1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
|
(***********************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA-Rocquencourt & LRI-CNRS-Orsay *)
(* \VV/ *************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(***********************************************************************)
Extraction nat.
(*
type nat =
| O
| S of nat
*)
Definition test1 := [x:nat]x.
Extraction test1.
(* let test1 x = x *)
Inductive c [x:nat] : nat -> Set :=
refl : (c x x)
| trans : (y,z:nat)(c x y)->(le y z)->(c x z).
Extraction c.
(*
type c =
| Refl
| Trans of nat * nat * c
*)
Definition test2 := [f:nat->nat][x:nat](f x).
Extraction test2.
(* let test2 f x = f x *)
Definition test3 := [f:nat->Set->nat][x:nat](f x nat).
Extraction test3.
(* let test3 f x = f x () *)
Definition test4 := [f:(nat->nat)->nat][x:nat][g:nat->nat](f g).
Extraction test4.
(* let test4 f x g = f g *)
Definition test5 := (pair ? ? (S O) O).
Extraction test5.
(* let test5 = Pair ((S O), O) *)
Definition cf := [x:nat][_:(le x O)](S x).
Extraction NoInline cf.
Definition test6 := (cf O (le_n O)).
Extraction test6.
(* let test6 = cf O *)
Definition test7 := ([X:Set][x:X]x nat).
Extraction test7.
(* let test7 x = x *)
Definition d := [X:Type]X.
Extraction d. (* type 'x d = 'x *)
Definition d2 := (d Set).
Extraction d2. (* type d2 = unit d *)
Definition d3 := [x:(d Set)]O.
Extraction d3. (* let d3 _ = O *)
Definition d4 := (d nat).
Extraction d4. (* type d4 = nat d *)
Definition d5 := ([x:(d Type)]O Type).
Extraction d5. (* let d5 = O *)
Definition d6 := ([x:(d Type)]x).
Extraction d6. (* type 'x d6 = 'x *)
Definition test8 := ([X:Type][x:X]x Set nat).
Extraction test8. (* type test8 = nat *)
Definition id' := [X:Type][x:X]x.
Extraction id'. (* let id' x = x *)
Definition id'' := (id' Set nat).
Extraction id''. (* type id'' = Obj.t *)
Definition test9 := let t = nat in (id' Set t).
Extraction test9. (* type test9 = Obj.t *)
Definition Ensemble := [U:Type]U->Prop.
Definition Empty_set := [U:Type][x:U]False.
Definition Add := [U:Type][A:(Ensemble U)][x:U][y:U](A y) \/ x==y.
Inductive Finite [U:Type] : (Ensemble U) -> Set :=
Empty_is_finite: (Finite U (Empty_set U))
| Union_is_finite:
(A: (Ensemble U)) (Finite U A) ->
(x: U) ~ (A x) -> (Finite U (Add U A x)).
Extraction Finite.
(*
type 'u finite =
| Empty_is_finite
| Union_is_finite of 'u finite * 'u
*)
Definition test10 := ([X:Type][x:X]O Type Type).
Extraction test10. (* let test10 = O *)
Definition test11 := let n=O in let p=(S n) in (S p).
Extraction test11. (* let test11 = S (S O) *)
Definition test12 := (x:(X:Type)X->X)(x Type Type).
Extraction test12.
(* type test12 = (unit -> Obj.t -> Obj.t) -> Obj.t *)
(** Mutual Inductive *)
Inductive tree : Set :=
Node : nat -> forest -> tree
with forest : Set :=
| Leaf : nat -> forest
| Cons : tree -> forest -> forest .
Extraction tree.
(*
type tree =
| Node of nat * forest
and forest =
| Leaf of nat
| Cons of tree * forest
*)
Fixpoint tree_size [t:tree] : nat :=
Cases t of (Node a f) => (S (forest_size f)) end
with forest_size [f:forest] : nat :=
Cases f of
| (Leaf b) => (S O)
| (Cons t f') => (plus (tree_size t) (forest_size f'))
end.
Extraction tree_size.
(*
let rec tree_size = function
| Node (a, f) -> S (forest_size f)
and forest_size = function
| Leaf b -> S O
| Cons (t, f') -> plus (tree_size t) (forest_size f')
*)
Definition test13 := Cases (left True True I) of (left x)=>(S O) | (right x)=>O end.
