 in
restore (); Ploc.raise (Ploc.make_unlined loc) exc
(* Unsafe *)
let clear_entry e =
e.estart <- (fun _ (strm__ : _ Stream.t) -> raise Stream.Failure);
e.econtinue <- (fun _ _ _ (strm__ : _ Stream.t) -> raise Stream.Failure);
match e.edesc with
Dlevels _ -> e.edesc <- Dlevels []
| Dparser _ -> ()
let gram_reinit g glexer = Hashtbl.clear g.gtokens; g.glexer <- glexer
(* Functorial interface *)
module type GLexerType = sig type te val lexer : te Plexing.lexer end
module type S =
sig
type te
type parsable
val parsable : char Stream.t -> parsable
val tokens : string -> (string * int) list
val glexer : te Plexing.lexer
module Entry :
sig
type 'a e
val create : string -> 'a e
val parse : 'a e -> parsable -> 'a
val name : 'a e -> string
val of_parser : string -> (te Stream.t -> 'a) -> 'a e
val parse_token_stream : 'a e -> te Stream.t -> 'a
val print : Format.formatter -> 'a e -> unit
external obj : 'a e -> te Gramext.g_entry = "%identity"
end
type ('self, 'a) ty_symbol
type ('self, 'f, 'r) ty_rule
type 'a ty_production
val s_nterm : 'a Entry.e -> ('self, 'a) ty_symbol
val s_nterml : 'a Entry.e -> string -> ('self, 'a) ty_symbol
val s_list0 : ('self, 'a) ty_symbol -> ('self, 'a list) ty_symbol
val s_list0sep :
('self, 'a) ty_symbol -> ('self, 'b) ty_symbol -> bool ->
('self, 'a list) ty_symbol
val s_list1 : ('self, 'a) ty_symbol -> ('self, 'a list) ty_symbol
val s_list1sep :
('self, 'a) ty_symbol -> ('self, 'b) ty_symbol -> bool ->
('self, 'a list) ty_symbol
val s_opt : ('self, 'a) ty_symbol -> ('self, 'a option) ty_symbol
val s_self : ('self, 'self) ty_symbol
val s_next : ('self, 'self) ty_symbol
val s_token : Plexing.pattern -> ('self, string) ty_symbol
val s_rules : 'a ty_production list -> ('self, 'a) ty_symbol
val r_stop : ('self, 'r, 'r) ty_rule
val r_next :
('self, 'a, 'r) ty_rule -> ('self, 'b) ty_symbol ->
('self, 'b -> 'a, 'r) ty_rule
val production : ('a, 'f, Ploc.t -> 'a) ty_rule * 'f -> 'a ty_production
module Unsafe :
sig
val gram_reinit : te Plexing.lexer -> unit
val clear_entry : 'a Entry.e -> unit
end
val extend :
'a Entry.e -> Gramext.position option ->
(string option * Gramext.g_assoc option *
(te Gramext.g_symbol list * Gramext.g_action) list)
list ->
unit
val safe_extend :
'a Entry.e -> Gramext.position option ->
(string option * Gramext.g_assoc option * 'a ty_production list)
list ->
unit
val delete_rule : 'a Entry.e -> te Gramext.g_symbol list -> unit
val safe_delete_rule : 'a Entry.e -> ('a, 'r, 'f) ty_rule -> unit
end
module GMake (L : GLexerType) =
struct
type te = L.te
type parsable = te gen_parsable
let gram = gcreate L.lexer
let parsable cs =
let (ts, lf) = L.lexer.Plexing.tok_func cs in
{pa_chr_strm = cs; pa_tok_strm = ts; pa_loc_func = lf}
let tokens = tokens gram
let glexer = glexer gram
module Entry =
struct
type 'a e = te g_entry
let create n =
{egram = gram; ename = n; elocal = false; estart = empty_entry n;
econtinue =
(fun _ _ _ (strm__ : _ Stream.t) -> raise Stream.Failure);
edesc = Dlevels []}
external obj : 'a e -> te Gramext.g_entry = "%identity"
let parse (e : 'a e) p : 'a =
Obj.magic (parse_parsable e p : Obj.t)
let parse_token_stream (e : 'a e) ts : 'a =
Obj.magic (e.estart 0 ts : Obj.t)
let name e = e.ename
let of_parser n (p : te Stream.t -> 'a) : 'a e =
{egram = gram; ename = n; elocal = false;
estart = (fun _ -> (Obj.magic p : te Stream.t -> Obj.t));
econtinue =
(fun _ _ _ (strm__ : _ Stream.t) -> raise Stream.Failure);
edesc = Dparser (Obj.magic p : te Stream.t -> Obj.t)}
let print ppf e = fprintf ppf "%a@." print_entry (obj e)
end
type ('self, 'a) ty_symbol = te Gramext.g_symbol
type ('self, 'f, 'r) ty_rule = ('self, Obj.t) ty_symbol list
type 'a ty_production = ('a, Obj.t, Obj.t) ty_rule * Gramext.g_action
let s_nterm e = Snterm e
let s_nterml e l = Snterml (e, l)
let s_list0 s = Slist0 s
let s_list0sep s sep b = Slist0sep (s, sep, b)
let s_list1 s = Slist1 s
let s_list1sep s sep b = Slist1sep (s, sep, b)
let s_opt s = Sopt s
let s_self = Sself
let s_next = Snext
let s_token tok = Stoken tok
let s_rules (t : Obj.t ty_production list) = Gramext.srules (Obj.magic t)
let r_stop = []
let r_next r s = r @ [s]
let production
(p : ('a, 'f, Ploc.t -> 'a) ty_rule * 'f) : 'a ty_production =
Obj.magic p
module Unsafe =
struct
let gram_reinit = gram_reinit gram
let clear_entry = clear_entry
end
let extend = extend_entry
let safe_extend e pos
(r :
(string option * Gramext.g_assoc option * Obj.t ty_production list)
list) =
extend e pos (Obj.magic r)
let delete_rule e r = delete_rule (Entry.obj e) r
let safe_delete_rule = delete_rule
end
|