1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
|
(***********************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA-Rocquencourt & LRI-CNRS-Orsay *)
(* \VV/ *************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(***********************************************************************)
(* $Id$ *)
(* This file uses the (non-compressed) union-find structure to generate *)
(* proof-trees that will be transformed into proof-terms in cctac.ml4 *)
open Names
open Ccalgo
type proof=
Ax of identifier
| Refl of term
| Trans of proof*proof
| Sym of proof
| Congr of proof*proof
let rec up_path uf i l=
let (cl,_,_)=(Hashtbl.find uf i) in
match cl with
UF.Eqto(j,t)->up_path uf j (((i,j),t)::l)
| UF.Rep(_,_)->l
let rec min_path=function
([],l2)->([],l2)
| (l1,[])->(l1,[])
| (((c1,t1)::q1),((c2,t2)::q2)) as cpl->
if c1=c2 then
min_path (q1,q2)
else
cpl
let pcongr=function
((Refl t1),(Refl t2))->Refl (Appli (t1,t2))
| (p1,p2) -> Congr (p1,p2)
let rec ptrans=function
((Refl _),p)->p
| (p,(Refl _))->p
| (Trans(p1,p2),p3)->ptrans(p1,ptrans (p2,p3))
| (Congr(p1,p2),Congr(p3,p4))->pcongr(ptrans(p1,p3),ptrans(p2,p4))
| (Congr(p1,p2),Trans(Congr(p3,p4),p5))->
ptrans(pcongr(ptrans(p1,p3),ptrans(p2,p4)),p5)
| (p1,p2)->Trans (p1,p2)
let rec psym=function
Refl p->Refl p
| Sym p->p
| Ax s-> Sym(Ax s)
| Trans (p1,p2)-> ptrans ((psym p2),(psym p1))
| Congr (p1,p2)-> pcongr ((psym p1),(psym p2))
let pcongr=function
((Refl t1),(Refl t2))->Refl (Appli (t1,t2))
| (p1,p2) -> Congr (p1,p2)
let build_proof ((a,m):UF.t) i j=
let rec equal_proof i j=
let (li,lj)=min_path ((up_path m i []),(up_path m j [])) in
ptrans ((path_proof i li),(psym (path_proof j lj)))
and arrow_proof ((i,j),t)=
let (i0,j0,t0)=t in
let pi=(equal_proof i i0) in
let pj=psym (equal_proof j j0) in
let pij=
match t0 with
UF.Ax s->Ax s
| UF.Congr->(congr_proof i0 j0)
in ptrans(ptrans (pi,pij),pj)
and path_proof i=function
[]->let (_,_,t)=Hashtbl.find m i in Refl t
| (((_,j),_) as x)::q->ptrans ((path_proof j q),(arrow_proof x))
and congr_proof i j=
let (_,vi,_)=(Hashtbl.find m i) and (_,vj,_)=(Hashtbl.find m j) in
match (vi,vj) with
((UF.Node(i1,i2)),(UF.Node(j1,j2)))->
pcongr ((equal_proof i1 j1),(equal_proof i2 j2))
| _ -> failwith "congr_proof: couldn't find subterms"
in
(equal_proof i j)
let rec type_proof uf axioms p=
match p with
Ax s->List.assoc s axioms
| Refl t->(t,t)
| Trans (p1,p2)->
let (s1,t1)=type_proof uf axioms p1
and (t2,s2)=type_proof uf axioms p2 in
if t1=t2 then (s1,s2) else failwith "invalid transitivity"
| Sym p->let (t1,t2)=type_proof uf axioms p in (t2,t1)
| Congr (p1,p2)->
let (i1,j1)=(type_proof uf axioms p1)
and (i2,j2)=(type_proof uf axioms p2) in
((Appli (i1,i2)),(Appli (j1,j2)))
let cc_proof (axioms,(v,w))=
let syms=Hashtbl.create init_size in
let uf=make_uf syms axioms in
let i1=(UF.add v uf syms) in
let i2=(UF.add w uf syms) in
cc uf;
if (UF.find uf i1)=(UF.find uf i2) then
let p=(build_proof uf i1 i2) in
(if (v,w)=(type_proof uf axioms p) then Some (p,uf,axioms)
else failwith "Proof check failed !!")
else
None;;
|