Extraction test13. (* let test13 = S O *)
Extraction sumbool_rect.
(*
let sumbool_rect f0 f = function
| Left -> f0 ()
| Right -> f ()
*)
Inductive predicate : Type :=
| Atom : Prop -> predicate
| EAnd : predicate -> predicate -> predicate.
Extraction predicate.
(*
type predicate =
| Atom
| EAnd of predicate * predicate
*)
(** Eta-expansions of inductive constructor *)
Inductive titi : Set := tata : nat->nat->nat->nat->titi.
Definition test14 := (tata O).
Extraction test14.
(* let test14 x x0 x1 = Tata (O, x, x0, x1) *)
Definition test15 := (tata O (S O)).
Extraction test15.
(* let test15 x x0 = Tata (O, (S O), x, x0) *)
Inductive eta : Set := eta_c : nat->Prop->nat->Prop->eta.
Extraction eta_c.
(*
type eta =
| Eta_c of nat * nat
*)
Definition test16 := (eta_c O).
Extraction test16.
(* let test16 x = Eta_c (O, x) *)
Definition test17 := (eta_c O True).
Extraction test17.
(* let test17 x = Eta_c (O, x) *)
Definition test18 := (eta_c O True O).
Extraction test18.
(* let test18 _ = Eta_c (O, O) *)
(** Example of singleton inductive type *)
Inductive bidon [A:Prop;B:Type] : Set := tb : (x:A)(y:B)(bidon A B).
Definition fbidon := [A,B:Type][f:A->B->(bidon True nat)][x:A][y:B](f x y).
Extraction bidon.
(* type 'b bidon = 'b *)
Extraction tb.
(* tb : singleton inductive constructor *)
Extraction fbidon.
(* let fbidon f x y =
f x y
*)
Definition fbidon2 := (fbidon True nat (tb True nat)).
Extraction fbidon2. (* let fbidon2 x = x *)
Extraction NoInline fbidon.
Extraction fbidon2.
(* let test19 x = fbidon (fun x0 x1 -> x1) () x *)
(** NB: first argument of fbidon2 has type [True], so it disappears. *)
(** mutual inductive on many sorts *)
Inductive
test_0 : Prop := ctest0 : test_0
with
test_1 : Set := ctest1 : test_0-> test_1.
Extraction test_0.
(* test0 : logical inductive *)
Extraction test_1.
(*
type test1 =
| Ctest1
*)
(** logical singleton *)
Extraction eq.
(* eq : logical inductive *)
Extraction eq_rect.
(* let eq_rect x f y =
f
*)
(** example with more arguments that given by the type *)
Definition test19 := (nat_rec [n:nat]nat->nat [n:nat]O [n:nat][f:nat->nat]f O O).
Extraction test19.
(* let test19 =
let rec f = function
| O -> (fun n0 -> O)
| S n0 -> f n0
in f O O
*)
(** No more propagation of type parameters. Obj.t instead. *)
Inductive tp1 : Set :=
T : (C:Set)(c:C)tp2 -> tp1 with tp2 : Set := T' : tp1->tp2.
Extraction tp1.
(*
type tp1 =
| T of Obj.t * tp2
and tp2 =
| T' of tp1
*)
Inductive tp1bis : Set :=
Tbis : tp2bis -> tp1bis
with tp2bis : Set := T'bis : (C:Set)(c:C)tp1bis->tp2bis.
Extraction tp1bis.
(*
type tp1bis =
| Tbis of tp2bis
and tp2bis =
| T'bis of Obj.t * tp1bis
*)
(** casts *)
Definition test20 := (True :: Type).
Extraction test20.
(* type t = unit *)
(* examples needing Obj.magic *)
(* hybrids *)
Definition horibilis := [b:bool]<[b:bool]if b then Type else nat>if b then Set else O.
Extraction horibilis.
(*
let horibilis = function
| True -> ()
| False -> O
*)
Definition PropSet := [b:bool]if b then Prop else Set.
Extraction PropSet. (* type propSet = Obj.t *)
Definition natbool := [b:bool]if b then nat else bool.
Extraction natbool. (* type natbool = Obj.t *)
Definition zerotrue := [b:bool]<natbool>if b then O else true.
