| Age | Commit message (Collapse) | Author |
|
We introduce a new package structure for Coq:
- `coq-core`: Coq's OCaml tools code and plugins
- `coq-stdlib`: Coq's stdlib [.vo files]
- `coq`: meta-package that pulls `coq-{core,stdlib}`
This has several advantages, in particular it allows to install Coq
without the stdlib which is useful in several scenarios, it also open
the door towards a versioning of the stdlib at the package level.
The main user-visible change is that Coq's ML development files now
live in `$lib/coq-core`, for compatibility in the regular build we
install a symlink and support both setups for a while.
Note that plugin developers and even `coq_makefile` should actually
rely on `ocamlfind` to locate Coq's OCaml libs as to be more robust.
There is a transient state where we actually look for both
`$coqlib/plugins` and `$coqlib/../coq-core/plugins` as to support
the non-ocamlfind plus custom variables.
This will be much improved once #13617 is merged (which requires this
PR first), then, we will introduce a `coq.boot` library so finally
`coqdep`, `coqchk`, etc... can share the same path setup code.
IMHO the plan should work fine.
|
|
The current implementation of par: is still in the STM, but is optional.
If the STM does not take over it, it defaults to the implementation of
in comTactic which is based on all: (i.e. sequential).
This commit also moved the interpretation of a tactic from g_ltac to
vernac/comTactic which is more appropriate.
Co-authored-by: Gaëtan Gilbert <gaetan.gilbert@skyskimmer.net>
|
|
Add headers to a few files which were missing them.
|
|
Raising inside exception printers is quite tricky as the order of
registration for printers will indeed depend on the linking order.
We thus forbid this, and make our API closer to the upstream
`Printexn` by having printers return an option type.
|
|
This seems seldom used and I think in general instrumentation this way
is pretty limited (usually better to use the build system to tweak)
It thus seems worth removing as to simplify `Mltop` a bit, but of
course comments are welcome.
|
|
We don't need to handle `Dynlink` errors specially anymore.
|
|
This is the minimal set of changes requires for Coq to build under 2.0
mode. We may likely take advantage of some more new features.
Note that Dune 2.0 requires OCaml >= 4.06.0, OPAM allows to use Dune
in older versions as it will install a secondary compiler.
|
|
Incidentally fix some missing newline in coqc help, and give proper
help for coqidetop and the "coq*worker"s.
|
|
So far we didn't setup optimization flags for the VM in the Dune
build, but time has come to experiment with such flags, we try -O3.
Enabling `-flto` in the final binary build would be great, however
this seems to break windows.
|
|
|
|
This may be useful in a few cases, like testing compilation with
byte-plugins; I chose to install it globally tho it is more of a
developer target.
|
|
Note that `states` doesn't work reliably yet, but that is a separate
problem that will be fixed in Dune 1.6.
[Or we could also fix it improving the rules in envars.ml]
|
|
We make `coqc` a truly standalone binary, whereas `coqtop` is
restricted to interactive use.
Thus, `coqtop -compile` will emit a warning and call `coqc`.
We have also refactored `Coqargs` into a common `Coqargs` module and a
compilation-specific module `Coqcargs`.
This solves problems related to `coqc` having its own argument
parsing, and reduces the number of strange argument combinations a
lot.
|
|
This will allow us to define extra packages such as `coq-refman`.
|
|
Instead of rolling our own, we use the standard one that works well
when binaries are symlinked.
|
|
[Dune](https://github.com/ocaml/dune) is a compositional declarative
build system for OCaml. It provides automatic generation of
`version.ml`, `.merlin`, `META`, `opam`, API documentation; install
management; easy integration with external libraries, test runners,
and modular builds.
In particular, Dune uniformly handles components regardless whether
they live in, or out-of-tree. This greatly simplifies cases where a
plugin [or CoqIde] is checked out in the current working copy but then
distributed separately [and vice-versa]. Dune can thus be used as a
more flexible `coq_makefile` replacement.
For now we provide experimental support for a Dune build. In order to
build Coq + the standard library with Dune type:
```
$ make -f Makefile.dune world
```
This PR includes a preliminary, developer-only preview of Dune for
Coq. There is still ongoing work, see
https://github.com/coq/coq/issues/8052 for tracking status towards
full support.