Extraction zerotrue.
(*
let zerotrue = function
| True -> O
| False -> True
*)
Definition natProp := [b:bool]<[_:bool]Type>if b then nat else Prop.
Definition natTrue := [b:bool]<[_:bool]Type>if b then nat else True.
Definition zeroTrue := [b:bool]<natProp>if b then O else True.
Extraction zeroTrue.
(*
let zeroTrue = function
| True -> O
| False -> ()
*)
Definition natTrue2 := [b:bool]<[_:bool]Type>if b then nat else True.
Definition zeroprop := [b:bool]<natTrue>if b then O else I.
Extraction zeroprop.
(*
let zeroprop = function
| True -> O
| False -> ()
*)
(** instanciations Type -> Prop *)
(** polymorphic f applied several times *)
Definition test21 := (pair ? ? (id' nat O) (id' bool true)).
Extraction test21.
(* let test21 = Pair ((id' O), (id' True)) *)
(** ok *)
Definition test22 := ([i:(X:Type)X->X](pair ? ? (i nat O) (i bool true)) [X:Type][x:X]x).
Extraction test22.
(* let test22 =
let i = fun x -> x in Pair ((i O), (i True)) *)
(* still ok via optim beta -> let *)
Definition test23 := [i:(X:Type)X->X](pair ? ? (i nat O) (i bool true)).
Extraction test23.
(* let test23 i = Pair ((i () O), (i () True)) *)
(* problem: fun f -> (f 0, f true) not legal in ocaml *)
(* solution: fun f -> (f 0, Obj.magic f true) *)
Definition funPropSet:=
[b:bool]<[_:bool]Type>if b then (X:Prop)X->X else (X:Set)X->X.
(* Definition funPropSet2:=
[b:bool](X:if b then Prop else Set)X->X. *)
Definition idpropset :=
[b:bool]<funPropSet>if b then [X:Prop][x:X]x else [X:Set][x:X]x.
(* Definition proprop := [b:bool]((idpropset b) (natTrue b) (zeroprop b)). *)
Definition funProp := [b:bool][x:True]<natTrue>if b then O else x.
(*s prop and arity can be applied.... -> fixed ? *)
Definition f : (X:Type)(nat->X)->(X->bool)->bool :=
[X:Type;x:nat->X;y:X->bool](y (x O)).
Extraction f.
(* let f x y =
y (x O)
*)
Definition f_prop := (f (O=O) [_](refl_equal ? O) [_]true).
Extraction NoInline f.
Extraction f_prop.
(* let f_prop =
f (fun _ -> ()) (fun _ -> True)
*)
Definition f_arity := (f Set [_:nat]nat [_:Set]true).
Extraction f_arity.
(* let f_arity =
f (fun _ -> ()) (fun _ -> True)
*)
Definition f_normal := (f nat [x]x [x](Cases x of O => true | _ => false end)).
Extraction f_normal.
(* let f_normal =
f (fun x -> x) (fun x -> match x with
| O -> True
| S n -> False)
*)
Inductive Truc : Set->Set :=
chose : (A:Set)(Truc A)
| machin : (A:Set)A->(Truc bool)->(Truc A).
Extraction Truc.
(*
type 'x truc =
| Chose
| Machin of 'x * bool truc
*)
(** False conversion of type: *)
Require PolyList.
Lemma oups : (H:(nat==(list nat)))nat -> nat.
Intros.
Generalize H0;Intros.
Rewrite H in H1.
Case H1.
Exact H0.
Intros.
Exact n.
Qed.
Extraction oups.
(*
let oups h0 = match h0 with
| Nil -> h0
| Cons0 (n, l) -> n
*)
(* Dependant type over Type *)
Definition test24:= (sigT Set [a:Set](option a)).
Extraction test24.
(* type test24 = (unit, Obj.t option) sigT *)
(* Coq term non strongly-normalizable after extraction *)
Require Gt.
Definition loop :=
[Ax:(Acc nat gt O)]
(Fix F {F [a:nat;b:(Acc nat gt a)] : nat :=
(F (S a) (Acc_inv nat gt a b (S a) (gt_Sn_n a)))}
O Ax).
Extraction loop.
(* let loop _ =
let rec f a =
f (S a)
in f O
*)
|