## Technical description.
Dune works out of the box with Coq, once we have fixed some modularity
issues. The main remaining challenge was to support `.vo` files.
As Dune doesn't support custom build rules yet, to properly build
`.vo` files we provide a small helper script `tools/coq_dune.ml`. The
script will scan the Coq library directories and generate the
corresponding rules for `.v -> .vo` and `.ml4 -> .ml` builds. The
script uses `coqdep` as to correctly output the dependencies of
`.v` files. `coq_dune` is akin to `coq_makefile` and should be able to
be used to build Coq projects in the future.
Due to this pitfall, the build process has to proceed in three stages:
1) build `coqdep` and `coq_dune`; 2) generate `dune` files for
`theories` and `plugins`; 3) perform a regular build with all
targets are in scope.
## FAQ
### Why Dune?
Coq has a moderately complex build system and it is not a secret that
many developer-hours have been spent fighting with `make`.
In particular, the current `make`-based system does offer poor support
to verify that the current build rules and variables are coherent, and
requires significant manual, error-prone. Many variables must be
passed by hand, duplicated, etc... Additionally, our make system
offers poor integration with now standard OCaml ecosystem tools such
as `opam`, `ocamlfind` or `odoc`. Another critical point is build
compositionality. Coq is rich in 3rd party contributions, and a big
shortcoming of the current make system is that it cannot be used to
build these projects; requiring us to maintain a custom tool,
`coq_makefile`, with the corresponding cost.
In the past, there has been some efforts to migrate Coq to more
specialized build systems, however these stalled due to a variety of
reasons. Dune, is a declarative, OCaml-specific build tool that is on
the path to become the standard build system for the OCaml ecosystem.
Dune seems to be a good fit for Coq well: it is well-supported, fast,
compositional, and designed for large projects.
### Does Dune replace the make-based build system?
The current, make-based build system is unmodified by this PR and kept
as the default option. However, Dune has the potential
### Is this PR complete? What does it provide?
This PR is ready for developer preview and feedback. The build system
is functional, however, more work is necessary in order to make Dune
the default for Coq.
The main TODOs are tracked at https://github.com/coq/coq/issues/8052
This PR allows developers to use most of the features of Dune today:
- Modular organization of the codebase; each component is built only
against declared dependencies so components are checked for
containment more strictly.
- Hygienic builds; Dune places all artifacts under `_build`.
- Automatic generation of `.install` files, simplified OPAM workflow.
- `utop` support, `-opaque` in developer mode, etc...
- `ml4` files are handled using `coqp5`, a native-code customized
camlp5 executable which brings much faster `ml4 -> ml` processing.
### What dependencies does Dune require?
Dune doesn't depend on any 3rd party package other than the OCaml compiler.
### Some Benchs:
```
$ /usr/bin/time make DUNEOPT="-j 1000" -f Makefile.dune states
59.50user 18.81system 0:29.83elapsed 262%CPU (0avgtext+0avgdata 302996maxresident)k
0inputs+646632outputs (0major+4893811minor)pagefaults 0swaps
$ /usr/bin/time sh -c "./configure -local -native-compiler no && make -j states"
88.21user 23.65system 0:32.96elapsed 339%CPU (0avgtext+0avgdata 304992maxresident)k
0inputs+1051680outputs (0major+5300680minor)pagefaults 0swaps
```
|
|
We turn coqtop "plugins" into standalone executables, which will be
installed in `COQBIN` and located using the standard `PATH`
mechanism. Using dynamic linking for `coqtop` customization didn't
make a lot of sense, given that only one of such "plugins" could be
loaded at a time. This cleans up some code and solves two problems:
- `coqtop` needing to locate plugins,
- dependency issues as plugins in `stm` depended on files in `toplevel`.
In order to implement this, we do some minor cleanup of the toplevel
API, making it functional, and implement uniform build rules. In
particular:
- `stm` and `toplevel` have become library-only directories,
- a new directory, `topbin`, contains the new executables,
- 4 new binaries have been introduced, for coqide and the stm.
- we provide a common and cleaned up way to locate toplevels.
|